Structural Estimation of Callers’ Delay Sensitivity in Call Centers

Zeynep Akşin
College of Administrative Sciences and Economics, Koç University, 34450 Sariyer-Istanbul, Turkey, zaksin@ku.edu.tr

Baş Ata
Booth School of Business, University of Chicago, Chicago, Illinois 60637, baris.ata@chicagobooth.edu

Seyed Morteza Emadi
Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, seyed_emadi@kenan-flagler.unc.edu

Che-Lin Su
Booth School of Business, University of Chicago, Chicago, Illinois 60637, che-lin.su@chicagobooth.edu

We model the decision-making process of callers in call centers as an optimal stopping problem. After each waiting period, a caller decides whether to abandon a call or continue to wait. The utility of a caller is modeled as a function of her waiting cost and reward for service. We use a random-coefficients model to capture the heterogeneity of the callers and estimate the cost and reward parameters of the callers using the data from individual calls made to an Israeli call center. We also conduct a series of counterfactual analyses that explore the effects of changes in service discipline on resulting waiting times and abandonment rates. Our analysis reveals that modeling endogenous caller behavior can be important when major changes (such as a change in service discipline) are implemented and that using a model with an exogenously specified abandonment distribution may be misleading.

Keywords: queues; abandonment; dynamic programming

History: Received August 3, 2011; accepted January 30, 2013, by Assaf Zeevi, stochastic models and simulation.
Published online in Articles in Advance August 19, 2013.

1. Introduction

Services cannot be stored and frequently cannot be produced without their customers. Thus, waiting is an inevitable part of most service encounters. A growing number of customer contacts take place in call centers, making them a dominant channel for encounters with waiting (Gans et al. 2003, Aksin et al. 2007). Customers dislike waiting, especially when it is in invisible queues as in call centers. The dislike can be attributed to feelings such as anxiety, ambiguity, and a sense of wasting time (Suck and Holling 1997, Leclerc et al. 1995). A natural consequence of such feelings is that some customers lose patience and abandon the queue before receiving service. Caller abandonment reflects dissatisfaction and may lead to profit loss for the service provider. It further affects performance metrics such as average waiting times. Understanding caller patience is an essential first step in designing superior service encounters, which motivates the research in this paper. We model wait or quit decisions by callers and estimate their patience by making use of call center data on waiting and abandonment times.

A traditional approach to modeling reneging or abandonment in queues is by considering an exogenous patience time distribution for customers. Thereby, customers abandon the queue when their perceived waiting time exceeds their patience (Gans et al. 2003 and references therein). Frequently, the choice of the patience time distribution is driven by tractability concerns. A distribution is chosen that makes subsequent analysis possible, and its parameters are estimated from historical data. A more recent stream of research focusing on call centers has emphasized the importance of the direct use of data to fit patience time distributions (Brown et al. 2005).

Although the traditional approach lends itself to tractable analysis in many cases, it does not enable explicit modeling of patience. An alternative modeling approach has been to consider wait or quit decisions by callers as the outcome of forward-looking behavior of utility maximizing rational agents. With a utility function that consists of a reward from service and a linear delay cost, forward-looking customers either abandon upon arrival (i.e., balk) or not at all. In particular, no caller abandons while waiting.
As reviewed in Hassin and Haviv (2003), different assumptions are required to induce rational abandonments while waiting. In Hassin and Haviv (1995), a reward from service that may drop to zero induces rational abandonments. Mandelbaum and Shimkin (2000) incorporate a fault state upon arrival, which means callers arriving in that state will never be served. In this extended model, callers may abandon while waiting because they are worried that they may be trapped in the fault state.

In a similar study, Shimkin and Mandelbaum (2004) consider nonlinear delay costs with no fault state. Under suitable conditions on waiting costs, the authors study the equilibrium in which callers decide upon arrival when to abandon. The abandonment times of the callers are optima of their utility functions. In both Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum (2004), the authors model the system as a Markovian queue with a general abandonment time distribution (an $M/M/m + G$ queue) and find the waiting-time distribution of the callers resulting from the equilibrium between the offered waiting-time distribution of the system and the patience time distribution of the callers.

