Asymptotic and finite-sample properties of estimators based on stochastic gradients

Panagiotis (Panos) Toulis
panos.toulis@chicagobooth.edu

Econometrics and Statistics
University of Chicago, Booth School of Business
Optimization and estimation are complementary.
Optimization and estimation are complementary.

A unique method that crosses the optimization-statistics boundary:

stochastic gradient descent (SGD)

Special case of **stochastic approximation** (Robbins & Monro, 1951).
Statistical estimation gave a new form of optimization problems:

$$\max_{\theta} L(\theta) \iff \max_{\theta} \sum_{i=1}^{N} l_i(\theta),$$

where l_i is log-likelihood of θ at ith datapoint.
SGD in optimization and statistics

- Statistical estimation gave a new form of optimization problems:
 \[
 \max_{\theta} L(\theta) \Leftrightarrow \max_{\theta} \sum_{i=1}^{N} l_i(\theta),
 \]
 where \(l_i \) is log-likelihood of \(\theta \) at \(i \)th datapoint.

- Classical optimization methods, such as gradient descent,
 \[
 \theta_n = \theta_{n-1} + \gamma_n \nabla L(\theta_{n-1}),
 \]
 fail when computation of gradient is expensive (e.g., \(N \) large).
Statistical estimation gave a new form of optimization problems:

$$\max_\theta L(\theta) \iff \max_\theta \sum_{i=1}^N l_i(\theta),$$

where l_i is log-likelihood of θ at ith datapoint.

Classical optimization methods, such as gradient descent,

$$\theta_n = \theta_{n-1} + \gamma_n \nabla L(\theta_{n-1}),$$

fail when computation of gradient is expensive (e.g., N large).

SGD has emerged as the most versatile optimization method:

$$\theta_n = \theta_{n-1} + \gamma_n \nabla l_{i_n}(\theta_{n-1}),$$

where i_n is uniformly sampled from $[1, 2, \ldots, N]$.
Statistical estimation gave a new form of optimization problems:

$$\max_{\theta} L(\theta) \Leftrightarrow \max_{\theta} \sum_{i=1}^{N} l_i(\theta),$$

where l_i is log-likelihood of θ at ith datapoint.

Classical optimization methods, such as gradient descent,

$$\theta_n = \theta_{n-1} + \gamma_n \nabla L(\theta_{n-1}),$$

fail when computation of gradient is expensive (e.g., N large).

SGD has emerged as the most versatile optimization method:

$$\theta_n = \theta_{n-1} + \gamma_n \nabla l_{i_n}(\theta_{n-1}),$$

where i_n is uniformly sampled from $[1, 2, \ldots, N]$.

However, SGD is not popular in statistics. Why?
SGD in optimization and statistics

- Statistical estimation gave a new form of optimization problems:

\[\max_{\theta} L(\theta) \iff \max_{\theta} \sum_{i=1}^{N} l_i(\theta), \]

where \(l_i \) is log-likelihood of \(\theta \) at \(i \)th datapoint.

- Classical optimization methods, such as gradient descent,

\[\theta_n = \theta_{n-1} + \gamma_n \nabla L(\theta_{n-1}), \]

fail when computation of gradient is expensive (e.g., \(N \) large).

- SGD has emerged as the most versatile optimization method:

\[\theta_n = \theta_{n-1} + \gamma_n \nabla l_{i_n}(\theta_{n-1}), \]

where \(i_n \) is uniformly sampled from \([1, 2, \ldots, N]\).

- However, SGD is not popular in statistics. Why?

SGD has not been reliable for statistical estimation.
Motivation: modeling flight ticket booking

- $Y = \#\text{bookings}; \ X = \text{covariates}; \ Y \sim \text{Poisson}(e^{X'\theta*})$.
- **Goal:** use i.i.d. data $(X_1, Y_1), (X_2, Y_2), \ldots$, to estimate θ_\star.
Motivation: modeling flight ticket booking

- \(Y = \#\text{bookings}; X = \text{covariates}; Y \sim \text{Poisson}(e^{X'\theta*}) \).
- **Goal:** use i.i.d. data \((X_1, Y_1), (X_2, Y_2), \ldots\), to estimate \(\theta_*\).
- Estimation through SGD uses discrepancies (observed \(n\) − expected \(n\)):

\[
\theta_n = \theta_{n-1} + \frac{1}{n}(Y_n - e^{X_n'\theta_{n-1}})X_n.
\]

Example:
\(\theta_0 = 0\), \(Y_1 = Y_2 = 1001\), \(X_n = 1\).

First iteration:
\(\theta_1 = 0 + \frac{1}{1}(1001 - e^{1\cdot0}) = 1000\).

Second iteration:
\(\theta_2 = \theta_1 + \frac{1}{2}(1001 - e^{1\cdot1000}) = -\infty\).

Standard SGD procedures are often numerically unstable.
Motivation: modeling flight ticket booking

- $Y = \#\text{bookings}; X = \text{covariates}; Y \sim \text{Poisson}(e^{X'\theta^*})$.
- **Goal:** use i.i.d. data $(X_1, Y_1), (X_2, Y_2), \ldots$, to estimate θ^*.
- Estimation through SGD uses discrepancies (observed$_n - \text{expected}_n$):

$$\theta_n = \theta_{n-1} + \frac{1}{n}(Y_n - e^{X_n'\theta_{n-1}})X_n.$$

Example: $\theta_0 = 0, Y_1 = Y_2 = 1001, X_n = 1$.
- First iteration:

$$\theta_1 = 0 + 1 \cdot (1001 - 1) = 1000.$$

- Second iteration:

$$\theta_2 = \theta_1 + \frac{1}{2}(1001 - e^{1000}) = -\infty.$$

- Standard SGD procedures are often numerically unstable.
Estimation through SGD with **implicit** update:

\[\theta_n = \theta_{n-1} + \frac{1}{n} (Y_n - e^{X_n'\theta_n}) X_n. \]

(See intuition. See computation.)
Estimation through SGD with **implicit** update:

\[\theta_n = \theta_{n-1} + \frac{1}{n} (Y_n - e^{X_n' \theta_n}) X_n. \]

(See intuition. See computation.)

Example: \(\theta_0 = 0, Y_1 = Y_2 = 1001, X_n = 1. \)

- First iteration,

\[\theta_1 = 0 + 1 \cdot (1001 - e^{\theta_1}). \]

Thus, \(\theta_1 \approx \log(994) \approx 6.902. \)

- Second iteration,

\[\theta_2 = 6.902 + \frac{1}{2} (1001 - e^{\theta_2}). \]

Thus, \(\theta_2 \approx \log(1001) \approx 6.909. \)
Related work and contributions

- Work in stochastic optimization that has considered implicit updates:

 - normalized least mean squares (Nagumo & Noda, 1967); (Slock, 1993);
 - incremental proximal method (Bertsekas, 2011);
 - stochastic proximal gradient (Duchi & Singer, 2009); (Rosasco, 2014);
 - implicit online learning (Kivinen & Warmuth, 1997); (Kulis & Bartlett, 2010).

