LONG-TERM CAUSAL EFFECTS OF INTERVENTIONS IN MULTIAGENT ECONOMIC MECHANISMS

Panos Toulis and David C. Parkes
October 16, 2015
Harvard University
We study causal effects of interventions in economic mechanisms.

- Effect is causal if comparing counterfactuals.
- Effects of interventions fluctuate until new equilibrium; causal effects measured in equilibrium are long-term causal effects;
- Long-term causal effects are more representative of the value of interventions.

(Examples: increase in reserve price, change in matching mechanism, etc.)
CHALLENGES AND CONTRIBUTIONS

Two main challenges:

- *Temporal dynamic actions*: statistical estimation relies on data before new equilibrium.
- *Strategic interference*: Agent actions depend on assignment of other agents.

Our contributions in this paper:

2. Develop a method to estimate long-term causal effects.
4. Illustrate on real-world data.
Two main challenges:

- *Temporal dynamic actions*: statistical estimation relies on data before new equilibrium.
- *Strategic interference*: Agent actions depend on assignment of other agents.

Our contributions in this paper:

2. Develop a method to estimate long-term causal effects.
4. Illustrate on real-world data.
Experiment:

- Agents \mathcal{I}, games \mathcal{G}, actions \mathcal{A}.
- $Z = \text{assignment vector}$ (every agent assigned to one game);
- e.g., $Z_i = j \in \mathcal{G}$ assignment of agent i to game j.

Agent actions:

- $A_{it}(Z) \in \mathcal{A} = \text{action of agent } i \text{ at time } t \text{ under assignment } Z$.
- $\alpha_{j,t}(Z) \in \Delta^{\mathcal{A}} = \text{frequency of } \{A_{it}(Z) : Z_i = j\}$. ($\Delta$ is the simplex).
- **Observed data:** $\alpha_{j,0}(Z)$, $\alpha_{j,1}(Z)$, \ldots, $\alpha_{j,t_o-1}(Z)$.

Objective:

- Experimentally select best game from \mathcal{G} according to objective R.
 (e.g., $R =$ revenue.)
- $R_{j,t}(Z) = h(\alpha_{j,t}(Z))$, objective value in game j, time t, assignment Z,
 for an appropriate function h.
Definition

The causal effect at time t on objective R of game j over game j' is equal to the quantity

$$\tau(j, j'; t) = \frac{R_{j, t}(j1)}{\text{all agents play in } j} - \frac{R_{j', t}(j'1)}{\text{all agents play in } j'} = h(\alpha_{j, t}(j1)) - h(\alpha_{j', t}(j'1)).$$

Long-term average causal effect (LACE) at appropriate time $t = T$.

- However, **only one** assignment Z observed \Rightarrow only $A_{it}(Z)$ observed. All other outcomes will be **missing**.
- Challenge: **Predict** missing outcomes that are important.
- **Every** method makes assumptions on that prediction; assumptions usually not made explicit.
A behavior is a distribution over actions; finite set

\[\mathcal{B} = \{1, 2, \ldots, |\mathcal{B}|\} \]; (e.g., “aggressive”, “passive”, etc.)

\[B_{it}(Z) \in \mathcal{B} = \text{behavior agent } i \text{ adopts at time } t, \text{ assignment } Z. \]

\[\beta_{j,t}(Z) \in \Delta^{|\mathcal{B}|} = \text{frequency of behaviors } \{B_{it}(Z) : Z_i = j\}, \text{ game } j. \]
A behavior is a distribution over actions; finite set
\[\mathcal{B} = \{1, 2, \ldots, |\mathcal{B}|\}; \] (e.g., “aggressive”, “passive”, etc.)

- \(B_{it}(Z) \in \mathcal{B} \) = behavior agent \(i \) adopts at time \(t \), assignment \(Z \).
- \(\beta_{j,t}(Z) \in \Delta^{|\mathcal{B}|} \) = frequency of behaviors \(\{B_{it}(Z): Z_i = j\} \), game \(j \).

Why behaviors?