The work of Mandelbaum and Shimkin is an important antecedent of this paper. Indeed, our formulation builds on the following observation made by Shimkin and Mandelbaum (2004, p. 122): "It is plausible that abandonment decisions are taken online based on the customer’s assessment of the current situation and the utility of further wait.”

In our model, callers receive a reward from service and incur a delay cost, which is linear to their waiting time, along the lines of Naor (1969). Moreover, callers are heterogeneous in their reward and cost parameters, which is captured via a random-coefficients model. No information about the duration of waiting is conveyed to the callers as they wait in the queue, i.e., there is no delay announcement. Callers are forward looking and make wait or abandon decisions dynamically as they wait. To be more specific, we assume that the waiting cost is sunk; i.e., waiting costs incurred in the past are irrelevant to future decisions. Hence, a caller only considers the expected future utility associated with her actions. A caller’s utility depends on her reward, delay cost, and idiosyncratic random shocks, representing (external) events that affect the caller’s utility. The idiosyncratic shocks correspond to the unobserved variables in the empirical industrial organization literature (see, e.g., Rust 1987), which are observed by the caller but not recorded in the data. Using standard terminology in the operations research literature, each caller solves an optimal stopping problem, where stopping corresponds to abandoning. We estimate callers’ cost and reward parameters using the maximum likelihood estimation (MLE) approach.

The main contribution of this paper is to develop a simple model that endogenizes and explains the abandonment behavior of callers. Using our model, we estimate callers’ cost and reward parameters and conduct a counterfactual analysis. More specifically, in a series of experiments, we change the service discipline of the call center and compare our model (with endogenous abandonments due to forward-looking callers) with a model where an exogenously specified abandonment distribution (obtained from the data) is used. For small changes, where we only change the parameters of the existing priority scheme, for example, the exogenous modeling appears to be sufficient. However, our comparisons show the importance of endogenizing customer behavior in settings where major policy changes are made.

Our model also makes a methodological contribution to the analysis of queuing systems with abandonments. To the best of our knowledge, this is the first attempt to apply a structural estimation approach in the call center operations context. Furthermore, it is the first empirical demonstration of the effect of modeling endogenous customer abandonment behavior in queues. Indeed, our framework can be modified suitably to study various other queuing systems (with abandonments), e.g., those arising in settings such as in the delivery of healthcare services, made-to-order manufacturing, etc.

The rest of this paper is structured as follows. Section 2 reviews the literature. Section 3 characterizes the model of the decision-making process of callers. Section 4 describes the data. Section 5 explains the estimation method and provides the estimation results and their interpretation. Section 6 describes the counterfactual analysis. Section 7 offers concluding remarks.

2. Literature Review

The behavioral aspects of waiting have been studied extensively. Mostly, waiting is shown to have a negative effect on individuals. Leclerc et al. (1995) study whether people treat waiting as losing monetary utility. In an experiment, they show that individuals’ marginal cost of waiting is a concave function when the waiting time is large, e.g., 20 minutes to five hours. Suck and Holling (1997) model the effect of waiting-time duration and variability on stress caused by waiting. They show that an increase in either the duration or variability of the waiting time results in more stressful conditions for the customers. Bitran et al. (2008) study the implications of the psychology of waiting for the design of queuing systems and provide a comprehensive review.
The same waiting experience can have different effects on different people, depending on how it is perceived. Indeed, a stream of research in the behavioral literature analyzes the effect of time perception on the behavior of callers. Hornik (1984) studies the difference between the perceived waiting time and the actual waiting time of the customers. The author verifies the existence of this difference empirically. Chebat et al. (1993) state that musical and visual cues, e.g., playing music, may decrease customers’ perception of the time spent waiting and thus reduce customers’ dissatisfaction from waiting. According to experiments in Munich and Rafaeli (2007), a sense of progressing in the queue enhances the mood of customers while waiting. In Zakay (1989), the author suggests that the perceived waiting time is longer when a customer is more conscious about the passage of time. The author also states that conveying the delay information may shorten the perceived waiting time because it decreases the customer’s need to pay attention to the passage of time.