Three main contributions of our work:

1. We analyze statistical efficiency of SGD-based estimators.
2. We develop theory, methods and code for implicit SGD.
3. We build towards doing statistical inference with SGD methods.
Related work and contributions

- Work in stochastic optimization that has considered implicit updates:

 normalized least mean squares (Nagumo & Noda, 1967); (Slock, 1993);
 incremental proximal method (Bertsekas, 2011);
 stochastic proximal gradient (Duchi & Singer, 2009); (Rosasco, 2014);
 implicit online learning (Kivinen & Warmuth, 1997); (Kulis & Bartlett, 2010).

- Three main contributions of our work:

 1. We analyze statistical efficiency of SGD-based estimators.
 2. We develop theory, methods and code for implicit SGD.
 3. We build towards doing statistical inference with SGD methods.
Notation and definitions

- \(Y \in \mathbb{R}^m \) outcome, \(X \in \mathbb{R}^p \) covariate, model \(f \), true param. \(\theta^* \in \mathbb{R}^p

\[Y | X \sim f(Y; X, \theta^*) \]

- Fisher information matrix \((p \times p)\):

\[\mathcal{I}(\theta) = -\mathbb{E} \left(\nabla^2 \log f(Y; X, \theta) \right) \succeq 0 \]
Notation and definitions

- $Y \in \mathbb{R}^m$ outcome, $X \in \mathbb{R}^p$ covariate, model f, true param. $\theta^\star \in \mathbb{R}^p$:

 $$Y|X \sim f(Y; X, \theta^\star).$$

- Fisher information matrix $(p \times p)$:

 $$\mathcal{I}(\theta) = -\mathbb{E} \left(\nabla^2 \log f(Y; X, \theta) \right) \succeq 0.$$

- Quantity $\mathcal{I}(\theta^\star)^{-1}$ is the Cramér-Rao bound. Suppose $\hat{\theta}_n \to \theta^\star$, then

 \[
 \begin{array}{ll}
 \text{Asymptotic variance} & \mathbb{V} \text{ar}(\hat{\theta}_n) = \mathcal{I}(\theta^\star)^{-1} \\
 \text{Statistical efficiency} & \text{optimal efficiency;}
 \end{array}
 \]

 \[
 \begin{array}{ll}
 \lim_{n \to \infty} n \mathbb{V} \text{ar}(\hat{\theta}_n) & \succ \mathcal{I}(\theta^\star)^{-1} \\
 & \text{efficiency loss;}
 \end{array}
 \]

 \[
 \begin{array}{ll}
 \lim_{n \to \infty} n \mathbb{V} \text{ar}(\hat{\theta}_n) & \Rightarrow \infty \\
 & \text{inefficiency.}
 \end{array}
 \]

- Eigenvalues $\lambda_j \in \text{eig}(\mathcal{I}(\theta^\star))$, $\lambda_{\min} = \min_j \lambda_j$, $\lambda_{\max} = \max_j \lambda_j$.

We consider a stream of i.i.d. data \((X_i, Y_i) \sim f_{\theta^*}, i = 1, 2, \ldots\). Explicit SGD estimator of \(\theta^*\) after \(n\) datapoints is

\[
\theta_{n}^{\text{ex}} = \theta_{n-1}^{\text{ex}} + \gamma_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{ex}}),
\]

where \(\gamma_n = \gamma_1/n\), where \(\gamma_1 > 0\), is the learning rate parameter.
We consider a stream of i.i.d. data \((X_i, Y_i) \sim f_{\theta^*}, i = 1, 2, \ldots\)

Explicit SGD estimator of \(\theta^*\) **after** \(n\) **datapoints** is

\[
\theta_{n}^{\text{ex}} = \theta_{n-1}^{\text{ex}} + \gamma_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{ex}}),
\]

where \(\gamma_n = \gamma_1/n\), where \(\gamma_1 > 0\), is the learning rate parameter.

Implicit SGD estimator:

\[
\theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \gamma_n \nabla \log f(Y_n; X_n, \theta_{n}^{\text{im}}).\]

Bayesian interpretation
We consider a stream of i.i.d. data \((X_i, Y_i) \sim f_{\theta^*}, i = 1, 2, \ldots\)

Explicit SGD estimator of \(\theta^*\) **after** \(n\) **datapoints is**

\[
\theta_{n}^{\text{ex}} = \theta_{n-1}^{\text{ex}} + \gamma_n \nabla \log f(Y_n ; X_n, \theta_{n-1}^{\text{ex}}),
\]

where \(\gamma_n = \gamma_1/n\), where \(\gamma_1 > 0\), is the learning rate parameter.

Implicit SGD estimator:

\[
\theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \gamma_n \nabla \log f(Y_n ; X_n, \theta_{n}^{\text{im}}).
\]

Stochastic approximation theory (for explicit procedures only):

\[
\mathbb{E} (\nabla \log f(Y ; X, \theta_{\infty})) = 0 \iff \theta_{\infty} = \theta^*.
\]

Ideal for “big data” because likelihood is computed at single datapoint.
Focus on sampling variability

This talk focuses on two main points:
- Implicit SGD has better numerical stability without sacrificing efficiency;
- such stability enables statistical inference with large datasets.

\[f_{\theta^*} \]

possible datasets of size \(n \)

\[\theta^{(1)}_n, \theta^{(2)}_n, \theta^{(\infty)}_n \]

sampling distribution:
\[E|\theta_n - \theta^*|, \text{Var}(\theta_n) \]
This talk focuses on two main points:

- Implicit SGD has better numerical stability without sacrificing efficiency;
- such stability enables statistical inference with large datasets.
Suppose normal model $Y|X \sim \mathcal{N}(X^\top \theta_*, 1)$. Then,

$$\nabla \log f(Y; X, \theta) = (Y - X^\top \theta)X.$$

Fisher information: $\mathcal{I}(\theta) = -\mathbb{E} \left(\nabla^2 \log f(Y; X, \theta) \right) = \mathbb{E} \left(XX^\top \right)$.
Suppose normal model $Y|X \sim \mathcal{N}(X^\top \theta_\star, 1)$. Then,

$$\nabla \log f(Y; X, \theta) = (Y - X^\top \theta)X.$$

Fisher information: $\mathcal{I}(\theta) = -\mathbb{E} \left(\nabla^2 \log f(Y; X, \theta) \right) = \mathbb{E} (XX^\top)$.