1. Given \(\beta_{j,t}(Z) \) we have distribution on actions \(\alpha_{j,t}(Z) \).
2. Leverage behavioral game theory.
3. Identification assumptions (next slides) more natural on behavioral space.
Assumption (#1, Temporal model of behaviors)

Let F_t be the filtration for $\beta_{j,t}(Z)$. Under assignment Z, for a known prior π and observation model f, there exist parameters $\theta_z = (\phi_z, \psi_z)$, such that

$$
\beta_{j,0}(Z) \sim \pi(\cdot | \phi_z)
$$

$$
\beta_{j,t}(Z) \mid F_{t-1} \sim f(\cdot | \psi_z, F_{t-1}),
$$
Assumption (#1, Temporal model of behaviors)

Let \mathcal{F}_t be the filtration for $\beta_{j,t}(Z)$. Under assignment Z, for a known prior π and observation model f, there exist parameters $\theta_z = (\phi_z, \psi_z)$, such that

$$\beta_{j,0}(Z) \sim \pi(\cdot | \phi_z)$$

$$\beta_{j,t}(Z) \mid \mathcal{F}_{t-1} \sim f(\cdot | \psi_z, \mathcal{F}_{t-1}),$$

- The model is known but its parameters $\theta_z = (\phi_z, \psi_z)$ are unknown.
- Parameters may depend on assignment Z as well as game j.
- **TODO:** Should depend on game as well. **xx**
ASSUMPTIONS FOR IDENTIFICATION: ASSUMPTION #2

Assumption (#2, Initial behaviors)

Every agent picks one fixed but possibly unknown behavior at $t = -1$. Thus, for every assignment Z,

$$\beta_{j,-1}(Z) = \beta^{(0)}.$$
Assumption (#2, Initial behaviors)

Every agent picks one fixed but possibly unknown behavior at $t = -1$. Thus, for every assignment Z,

$$\beta_{j,-1}(Z) = \beta^{(0)}.$$

- Precludes that agents change their initial behavior at $t = 0$ on anticipation of assignment Z.
- More relaxed assumption possible. (e.g., agents sampling i.i.d. from $\beta^{(0)}$.)
Assumption (#3, Behavioral ignorability)

For every assignment Z,

\[Z \perp \beta_{j,t}(Z) \mid \mathcal{F}_{t-1}, \text{Game}_j. \quad (1) \]

- Assignment Z does not add information about behaviors at t given the behaviors up to $t - 1$. (assignment mechanism is ignorable)
- Precludes interference between games, dependence on identity of agents, or on number of agents, etc.
Theorem (Estimation of long-term effects)

Suppose that Assumptions #1, #2, #3 hold. Then, LACE can be identified if parameters \(\theta = (\phi, \psi) \) of the temporal model can be identified as \(t_0 \to \infty \).
Theorem (Estimation of long-term effects)

Suppose that Assumptions #1, #2, #3 hold. Then, LACE can be identified if parameters $\theta = (\phi, \psi)$ of the temporal model can be identified as $t_0 \to \infty$.

Proof sketch:

- Under Assumptions #1 and #2, $\theta_Z = (\phi_Z, \psi_Z) \equiv (\phi, \psi_Z)$. (Prior π of initial behavior $\beta_{j,0}(Z)$ completely defined for any Z by randomization.)
- Under Assumptions #1 and #3, $\theta_Z = (\phi_Z, \psi_Z) \equiv (\phi_Z, \psi)$. (Temporal dynamics of behaviors governed by same parameters across assignments Z.)
- Then, if we can learn (ϕ, ψ), then we can predict counterfactuals to any assignment Z and time T.
- xx TODO: Dependence on game. Can use behavioral game theory to predict between games. xx
Figure 1: **Step (1):** learn ψ of $\beta_{j,t}(Z)$ under Z using data (blue line); **Step (2):** learn ϕ of $\beta_{j,0}(Z)$ under Z; **Step (3):** Under randomization, use ϕ to estimate $\beta^{(0)}$; **Step (4):** Use ψ to estimate $\beta_{j,T}(j1)$ starting from $\beta_{j,0}(j1) = \beta^{(0)}$.
ARE ASSUMPTIONS #1-#3 NECESSARY?
OTHER METHODS

- **Difference-in-differences (DID).** DID compares difference in treatment vs. control; requires strong additive modeling assumptions.