A growing body of literature studies the effect of delay information on callers’ behavior and the performance of the service center. We refer the reader to Whitt (1999), Guo and Zipkin (2007), Jouini et al. (2011), Armomy et al. (2009), and references therein for a detailed account of that literature. In the data, no delay information is provided to callers, consistent with our model.

Apart from the delay information, instruments such as price can be used to control the customers’ behavior and decision in waiting situations. Naor (1969) is one of the first papers in the queuing context to model customers as utility maximizing agents whose actions can be modulated via pricing. Naor (1969) models a system where imposing tolls affects customers’ decision to join the queue or to balk. Mendelson (1985) studies how queuing delays and pricing change the behavior of customers and their arrival rate. The author shows that a manager can maximize the value of the services to the organization or minimize the costs by choosing the proper price and capacity.

A closely related area is the equilibrium analysis of abandonments by rational customers, who maximize their utilities in choosing between waiting and abandoning. Zohar et al. (2002) provide a model of rational abandonments suggesting that customers adapt their patience to their anticipated waiting time. The authors assume that customers’ patience follows a parametric distribution, where its parameters are only affected by anticipated waiting time of the customers, and it depends on neither customers’ utility from receiving service nor their waiting cost. Hassin and Haviv (1995) study the abandonment profile of rational customers in the setting of a single-server Markovian queue with abandonments. The authors assume that the customers’ waiting cost is linear and the customers’ utility from service becomes zero if they do not receive service within a fixed time after arrival. The authors show that the optimal behavior of the customers is one of the two abandonment profiles: abandoning upon arrival or abandoning when the service utility drops to zero.

As reviewed in the introduction, Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum (2004) analyze rational abandonment behavior of impatient customers in a Markovian queue with a general abandonment time distribution (an $M/M/m + G$ queue). In both papers, the authors assume that the waiting cost and service utility of the callers are given, and customers depending on these parameters act rationally and decide upon arrival when to abandon if they do not receive service. Our work differs from Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum (2004). An important difference is that callers make their decisions dynamically in our model, not just upon arrival. In essence, each caller solves an optimal stopping problem where “stopping” means abandoning. Another important difference is that we do not undertake a queuing theoretical analysis to derive the equilibrium waiting time. Rather, we deduce the equilibrium distribution of the waiting time from the observed data and assume that it is common knowledge among the callers and the call center provider; callers acquire this knowledge through their past experiences of contacting the call center.

We assume that the callers’ utility depends on the waiting cost, reward, and their idiosyncratic random shocks, which resemble the random utility models one sees in the structural estimation literature; see Berry et al. (1995). In that literature, two of the most relevant papers to our work are Rust (1987) and Nair (2007). Rust (1987) studies the estimation of structural parameters of a regenerative optimal stopping model where a maintenance manager in each period of time has to decide between two actions: (1) replacing the engine of a bus and incurring the cost of overhaul or (2) not replacing the engine and incurring the cost of unexpected failure. In Nair (2007), the author examines the effect of consumers’ forward-looking behavior on profit of the firms selling video games. The author proposes a dynamic consumer choice model where consumers can buy the product and exit the market or wait to buy the product at a lower price. The author also models the profit of the firm and suggests that firms may lose profit by not taking the forward-looking behavior of the callers into account when setting prices. Similarly, our counterfactual analysis illustrates how disregarding endogenous abandonment behavior can lead to erroneous assessment of service levels while making choices of service discipline in a call center.
3. The Model