Explicit SGD estimator:

$$\theta_{n}^{\text{ex}} = \theta_{n-1}^{\text{ex}} + \gamma_n (Y_n - X_n^\top \theta_{n-1}^{\text{ex}})X_n$$

$$= (I - \gamma_n X_nX_n^\top)\theta_{n-1}^{\text{ex}} + \gamma_n Y_nX_n.$$
Numerical stability: illustration on normal model

- Suppose normal model $Y|X \sim \mathcal{N}(X^\top \theta_*, 1)$. Then,
 \[
 \nabla \log f(Y; X, \theta) = (Y - X^\top \theta)X.
 \]

- Fisher information: $\mathcal{I}(\theta) = -\mathbb{E}(\nabla^2 \log f(Y; X, \theta)) = \mathbb{E}(XX^\top)$.

- Explicit SGD estimator:
 \[
 \theta_{n}^{\text{ex}} = \theta_{n-1}^{\text{ex}} + \gamma_n (Y_n - X_n^\top \theta_{n-1}^{\text{ex}})X_n
 = (\mathbb{I} - \gamma_n X_nX_n^\top)\theta_{n-1}^{\text{ex}} + \gamma_n Y_nX_n.
 \]

- Implicit SGD estimator:
 \[
 \theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \gamma_n (Y_n - X_n^\top \theta_{n}^{\text{im}})X_n
 = (\mathbb{I} + \gamma_n X_nX_n^\top)^{-1}\theta_{n-1}^{\text{im}} + \gamma_n (\mathbb{I} + \gamma_n X_nX_n^\top)^{-1}Y_nX_n.
 \]
In explicit SGD, solve recursively for θ_{n}^{ex} to derive:

$$\theta_{n}^{\text{ex}} = P_{1}^{n} \theta_{0}^{\text{ex}} + \sum_{i=1}^{n} \gamma_{i} P_{i+1}^{n} Y_{i} X_{i},$$

where $P_{i}^{n} = (I - \gamma_{n} X_{n} X_{n}^{\top}) \cdots (I - \gamma_{i} X_{i} X_{i}^{\top}).$
In explicit SGD, solve recursively for θ_n^{ex} to derive:

$$
\theta_n^{ex} = P_1^n \theta_0^{ex} + \sum_{i=1}^{n} \gamma_i P_{i+1}^n Y_i X_i,
$$

where $P_i^n = (I - \gamma_n X_n X_n^T) \cdots (I - \gamma_i X_i X_i^T)$.

P_1^n discounts initial conditions θ_0^{ex}. Its “size” is critical for stability:

$$(1 - \gamma_1 \lambda_j)(1 - \frac{\gamma_1}{2} \lambda_j) \cdots (1 - \frac{\gamma_1}{n} \lambda_j) \in \text{eig}(\mathbb{E}(P_1^n)).$$
In explicit SGD, solve recursively for θ_{en}^e to derive:

$$\theta_{en}^e = P_{1}^{n} \theta_{0}^{e} + \sum_{i=1}^{n} \gamma_{i} P_{i+1}^{n} Y_{i} X_{i},$$

where $P_{i}^{n} = (I - \gamma_{n} X_{n} X_{n}^{T}) \cdots (I - \gamma_{i} X_{i} X_{i}^{T}).$

P_{1}^{n} discounts initial conditions θ_{0}^{e}. Its “size” is critical for stability:

$$(1 - \gamma_{1} \lambda_{j})(1 - \frac{\gamma_{1}}{2} \lambda_{j}) \cdots (1 - \frac{\gamma_{1}}{n} \lambda_{j}) \in \text{eig}(\mathbb{E}(P_{1}^{n})).$$

For stability it is desirable that

$$|1 - \gamma_{1} \lambda_{j}| < 1 \Rightarrow \gamma_{1} < 2/\lambda_{\text{max}}.$$

If $\gamma_{1} > 2/\lambda_{\text{max}}$, then

$$\max_{n>0} \max \{\text{eig}(\mathbb{E}(P_{1}^{n}))\} = O(2^{\gamma_{1} \lambda_{\text{max}} / \sqrt{\gamma_{1} \lambda_{\text{max}}}}).$$
In implicit SGD, solve recursively for θ_{im}^n to derive:

$$\theta_{im}^n = Q_1^n \theta_{im}^0 + \sum_{i=1}^{n} \gamma_i Q_i^n Q_{i+1}^i Y_i X_i . . ,$$

where $Q_i^n = (I + \gamma_n X_n X_n^\top)^{-1} \cdots (I + \gamma_i X_i X_i^\top)^{-1}$.
In implicit SGD, solve recursively for θ^im_n to derive:

$$
\theta^\text{im}_n = Q_1^n \theta^\text{im}_0 + \sum_{i=1}^{n} \gamma_i Q^n_{i+1} Q^i Y_i X_i, \\
$$

where $Q^n_i = (I + \gamma_n X_n X_n^\top)^{-1} \cdots (I + \gamma_i X_i X_i^\top)^{-1}$.

Q^n_1 discounts initial θ^im_0. Its “size” is critical for stability:

$$(1 + \gamma_1 \lambda_j)^{-1} (1 + \frac{\gamma_1}{2} \lambda_j)^{-1} \cdots (1 + \frac{\gamma_1}{n} \lambda_j)^{-1} \in \text{eig}(\mathbb{E}(Q^n_1)).$$
In implicit SGD, solve recursively for θ_{im}^n to derive:

$$
\theta_{im}^n = Q_1^n \theta_{im}^0 + \sum_{i=1}^{n} \gamma_i Q_i^n Y_i X_i.,
$$

where $Q_i^n = (I + \gamma_n X_n X_n^\top)^{-1} \cdots (I + \gamma_i X_i X_i^\top)^{-1}$.

Q_1^n discounts initial θ_{im}^0. Its “size” is critical for stability:

$$
(1 + \gamma_1 \lambda_j)^{-1} (1 + \frac{\gamma_1}{2} \lambda_j)^{-1} \cdots (1 + \frac{\gamma_1}{n} \lambda_j)^{-1} \in \text{eig}(E(Q_1^n)).
$$

Unconditionally stable! For any $\gamma_1 > 0$

$$
\max_{n>0} \max_{|\psi|} \{ \text{eig}(E(Q_1^n)) \} = O(1).
$$
Stability simulation: easy case

- \(\theta_\ast = (0.37, 0.15)^T, \lambda_{\min} = 1, \lambda_{\max} = 1, \gamma_1 \in \{0.1, 1, 10\}. \)
Stability simulation: divergence of explicit SGD

\[\theta_\star = (0.37, 0.15)^\top, \lambda_{\text{min}} = 1, \lambda_{\text{max}} = 10, \gamma_1 \in \{0.1, 1, 10\}. \]
Theorem (Toulis et. al., 2014)

Suppose $2\gamma_1\mathcal{I}(\theta^\star) - \mathbb{I} > 0$. Then, the variance of implicit SGD satisfies

$$n\text{Var}(\theta_{im}^n) \rightarrow \gamma_1^2 (2\gamma_1\mathcal{I}(\theta^\star) - \mathbb{I})^{-1}\mathcal{I}(\theta^\star).$$

The explicit SGD estimator has the same asymptotic efficiency.
Theorem (Toulis et. al., 2014)

Suppose $2\gamma_1 \mathcal{I}(\theta_\star) - I > 0$. Then, the variance of implicit SGD satisfies

$$n \text{Var}(\theta_{im}^n) \rightarrow \gamma_1^2 (2\gamma_1 \mathcal{I}(\theta_\star) - I)^{-1} \mathcal{I}(\theta_\star).$$

The explicit SGD estimator has the same asymptotic efficiency.