- **Structural approach**, e.g., Athey et. al., (2008): Estimate bidder valuations from observed data in one auction and predict counterfactual bids in other auction, assuming equilibrium play. Ignorability assumption; no long-term effects.

- **Directed acyclical graphs (DAGs)**, e.g., Bottou et. al. (2012): Create full DAG and predict counterfactuals. Crucial assumption: underlying DAG remains stable under treatment assignment (form of ignorability); problematic in equilibrium systems (Dash, 2011).
Game consisted of two players A (=row) and B (=column), each having 5 actions.

- Numbers W, L indicate payoffs for row-player; W = win, L = loss.
- Two different game designs: \((W, L) = (10, -6)\) and \((W, L) = (10, -1)\).
TOY EXAMPLE: GAME DATA

<table>
<thead>
<tr>
<th>Game</th>
<th>Period</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.308</td>
<td>0.307</td>
<td>0.113</td>
<td>0.120</td>
<td>0.350</td>
<td>0.218</td>
<td>0.202</td>
<td>0.092</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.293</td>
<td>0.272</td>
<td>0.162</td>
<td>0.100</td>
<td>0.333</td>
<td>0.177</td>
<td>0.190</td>
<td>0.140</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.273</td>
<td>0.350</td>
<td>0.103</td>
<td>0.123</td>
<td>0.353</td>
<td>0.133</td>
<td>0.258</td>
<td>0.102</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.295</td>
<td>0.292</td>
<td>0.113</td>
<td>0.135</td>
<td>0.372</td>
<td>0.192</td>
<td>0.222</td>
<td>0.063</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.258</td>
<td>0.367</td>
<td>0.105</td>
<td>0.143</td>
<td>0.332</td>
<td>0.115</td>
<td>0.245</td>
<td>0.140</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.290</td>
<td>0.347</td>
<td>0.118</td>
<td>0.110</td>
<td>0.355</td>
<td>0.198</td>
<td>0.208</td>
<td>0.108</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.355</td>
<td>0.313</td>
<td>0.082</td>
<td>0.100</td>
<td>0.355</td>
<td>0.215</td>
<td>0.187</td>
<td>0.110</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.323</td>
<td>0.270</td>
<td>0.093</td>
<td>0.105</td>
<td>0.343</td>
<td>0.243</td>
<td>0.168</td>
<td>0.107</td>
</tr>
</tbody>
</table>

Figure 2: Columns: Game=design, $A_k=\text{frequency of action } A_k\text{ from players A.}$ $B_k=\text{frequency of action } B_k\text{ from players B.}$

- Randomized 40 players in one of two designs; $\mathcal{I} = \{1, 2, \ldots, 40\}$.
- $\mathcal{G} = \{1, 2\}; \mathcal{A} = \{1, 2, 3, 4, 5\}$ (row/column); each player played both as row & column vs. two different opponents in matchups.
- (In Table) Proportions are aggregate actions $\alpha_{j,t}(Z), t = 1, 2, 3, 4$.
· Assume objective \(R_{j,t}(Z) = c' \alpha_{j,t}(Z) \), linear function of aggregate action.

· “What is the long-term causal effects of design #1 over #2 on objective?”.

· game designs = different options for payoffs \((W, L)\).

· Assume short-term \(t = 1, 2, 3 \); long-term = 4 (held-out).