In this section, we present a dynamic model of the decision-making process of callers. In each period as callers wait in the queue, they face the decision to either abandon the call or continue to wait. If a caller chooses to abandon, she will do so immediately at the beginning of the period; if the caller chooses to wait, she will stay in the system for that period. As the caller waits, she may enter service in which case she incurs the waiting cost for that period, receives the reward associated with the service, and exits the queue. Otherwise, the caller incurs a waiting cost for that period and then decides again whether to abandon or continue to wait as she enters the next period. We assume that callers know the probability of receiving service in a period \(t \), which is conditional on not being served yet. Callers also know that they will receive service before period \(T \) if they do not abandon. Furthermore, no information about the duration of waiting is conveyed to the callers; i.e., there is no delay announcement.

In our model, callers are forward looking. In each period, they compare the expected utility of waiting, which consists of utilities from the current and future periods and the expected utility of abandoning. They then choose the action that maximizes their expected utility. We assume that the waiting cost is sunk; i.e., waiting costs incurred in the past are irrelevant to future decisions. Hence, a caller only considers the expected future utility associated with her actions.

We next describe the model primitives. Let \(c_i \) be caller \(i \)'s cost of waiting for one period, and let \(r_i \) be caller \(i \)'s reward from receiving service. The callers are heterogeneous in their rewards and waiting costs. More specifically, the reward \(r_i \) and the unit waiting cost \(c_i \) of caller \(i \) are given by

\[
\begin{align*}
 r_i &= \exp(m_r + \sigma_y y_{1i}), \\
 c_i &= \exp(m_c + \sigma_y y_{2i}),
\end{align*}
\]

where \(y_{1i} \) and \(y_{2i} \) are draws from independent and identical standard normal distributions. In other words, callers' reward and cost parameters have log-normal distributions. The parameters \(m_r \) and \(m_c \) are the means for \(\ln(r_i) \) and \(\ln(c_i) \), respectively. Similarly, the parameters \(\sigma_r \) and \(\sigma_c \) are the standard deviations for \(\ln(r_i) \) and \(\ln(c_i) \).

The utility of caller \(i \) for choosing action \(d \) in period \(t \) is given by

\[
 u(t, r_i, c_i, \varepsilon_i(t), d) = v(t, r_i, c_i, d) + \varepsilon_i(t),
\]

where \(\varepsilon_i(t) \) denotes the idiosyncratic shock incurred by choosing action \(d \). The term \(v(t, r_i, c_i, d) \) is the nominal utility and is independent of the idiosyncratic stochastic shocks. We let \(d = 1 \) if a caller chooses to abandon in that period and zero otherwise.

Because caller \(i \) will exit the queue at the beginning of the period if she chooses to abandon the call, the nominal utility of caller \(i \) abandoning in period \(t \) is zero, i.e.,

\[
 v(t, r_i, c_i, 1) = 0.
\]

If caller \(i \) decides to wait, the nominal utility of waiting is given by

\[
 v(t, r_i, c_i, 0) = -c_i + \pi(t) r_i + (1 - \pi(t)) \mathbb{E}\left[\max_{d \in [0, 1]} u(t + 1, r_i, c_i, \varepsilon_{i(t+1)}(d), d) \right],
\]

where \(\pi(t) \) is the probability of receiving service in period \(t \) conditional on not being served yet and \(\pi(T) = 1 \); i.e., all callers receive service within \(T \) periods. We assume that \(\pi(\cdot) \) is the equilibrium outcome of the system, where callers correctly anticipate the service probabilities based on their past experiences of contacting the call center. Furthermore, the probability of receiving service \(\pi(\cdot) \) is common knowledge among the callers. The first term on the right-hand side of (4) is the waiting cost for the current period. The second term is the expected utility from receiving service in period \(t \). Finally, the last term is the future value of waiting. We refer to the expectation in (4) as the integrated value function, denoted by \(V(t, r_i, c_i) \).