- Condition $2\gamma_1 \mathcal{I}(\theta_\star) - I > 0$ implies the requirement $\gamma_1 > 1/(2\lambda_{\text{min}})$.

- If $\gamma_1 < 1/(2\lambda_{\text{min}})$ then arbitrary inefficiency, e.g., $n^\epsilon \text{Var}(\theta_{im}^n) \rightarrow \infty$.
Summarizing the constraints

<table>
<thead>
<tr>
<th></th>
<th>Explicit SGD</th>
<th>Implicit SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>$\gamma_1 < 2/\lambda_{\text{max}}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
</tr>
</tbody>
</table>

The requirements for explicit SGD are very hard to reconcile. For example, $E(\lambda_{\text{max}}\lambda_{\text{min}}) = O(\log p)$ in $p \times p$ standard normal random matrix (Edelman, 1988).

Two main talk points:

- Implicit SGD has better numerical stability without sacrificing efficiency;
- Such stability enables principled statistical analysis with large datasets.
Summarizing the constraints

<table>
<thead>
<tr>
<th></th>
<th>Explicit SGD</th>
<th>Implicit SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>$\gamma_1 < 2/\lambda_{\text{max}}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
</tr>
</tbody>
</table>

- The requirements for explicit SGD are very hard to reconcile.
 - e.g., $\mathbb{E} \left(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \right) = O(\log p)$ in $p \times p$ std normal random matrix (Edelman, 1988)
Summarizing the constraints

<table>
<thead>
<tr>
<th></th>
<th>Explicit SGD</th>
<th>Implicit SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td>$\gamma_1 < 2/\lambda_{\text{max}}$</td>
<td>-</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
<td>$\gamma_1 > 1/(2\lambda_{\text{min}})$</td>
</tr>
</tbody>
</table>

The requirements for explicit SGD are very hard to reconcile.

- e.g., $\mathbb{E}\left(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}\right) = O(\log p)$ in $p \times p$ std normal random matrix (Edelman, 1988)

Two main talk points:
- Implicit SGD has better numerical stability without sacrificing efficiency;
- such stability enables principled statistical analysis with large datasets.
Efficiency loss of SGD

- Let $\Sigma_{\theta^*, \gamma_1} \triangleq \lim n \text{Var}(\theta_n^{\text{im}}) = \gamma_1^2 (2\gamma_1 \mathcal{I}(\theta^*) - \mathbb{I})^{-1} \mathcal{I}(\theta^*)$.

Implies efficiency loss because $\mathcal{I}(\theta^*) - 1$ is optimal (Cramér-Rao bound).

No efficiency loss only when $\lambda_j = \lambda$ and $\gamma_1 = 1/\lambda$.

In practice, large efficiency loss because $\lambda_{\text{max}} \gg \lambda_{\text{min}}$ (spectral gap).
Efficiency loss of SGD

- Let \(\Sigma_{\theta^*, \gamma_1} \triangleq \lim n \text{Var}(\theta_n^{\text{im}}) = \gamma_1^2 (2\gamma_1 \mathcal{I}(\theta^*) - \mathbb{I})^{-1} \mathcal{I}(\theta^*) \).
- It follows,

\[
\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \in \text{eig}(\Sigma_{\theta^*, \gamma_1}), \text{ where } \lambda_j \in \text{eig}(\mathcal{I}(\theta^*)).
\]
Efficiency loss of SGD

- Let $\Sigma_{\theta^*,\gamma_1} \triangleq \lim_{n} n \text{Var}(\theta_n^{\text{im}}) = \gamma_1^2 (2\gamma_1 \mathcal{I}(\theta^*) - \mathbb{I})^{-1} \mathcal{I}(\theta^*)$.
- It follows,

\[\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \in \text{eig}(\Sigma_{\theta^*,\gamma_1}), \text{ where } \lambda_j \in \text{eig}(\mathcal{I}(\theta^*)). \]

\[\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \geq \frac{1}{\lambda_j} \Rightarrow \Sigma_{\theta^*,\gamma_1} \succeq \mathcal{I}(\theta^*)^{-1}. \]

- Implies efficiency loss because $\mathcal{I}(\theta^*)^{-1}$ is optimal (Cramér-Rao bound).
Efficiency loss of SGD

- Let $\Sigma_{\theta^*,\gamma_1} \triangleq \lim n \text{Var}(\theta_n^{im}) = \gamma_1^2 (2\gamma_1 I(\theta^*) - I)^{-1} I(\theta^*)$.
- It follows,

$$\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \in \text{eig}(\Sigma_{\theta^*,\gamma_1}), \text{ where } \lambda_j \in \text{eig}(I(\theta^*))$$

- Implies efficiency loss because $I(\theta^*)^{-1}$ is optimal (Cramèr-Rao bound).
- No efficiency loss only when $\lambda_j = \lambda$ and $\gamma_1 = 1/\lambda$.
Efficiency loss of SGD

- Let $\Sigma_{\theta^*,\gamma_1} \triangleq \lim n \text{Var}(\theta_n^{im}) = \gamma_1^2 (2\gamma_1 I(\theta^*) - I)^{-1} I(\theta^*)$.
- It follows,

$$\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \in \text{eig}(\Sigma_{\theta^*,\gamma_1}), \text{ where } \lambda_j \in \text{eig}(I(\theta^*))$$

- Implies efficiency loss because $I(\theta^*)^{-1}$ is optimal (Cramér-Rao bound).
- No efficiency loss **only when** $\lambda_j = \lambda$ and $\gamma_1 = 1/\lambda$.
- In practice, large efficiency loss because $\lambda_{\text{max}} \gg \lambda_{\text{min}}$ (spectral gap).
One principled way to set the optimal rate:

\[\gamma_1^* = \arg \min_{\gamma_1} \text{tr}(\Sigma_{\theta^\star, \gamma_1}) \iff \gamma_1^* = \arg \min_{\gamma_1} \sum_{j=1}^{p} \frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1}. \]
Optimal rates

- One *principled* way to set the optimal rate:

\[
\gamma_1^* = \arg \min_{\gamma_1} \text{tr}(\Sigma_{\theta^*}, \gamma_1) \iff \gamma_1^* = \arg \min_{\gamma_1} \sum_{j=1}^{p} \frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1}.
\]

- Note \(\frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1} \approx \frac{\gamma_1}{2} \) if \(2\gamma_1 \lambda_j \gg 1 \).
One *principled* way to set the optimal rate:

\[\gamma_1^* = \arg \min_{\gamma_1} \text{tr}(\Sigma_{\theta^*}, \gamma_1) \iff \gamma_1^* = \arg \min_{\gamma_1} \sum_{j=1}^{p} \frac{\gamma_1^2 \lambda_j}{2 \gamma_1 \lambda_j - 1}. \]

Note \(\frac{\gamma_1^2 \lambda_j}{2 \gamma_1 \lambda_j - 1} \approx \frac{\gamma_1}{2} \) if \(2 \gamma_1 \lambda_j >> 1 \).