<table>
<thead>
<tr>
<th>Game</th>
<th>Period</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>(B_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.308</td>
<td>0.307</td>
<td>0.113</td>
<td>0.120</td>
<td>0.350</td>
<td>0.218</td>
<td>0.202</td>
<td>0.092</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.293</td>
<td>0.272</td>
<td>0.162</td>
<td>0.100</td>
<td>0.333</td>
<td>0.177</td>
<td>0.190</td>
<td>0.140</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.273</td>
<td>0.350</td>
<td>0.103</td>
<td>0.123</td>
<td>0.353</td>
<td>0.133</td>
<td>0.258</td>
<td>0.102</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.295</td>
<td>0.292</td>
<td>0.113</td>
<td>0.135</td>
<td>0.372</td>
<td>0.192</td>
<td>0.222</td>
<td>0.063</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.258</td>
<td>0.367</td>
<td>0.105</td>
<td>0.143</td>
<td>0.332</td>
<td>0.115</td>
<td>0.245</td>
<td>0.140</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.290</td>
<td>0.347</td>
<td>0.118</td>
<td>0.110</td>
<td>0.355</td>
<td>0.198</td>
<td>0.208</td>
<td>0.108</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.355</td>
<td>0.313</td>
<td>0.082</td>
<td>0.100</td>
<td>0.355</td>
<td>0.215</td>
<td>0.187</td>
<td>0.110</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.323</td>
<td>0.270</td>
<td>0.093</td>
<td>0.105</td>
<td>0.343</td>
<td>0.243</td>
<td>0.168</td>
<td>0.107</td>
</tr>
</tbody>
</table>
We use the Quantal Level-\(k\) (Stahl and Wilson, 1994).

Behaviors \(\mathcal{B} = \{b_0, b_1, b_2\}\); increased level of sophistication; parametrized by \(\Lambda = (\lambda_1, \lambda_{(1)2}, \lambda_2)\) (precision parameters).

Model gives distribution over aggregate action \(\alpha_{j,t}(Z)\):

\[
g(\alpha_{j,t}(Z) | \beta_{j,t}(Z), \Lambda, G_j),
\]

where \(G_j = \text{game design}, \beta_{j,t}(Z) = \text{aggregate behavior} \).

Other modeling approaches are possible; (QRE, McKelvey and Palfrey, 1995), cognitive hierarchy (Camerer et al., 2004).
STEP 2. TEMPORAL BEHAVIORAL MODEL, \(\text{BEHAVIOR}_{t-1} \rightarrow \text{BEHAVIOR}_t \)

- We use a simple VAR(1) model

\[
\omega_{j,t} = \psi_0 + \psi_1 \omega_{j,t-1} + \psi_2 \varepsilon_t, \tag{2}
\]

where \(\omega_{j,t} \overset{\text{def}}{=} L(\beta_{j,t}(Z)) \); \(L(x) = (0, \log(x_1/x_0), \log(x_2/x_0), \ldots) \) (because \(\beta_{j,t}(Z) \) is on the simplex).

- Other modeling approaches are possible; e.g., time-series on compositional data (Grunwald et. al., 1993), Brownian motion on simplex (Evans, 2003).
The posterior distribution is

\[
p(\Lambda, \phi, \psi | \alpha_{j,1:t_0}(Z)) \propto \int_{\beta_{j,1:t_0}(Z)} g(\alpha_{j,0:t_0}(Z) | \Lambda, \beta_{j,1:t_0}(Z)) \times \]

\[
game-theoretic model
\]

\[
\times f(\beta_{j,1:t_0}(Z) | \psi, \beta_{j,0}(Z)) \times \]

\[
temporal behavioral model
\]

\[
\times \pi(\beta_{j,0}(Z) | \phi) \]

\[
prior for behavior t=0
\]

\[
\times \pi_0(\Lambda, \phi, \psi) . \]

\[
other priors
\]
Figure 3: Proportion of \((b_0, b_1)\) behaviors of \(QL_3\) for \(t = 1\) (red), \(t = 2\) (green), \(t = 3\) (blue). A slight trend to more sophisticated behaviors (decreasing \(b_0\)) is observed over time, which provides statistical evidence of agents learning the game.
Figure 4: Random objectives. x-axis = true long-term effect. LACE = long-term effect estimation; DID = difference-in-differences; naive = use $t - 1$ for estimation.
· Problem of estimating long-term causal effects of interventions in multiagent systems.
· Challenges: (1) strategic interference among competing agents; (2) temporal/adaptive actions by agents introduces short-term effects
· Contributions
 (a) Explicate sufficient assumptions for identification.
 (b) Provide algorithm that identifies long-term causal effects under said assumptions.
 (c) Methods uses latent behavioral space; can leverage behavioral game theory to make more informed statistical predictions of counterfactuals.
· Open issues: (1) strategic interference between games; (2) necessary assumptions for identification.