The expectation is taken with respect to the conditional distribution of \(\varepsilon_{i(t+1)} \) given \(\varepsilon_{it} \), where \(\varepsilon \) stands for \((\varepsilon(0), \varepsilon(1)) \). Assuming \(\varepsilon_i(d) \) is independent and identically distributed (iid) across different callers, periods, and actions, we denote caller \(i \)'s integrated value function as

\[
 V(t, r_i, c_i) = \iint \max_{d \in [0, 1]} u(t + 1, r_i, c_i, \varepsilon(d), d) \\
 \cdot g(\varepsilon(0))g(\varepsilon(1))d\varepsilon(0)d\varepsilon(1),
\]

where \(g(\varepsilon(d)) \) is the probability density function (pdf) of the error term \(\varepsilon(d) \) for \(d = 0, 1 \).

Given \(r_i \) and \(c_i \), caller \(i \)'s optimal decision in period \(t \) is given by

\[
 d_{it} = \arg \max_{d \in [0, 1]} u(t, r_i, c_i, \varepsilon_i(t), d).
\]

The following proposition (see Appendix A for its proof) characterizes callers’ choice probabilities under the assumption that the idiosyncratic shocks have iid type I extreme value distribution. (See Appendix A
for the definition of this distribution.) As explained in Rust (1987), this distributional form enables a closed-form representation of the choice probabilities.

Proposition 1. Suppose that the idiosyncratic shocks \(e_{it} \) have iid type I extreme value distribution. Denoting by \(P_i(d_{it}; r_i, c_i) \) the probability that caller \(i \) chooses action \(d_{it} \) in period \(t \), we have

\[
P_i(d_{it}; r_i, c_i) = \frac{\exp(v(t, r_i, c_i, d_{it}))}{1 + \exp(v(t, r_i, c_i, 0))},
\]

where

\[
v(t, r_i, c_i, d_{it}) = \begin{cases} 0 & \text{if } d_{it} = 1, \\ c_i + \pi(t)r_i + (1 - \pi(t))V(t, r_i, c_i) & \text{if } d_{it} = 0. \\ \end{cases}
\]

Moreover, caller \(i \)'s integrated value function for \(t < T \) is recursively given by

\[
V(t, r_i, c_i) = \log(1 + \exp(-c_i + \pi(t+1)r_i + (1 - \pi(t+1))V(t+1, r_i, c_i))),
\]

and \(V(T, r_i, c_i) = 0 \).

4. Data

Our data set was generously made available to us by the Service Enterprise Engineering (SEE) lab at the Technion (http://ie.technion.ac.il/Labs/Serveng/). It contains individual call-level data as well as agent data from a bank call center for a six-month period between April and September 2008. The call center operates 24 hours a day, seven days a week. It processes up to 85,000–90,000 calls a day on weekdays and 15,000–40,000 calls a day on weekends. There are 300–350 agents working in the call center on weekdays and 50–175 agents during weekends.

Around 30,000–35,000 calls, or 35%–40% of total arrivals, are routed according to the agents’ skills. The rest are IVR/VRU (interactive voice response/voice response unit, representing automated response) calls. The center offers six types of services: private, securities, Internet, other languages, loans, and solutions. The service type of a call can be observed in the data. Private calls (retail banking) are the largest call type. These are the calls we focus on in our basic analysis. A preliminary look at the data indicates that weekdays and weekends are significantly different in terms of call traffic, server numbers, and wait patterns. In our analysis, we choose to focus on the weekday calls.