If \(\gamma_1 > 1/(2 \lambda_{\min}) \),

\[\text{tr}(\Sigma_{\theta^*}, \gamma_1) \approx (p - 1) \frac{\gamma_1}{2} + \frac{\gamma_1^2 \lambda_{\min}}{2 \gamma_1 \lambda_{\min} - 1}. \]
Optimal rates

- One *principled* way to set the optimal rate:

$$
\gamma_1^* = \arg \min_{\gamma_1} \text{tr}(\Sigma_{\theta^*}, \gamma_1) \quad \Leftrightarrow \quad \gamma_1^* = \arg \min_{\gamma_1} \sum_{j=1}^{p} \frac{\gamma_1^2 \lambda_j}{2 \gamma_1 \lambda_j - 1}.
$$

- Note \(\frac{\gamma_1^2 \lambda_j}{2 \gamma_1 \lambda_j - 1} \approx \frac{\gamma_1}{2} \) if \(2 \gamma_1 \lambda_j >> 1 \).

- If \(\gamma_1 > 1/(2 \lambda_{\min}) \),

\[
\text{tr}(\Sigma_{\theta^*}, \gamma_1) \approx (p - 1) \frac{\gamma_1}{2} + \frac{\gamma_1^2 \lambda_{\min}}{2 \gamma_1 \lambda_{\min} - 1}.
\]

- If \(\gamma_1 >> 1/(2 \lambda_{\min}) \),

\[
\text{tr}(\Sigma_{\theta^*}, \gamma_1) \approx p \frac{\gamma_1}{2} \quad \text{(In fact,} \Sigma_{\theta^*}, \gamma_1 \approx \frac{\gamma_1}{2} \mathbb{I})\].
Normal model, $\lambda_j \in \{1, 2, \ldots, 5\}$, need $\gamma_1 > 1/(2\lambda_{\text{min}}) = 0.5$.
Asymptotic normality

- Under typical Lindeberg conditions,

\[
\sqrt{n}(\theta_n^{im} - \theta^*) \to \mathcal{N}(0, \Sigma_{\theta^*}, \gamma_1).
\]
Asymptotic normality

- Under typical Lindeberg conditions,

\[\sqrt{n}(\theta_n - \theta^*) \to \mathcal{N}(0, \Sigma_{\theta^*}\gamma^1). \]
Summing up the good properties of implicit SGD

1. Unconditional stability.
2. Quantifiable efficiency loss (+optimality).
3. Asymptotic normality.
Summing up the good properties of implicit SGD

1. Unconditional stability.
2. Quantifiable efficiency loss (+optimality).
3. Asymptotic normality.

Two main talk points:

✓ Implicit SGD has better numerical stability without sacrificing efficiency;
✓ such stability enables principled statistical analysis with large datasets.
Ongoing work

- Statistics of optimization procedures (e.g., Second-order procedures).
- Network models/intractable likelihoods (e.g., Monte-Carlo SGD).
- Combo: search with constant rate, then converge with decreasing rate.
- Reinforcement learning and neural networks.
References

- PT, D Tran, EM Airoldi, ”Towards stability and optimality in stochastic gradient descent” (2016, AI & Statistics, AISTATS)

- D Tran, PT, Edoardo M. Airoldi, ”sgd R package: stochastic gradient methods for estimation with large data sets” (2016, in review)
Intuition: implicit update as an infinite series of standard updates:

\[\theta^{(0)}_n = \theta^{(0)}_{n-1} + 1 \cdot Y_n - e^{\theta^{(0)}_n} \]

\[\theta^{(1)}_n = \theta^{(0)}_n - 1 \cdot Y_n + e^{\theta^{(1)}_{n-1}} \]

\[\theta^{(2)}_n = \theta^{(1)}_n - 1 \cdot Y_n + e^{\theta^{(1)}_{n-1}} \]

\[\theta^{(\infty)}_n = \theta^{(\infty)}_{n-1} + 1 \cdot Y_n - e^{\theta^{(\infty)}_n} \]

cf. self-consistency \(\Delta\) principle in statistics (Efron, 1967); (Tarpey & Flury, 1996).
Intuition: implicit update as an **infinite** series of standard updates:

\[
\theta_n^{(0)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_{n-1}}).
\]
Intuition: implicit update as an \textbf{infinite} series of standard updates:

\[
\theta_{n}^{(0)} = \theta_{n-1} + \frac{1}{n} (Y_n - e^{\theta_{n-1}}).
\]

\[
\theta_{n}^{(1)} = \theta_{n-1} + \frac{1}{n} (Y_n - e^{\theta_{n}^{(0)}}).
\]
Intuition: implicit update as an **infinite** series of standard updates:

\[
\theta_n^{(0)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_{n-1}}).
\]

\[
\theta_n^{(1)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(0)}}).
\]

\[
\theta_n^{(2)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(1)}}).
\]

\[\cdots\]

\[
\theta_n^{(\infty)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(\infty)}}).
\]

Intuition: implicit update as an *infinite* series of standard updates:

\[\theta_n^{(0)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_{n-1}}). \]

\[\theta_n^{(1)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(0)}}). \]

\[\theta_n^{(2)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(1)}}). \]

\[\vdots \]

\[\theta_n^{(\infty)} = \theta_{n-1} + \frac{1}{n}(Y_n - e^{\theta_n^{(\infty)}}) \]

Back to main.
Efficient computation of implicit updates

Suppose $Y_n \sim \text{Poisson}(e^{X_n^T \theta^*})$. Then,
Efficient computation of implicit updates

Suppose $Y_n \sim \text{Poisson}(e^{X_n^T \theta^*_n})$. Then,

$$
\theta_{n}^\text{im} = \theta_{n-1}^\text{im} + \gamma_n (Y_n - e^{X_n^T \theta_{n}^\text{im}})X_n \tag{1}
$$

$$
= \theta_{n-1}^\text{im} + \gamma_n \xi_n (Y_n - e^{X_n^T \theta_{n-1}^\text{im}})X_n \tag{2}
$$

$$
\triangleq \theta_{n-1}^\text{im} + a_n X_n. \tag{3}
$$
Efficient computation of implicit updates

Suppose $Y_n \sim \text{Poisson}(e^{X_n^T \theta})$. Then,

$$
\theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \gamma_n (Y_n - e^{X_n^T \theta_{n}^{\text{im}}}) X_n \\
= \theta_{n-1}^{\text{im}} + \gamma_n \xi_n (Y_n - e^{X_n^T \theta_{n}^{\text{im}}}) X_n \\
\triangleq \theta_{n-1}^{\text{im}} + a_n X_n.
$$

Equate the two scales:

$$
a_n = \gamma_n (Y_n - e^{X_n^T \theta_{n}^{\text{im}}}) \quad \text{[by setting (1) = (3)]}
$$

$$
= \gamma_n (Y_n - e^{X_n^T \theta_{n-1}^{\text{im}} + \|X_n\|^2 a_n}). \quad \text{[by substituting } \theta_{n}^{\text{im}} \text{ with (3)]}
$$

LHS $\uparrow a_n$ and RHS $\downarrow a_n$, both convex. Fixed-point equation is

$$
x = a - be^{cx},
$$

where $b, c > 0$. It follows that $x \in \left[\min(0, a - b), \max(0, a - b) \right]$.

Back to main.
Self-consistency principle

- **Example.** Estimate CDF $F(t)$ with data Y_1, Y_2, \ldots, Y_n; Y^{obs} = uncensored.
Self-consistency principle

- **Example.** Estimate CDF $F(t)$ with data Y_1, Y_2, \ldots, Y_n; $Y^{\text{obs}} = \text{uncensored}$.
- A self-consistent estimator of $F(t)$ is

$$F^*(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left(\mathbb{1}\{Y_i \leq t\}|Y^{\text{obs}}, F^* \right).$$
Stochastic approximation

- In an experiment, suppose θ is input, $H(\theta)$ random output.
- Suppose we wish to find θ_\star such that

\[\mathbb{E}(H(\theta_\star)) = 0. \]
Stochastic approximation

- In an experiment, suppose θ is input, $H(\theta)$ random output.
- Suppose we wish to find θ_\star such that

$$E(H(\theta_\star)) = 0.$$

- Robbins-Monro (1951) stochastic approximation procedure:

$$\theta_n = \theta_{n-1} + \gamma_n H(\theta_{n-1}).$$

- Theorem (Robbins and Monro, 1951): $E(|\theta_n - \theta_\star|^2) \to 0$ if
 - $\sum \gamma_i = \infty; \sum_i \gamma_i^2 < \infty$;
 - H is concave in expectation and Lipschitz;
 - $E(||H(\theta_\star)||^2) < \infty$.

- SGD as special case: $H(\theta) \equiv \nabla \log f(Y; X, \theta)$ and $\theta_n \to \theta_\star$ because

$$E(\nabla \log f(Y; X, \theta_\star)) = 0.$$
Implicit stochastic approximation

- Classical stochastic approximation of Robbins & Monro (1951)
 \[\theta_n = \theta_{n-1} + \gamma_n H(\theta_{n-1}) \]

- **Implicit** stochastic approximation (Toulis & Airoldi, 2015b)
 \[\theta_n = \theta_{n-1} + \gamma_n H(\theta^*_{n-1}) \]

 \[\text{s.t. } \mathbb{E}(\theta_n|\theta_{n-1}) = \theta^*_{n-1} \]

- Non-asymptotic/asymptotic analysis (Toulis & Airoldi, 2015b)

- Implementations need to estimate \(\theta^*_{n-1} \)
Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

$$\theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \frac{1}{n} C_n \nabla \log f(Y_n; X_n, \theta_{n}^{\text{im}}),$$

where $C_n \to C > 0$, where C is symmetric and commutes with $\mathcal{I}(\theta_\star)$. Then

$$n \text{Var}(\theta_{n}^{\text{im}}) \to (2C\mathcal{I}(\theta_\star) - \mathbb{I})^{-1} C\mathcal{I}(\theta_\star)C \triangleq \Sigma_{\theta_\star,C}.$$
Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

\[\theta_{im}^n = \theta_{im}^{n-1} + \frac{1}{n} C_n \nabla \log f(Y_n; X_n, \theta_{im}^n), \]

where \(C_n \to C > 0 \), where \(C \) is symmetric and commutes with \(\mathcal{I}(\theta^*) \). Then

\[n \text{Var}(\theta_{im}^n) \to (2C\mathcal{I}(\theta^*) - \mathbb{I})^{-1} C\mathcal{I}(\theta^*) C \triangleq \Sigma_{\theta^*,C}. \]

- Optimal efficiency **only** if \(C = \mathcal{I}(\theta^*)^{-1} \).
Optimal efficiency: second-order SGD

Theorem (Toulis & Airoldi, 2015a)

Consider the second-order implicit SGD procedure

\[\theta_{im}^n = \theta_{im}^{n-1} + \frac{1}{n} C_n \nabla \log f(Y_n; X_n, \theta_{im}^n), \]

where \(C_n \to C > 0 \), where \(C \) is symmetric and commutes with \(\mathcal{I}(\theta_*) \).

Then

\[n \text{Var}(\theta_{im}^n) \to (2C\mathcal{I}(\theta_*) - I)^{-1}C\mathcal{I}(\theta_*)C \triangleq \Sigma_{\theta_*,C}. \]

- **Optimal efficiency only** if \(C = \mathcal{I}(\theta_*)^{-1} \).
- **Adaptive** methods concurrently estimate \(\mathcal{I}(\theta_*)^{-1} \); e.g., \(C_n = \mathcal{I}(\theta_{n-1})^{-1} \), Sakrison’s (1965) explicit procedure.

Back to main. Compare with AdaGrad. See also implicit method with averaging.
A note on AdaGrad

A popular adaptive procedure is AdaGrad (Duchi et.al., 2011)

\[
\theta_{n}^{\text{ada}} = \theta_{n-1}^{\text{ada}} + \gamma_1 \frac{1}{\sqrt{n}} C_n^{1/2} \nabla \log f (Y_n; X_n, \theta_{n-1}^{\text{ada}}),
\]

where \(C_n \to \text{diag}(\mathcal{I}(\theta^*)^{-1}) \).
A note on AdaGrad

- A popular adaptive procedure is AdaGrad (Duchi et al., 2011)

\[\theta_{n}^{\text{ada}} = \theta_{n-1}^{\text{ada}} + \gamma_1 \frac{1}{\sqrt{n}} C_n^{1/2} \nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{ada}}), \]

where \(C_n \to \text{diag}(\mathcal{I}(\theta^*)^{-1}) \).

(Toulis & Airoldi, 2015a)

\[\sqrt{n} \text{Var}(\theta_n^{\text{ada}}) \to \frac{\gamma_1}{2} \text{diag}(\mathcal{I}(\theta^*))^{-1/2}. \] (4)

- AdaGrad is inefficient but (1) holds regardless of \(\gamma_1 \).
- In contrast, SGD procedures require \(\gamma_1 > 1/(2\lambda_{\text{min}}) \) for \(O(1/n) \) efficiency.
AdaGrad trade-off: simulation

\[\theta_\star = (2.23, 0.5, 0.1, 0.02, 0.01)^T; \lambda_j \in [1, 10] \]
Implicit stochastic approximation: implementations

\[\theta_n = \theta_{n-1} + \gamma_n H(\theta_{n-1}^*) \]

s.t. \[\mathbb{E}(\theta_n | \theta_{n-1}) = \theta_{n-1}^* \]

1. Run separate RM procedure at each \(n \)th iteration, \(k = 1, 2, \ldots \)

\[x_k = x_{k-1} + a_k [\theta_{n-1} + \gamma_n H(x_{k-1}) - x_{k-1}] \]

- \(x_k \rightarrow \theta_{n-1}^* \) (few iterations of \(x_k \) can be enough)
- Only choice if can only sample through \(H \) (classical RM)
- Related to “multiple timescales” (Borkar, 2009)

2. Use \(\theta_n \) as an estimate of \(\theta_{n-1}^* \)! Results in familiar procedure

\[\theta_n = \theta_{n-1} + \gamma_n H(\theta_n) \]

- Possible if \(H \) is known in analytic form (as in implicit SGD)
Asymptotic optimal efficiency: averaging

Theorem (Toulis et.al., 2016)

Consider the averaged procedure, where $\gamma_n \propto n^{-\gamma}$, $\gamma \in (0, 1)$, $\lambda_{\min} > 0$,

$$\theta_n^{im} = \theta_{n-1}^{im} + \gamma_n \nabla \log f(Y_n; X_n, \theta_n^{im})$$

$$\bar{\theta}_n = \frac{1}{n} \sum_{i=1}^{n} \theta_i^{im}.$$

Then, $\bar{\theta}_n$ has asymptotically optimal efficiency, i.e.,

$$n \text{Var}(\bar{\theta}_n) \to \mathcal{I}(\theta^*)^{-1}.$$

- $\lambda_{\min} > 0$ critical for theorem; typically, $\gamma_n \propto 1/\sqrt{n}$.
- Classical averaging results: (Ruppert, 1988); (Bather, 1989); (Polyak & Juditsky, 1992)
Bayesian interpretation of implicit methods

- Implicit SGD can be written as

\[\theta_{n}^{im} = \arg \max_{\theta} \left\{ \log f(Y_n; X_n, \theta) - \frac{1}{2\gamma_n} \| \theta - \theta_{n-1}^{im} \|^2 \right\}. \]

- Thus, \(\theta_{n}^{im} \) is the *posterior mode* of the Bayesian model,

\[
\theta | \theta_{n-1}^{im} \sim \mathcal{N}(\theta_{n-1}^{im}, \gamma_n \mathbb{I}) \\
Y_n | X_n, \theta \sim f
\]

- Implicit SGD: interpretation of \(\gamma_n \) as information parameter.
- Explicit SGD: interpretation of \(\gamma_n \) as “step-size”.

- First implicit method by Nagumo & Noda (1967); (Slock, 1993)
In optimization problem, \(\arg \min_\theta g(\theta) \), for deterministic \(g \) we can do

\[
\theta_n = \arg \min_\theta \left\{ g(\theta) + \frac{1}{2\gamma_n} \| \theta - \theta_{n-1} \|^2 \right\}.
\]

RHS is a proximal operator, say \(\text{prox}_{\gamma_n g}(\theta_{n-1}) \).

Stochastic proximal procedures (Duchi et al., 2009); (Rosasco et al., 2014):

\[
\theta_n = \text{prox}_{\gamma_n R} (\theta_{n-1} + \gamma_n \nabla \log f(Y_n; X_n, \theta_{n-1}))
\]

\(R \) is a deterministic regularizer; in implicit SGD it is random.

Such methods make one explicit step and then one deterministic proximal step (implicit update). May be unstable.
Consider the problem

\[
\hat{\theta} = \arg \min_{\theta} \sum_{i=1}^{N} f_i(\theta).
\]

where \(N = \#\text{datapoints}, i = \text{datapoint index}, f_i = \text{loss at } i \text{ datapoint} \).

Bertsekas (2011) analyzed the procedure

\[
\theta_n = \arg \min_{\theta} \left\{ f_{i_n}(\theta) + \frac{1}{2\gamma_n} \|\theta - \theta_{n-1}\|^2 \right\},
\]

where \(i_n \in \{1, 2, \ldots, N\}\).

Like implicit SGD but in a non-streaming setting (fixed dataset).

Analysis compares \(i_n\) cycling through data with random \(i_n\).

Back to related work.
One *principled* way to set the optimal rate:

$$\gamma_1^* = \arg \min_{\gamma_1} \text{tr}(\Sigma_{\theta^*,\gamma_1}) \iff \gamma_1^* = \arg \min_{\gamma_1} \sum_{j=1}^p \frac{\gamma_1^2 \lambda_j}{2\gamma_1 \lambda_j - 1}.$$

If $\gamma_1 >> 1/(2\lambda_{\min})$,

$$\text{tr}(\Sigma_{\theta^*,\gamma_1}) \approx p \frac{\gamma_1}{2}. \text{ In fact, } \Sigma_{\theta^*,\gamma_1} \approx \frac{\gamma_1}{2} \mathbb{I} \text{ (parameter-free!)}$$

- Fairly general way to construct pivotal quantity for θ^*.
- But we pay price in efficiency.

Back to optimal rates.
The unusual technical challenge of implicit SGD

- Standard asymptotic analysis obtains recursion for $\mathbb{E} \left(\| \theta_n^{\text{ex}} - \theta_* \|^2 \right)$.

By Panagiotis (Panos) Toulis

Statistical properties of stochastic gradient methods
The unusual technical challenge of implicit SGD

- Standard asymptotic analysis obtains recursion for \(\mathbb{E} (\|\theta_{n}^{\text{ex}} - \theta_{\star}\|^2) \).
- A crucial property is the concavity of

\[
\mathbb{E} \left(\nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{ex}}) | \theta_{n-1}^{\text{ex}} \right),
\]

which requires

\[
(Y_n, X_n) \perp \perp \theta_{n-1}^{\text{ex}}.
\]
The unusual technical challenge of implicit SGD

- Standard asymptotic analysis obtains recursion for $\mathbb{E} \left(\| \theta_n - \theta^* \|^2 \right)$.

- A crucial property is the concavity of

$$\mathbb{E} \left(\nabla \log f(Y_n; X_n, \theta_n^{ex}) | \theta_n^{ex} \right),$$

which requires

$$ (Y_n, X_n) \perp \perp \theta_n^{ex}. $$

- However, in the implicit procedure

$$ \theta_n^{im} = \theta_{n-1}^{im} + \gamma_n \nabla \log f(Y_n; X_n, \theta_n^{im}) $$

we cannot use standard analysis because

$$ (Y_n, X_n) \not\perp \theta_n^{im}. $$
Unusual technical challenge: our approach

- In many statistical models

\[f(Y; X, \theta) \equiv f(Y; X, X^\top \theta). \]
Unusual technical challenge: our approach

- In many statistical models

\[f(Y; X, \theta) \equiv f(Y; X, X^\top \theta). \]

- Then, \(\nabla \log f(Y; X, \theta) \) collinear with \(X \) (free of \(\theta \)); thus,

\[
\begin{align*}
\theta_n^{\text{im}} &= \theta_{n-1}^{\text{im}} + \gamma_n \nabla \log f(Y_n; X_n, \theta_n^{\text{im}}) \\
&= \theta_{n-1}^{\text{im}} + \gamma_n \xi_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{im}}).
\end{align*}
\]
Unusual technical challenge: our approach

- In many statistical models

\[f(Y; X, \theta) \equiv f(Y; X, X^\top \theta). \]

- Then, \(\nabla \log f(Y; X, \theta) \) collinear with \(X \) (free of \(\theta \)); thus,

\[
\theta_{n}^{im} = \theta_{n-1}^{im} + \gamma_n \nabla \log f(Y_n; X_n, \theta_n^{im}) \\
= \theta_{n-1}^{im} + \gamma_n \xi_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{im}).
\]

1. \(\xi_n \) is easy to calculate \(\Rightarrow \) fast implementation!
2. a.s. bound for \(\xi_n \) \(\Rightarrow \) avoids conditioning problem since

\((Y_n, X_n) \perp \perp \theta_{n-1}^{im}. \)

Proceed with [analysis]. Back to [main].
Almost-sure bound for \(\xi_n \)

- Start with

\[
\theta_n^{im} = \theta_{n-1}^{im} + \gamma_n \xi_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{im}).
\]
Almost-sure bound for ξ_n

- Start with

$$\theta_{n}^{im} = \theta_{n-1}^{im} + \gamma_n \xi_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{im}).$$

- Let $\hat{I}(\theta) = -\nabla^2 \log f(Y; X, \theta)$ and suppose $\text{tr}(\hat{I}(\theta)) \geq s > 0$.
- Then, Taylor expansion of gradient around θ_{n-1}^{im} yields

$$\xi_n \geq (1 + \gamma_n s)^{-1} \text{ a.s.}$$
Almost-sure bound for ξ_n

- Start with
 \[
 \theta_{n}^{\text{im}} = \theta_{n-1}^{\text{im}} + \gamma_n \xi_n \nabla \log f(Y_n; X_n, \theta_{n-1}^{\text{im}}).
 \]

- Let $\hat{I}(\theta) = -\nabla^2 \log f(Y; X, \theta)$ and suppose $\text{tr}(\hat{I}(\theta)) \geq s > 0$.

- Then, Taylor expansion of gradient around θ_{n-1}^{im} yields
 \[
 \xi_n \geq (1 + \gamma_n s)^{-1} \text{ a.s.}
 \]

- Now, $(X_n, Y_n) \perp \perp \theta_{n-1}^{\text{im}}$ yields recursion for MSE,
 \[
 \mathbb{E} (\|\| \theta_n^{\text{im}} - \theta^* \|)^2 \leq \frac{1}{1 + \gamma_n s} \mathbb{E} (\|\| \theta_{n-1}^{\text{im}} - \theta^* \|)^2 + O(\gamma_n^2).
 \]

Back to main. Proceed to solving the recursion.
Suppose we wish to solve $b_n \leq F(b_{n-1})$, F non-decreasing.

(majorize) Instead, we solve $c_n^\alpha \geq F(c_{n-1}^\alpha)$. If $b_0 \leq c_0^\alpha$ then

$$b_1 \leq F(b_0) \leq F(c_0^\alpha) \leq c_1^\alpha \Rightarrow b_n \leq c_n^\alpha. \text{ (by induction)}$$

(minorize) Minimize c_n^* wrt α to min. upper bound, $b_n \leq c_n^*$.
A simple example

Suppose we wish to solve $b_n \leq b_{n-1} + n, \quad b_0 = 0$. Clearly, the solution is

$$b_n \leq 1 + 2 + \ldots + n \leq n(n + 1)/2.$$

But suppose we don’t know the correct form but suspect it is $\alpha_0 n^2 + \alpha_1 n$.

The wonderful idea of majorization-minorization

A simple example

Suppose we wish to solve \(b_n \leq b_{n-1} + n, \ b_0 = 0 \). Clearly, the solution is

\[
b_n \leq 1 + 2 + \ldots + n \leq n(n + 1)/2.
\]

But suppose we don’t know the correct form but suspect it is \(\alpha_0 n^2 + \alpha_1 n \). Then define \(c_n^\alpha = \alpha_0 n^2 + \alpha_1 n \) and solve:

\[
c_n^\alpha \geq c_{n-1}^\alpha + n
\]

\[
\alpha_0 n^2 + \alpha_1 n \geq \alpha_0 (n-1)^2 + \alpha_1 (n-1) + n
\]

\[
(2\alpha_0 - 1)n + \alpha_1 \geq \alpha_0
\]

Thus, \(\alpha_0 \geq .5 \) and \(\alpha_1 \geq \alpha_0 \). Therefore,

\[
b_n \leq c_n^* = \arg \min_{\alpha} c_n^\alpha = .5n^2 + .5n = n(n + 1)/2
\]
In many cases the likelihood is intractable, thus SGD cannot be used.
Intractable likelihoods: Monte-Carlo SGD

- In many cases the likelihood is intractable, thus SGD cannot be used.
- Suppose finite data, and take S^{obs} to be the sufficient statistic.
- Define $T(\theta) = \mathbb{E}(S|\theta)$, e.g., through Monte-Carlo.

$$\theta_n = \theta_{n-1} + \gamma_n (S^{obs} - T(\theta_{n-1})).$$

For instance, S^{obs} observed network statistics (e.g., #triangles), $T(\theta) = \text{simulated average statistics.}$

By SA theory θ_n converges to point θ_∞ such that $T(\theta_\infty) = S^{obs}$.

Back to main ⊿.
In many cases the likelihood is intractable, thus SGD cannot be used.

Suppose finite data, and take S^{obs} to be the sufficient statistic.

Define $T(\theta) = \mathbb{E}(S|\theta)$, e.g., through Monte-Carlo.

Then calculate the update,

$$\theta_n = \theta_{n-1} + \gamma_n (S^{obs} - T(\theta_{n-1})).$$

For instance, S^{obs} observed network statistics (e.g., #triangles), $T=$ simulated average statistics.

By SA theory θ_n converges to point θ_∞ such that

$$T(\theta_\infty) = S^{obs}.$$