The data traces each call from its entry to exit. Each call is broken down into subcalls. Entry and exit times from each subcall are available. Calls are distinguished by the route they follow within the call center (directly joining the queue, VIU and then joining the queue, or other) and by the outcome of the call (normal termination, transfer, disconnected, on ring, no agent, abandoned short, abandoned, or other unhandled). Calls joining the queue directly represent calls transferred from the branches or calls when a customer ID has not been identified. A definition of each outcome is provided in Table 1. Our analysis focuses on the route VIU and joining the queue as well as the outcomes’ normal termination, transfer, abandoned short, and abandoned, which consist of more than 80% of the observations. Because our model does not consider multistage service and intermediate waits by customers, we restrict our analysis to the first subcall, which consists of waiting in the queue and talking to the first agent. The callers do not receive any delay announcements, but they may receive information announcements (working hours, etc.) and marketing announcements or hear music.

Customers in this call center have different priorities in the queue. There are four levels of priority: high, medium, low, and no priority. The no-priority calls are those that cannot be associated with a customer at the point of entry and are thus treated as having no priority, which corresponds to the lowest priority. We observe the priority group of each caller from the data.

Depending on the caller’s priority type, each caller receives a priority point upon arrival. The priority point of a customer is updated dynamically as the customer waits in queue. These priority updates are performed after every 60 seconds of waiting. The updates in priority points occur such that higher-priority calls receive higher increases in their priority points relative to lower-priority calls. Although for the same waiting duration a call with a higher-priority type always has higher priority points, a lower-priority-type caller who has waited a long time may have a lower priority than a higher-priority caller who has waited a shorter time.

Table 1: Definitions of Outcomes

<table>
<thead>
<tr>
<th>Code</th>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal terminations</td>
<td>The caller receives service and then terminates the call</td>
</tr>
<tr>
<td>2</td>
<td>Transfer</td>
<td>Call was transferred to another agent or unit</td>
</tr>
<tr>
<td>3</td>
<td>Disconnected</td>
<td>Customer has terminated the call while on hold or because the agent logged off</td>
</tr>
<tr>
<td>4</td>
<td>On ring</td>
<td>Agent did not pick up the phone</td>
</tr>
<tr>
<td>5</td>
<td>No agent</td>
<td>Agent has finished his shift without logging off and the phone system continues to send incoming calls to this agent</td>
</tr>
<tr>
<td>11</td>
<td>Abandoned short</td>
<td>A call placed into queue was abandoned with the wait time less than five seconds</td>
</tr>
<tr>
<td>12</td>
<td>Abandoned</td>
<td>A call placed into queue was abandoned with wait time longer than or equal to five seconds</td>
</tr>
<tr>
<td>13</td>
<td>Other unhandled</td>
<td>A call placed into queue did not reach the agent for unknown reasons (mainly because of hardware malfunctioning)</td>
</tr>
</tbody>
</table>
time may have higher priority points than a newly arriving high-type caller because of the dynamic priority point updates. We observe the effect of these dynamic priority increases in waiting-time histograms. In particular, we observe peaks at multiples of 60 seconds, corresponding to the dynamic priority point updates. An example for medium-priority calls on May 12, 2008, in Figure 1 illustrates the pattern.

Dynamic priority updates are not recorded in the data. Although we know the update mechanism, we do not make use of this in our estimation. Rather, we use the resulting service probabilities directly as estimated from the data. This estimation is described in §5.

The average arrival pattern for calls on working days is shown in Figure 2. To focus on the relatively busy hours of the day, we restrict our analysis to calls between 9 a.m. and 2 p.m. on each weekday.

The abandonment rate during the day for July 17, 2008, is plotted in Figure 3. This pattern suggests that there may be different staffing patterns during different times of the day. We verify this by making use of available agent data. Figure 4 provides average staff numbers during the day on Mondays (other working days exhibit a similar pattern), showing that the time interval we focus on represents a highly staffed interval, thus ensuring reasonable abandonment rates.

Finally, we focus on calls with a wait duration ranging between 0 and 960 seconds. Calls with waiting times longer than 960 seconds constitute fewer than 0.01% of our observations and have been eliminated to reduce the length of the time horizon in our estimation. Data from weeks with a holiday were excluded from the analysis (these are April 20–26, May 4–10, June 8–14, and September 28–30) as potential outliers.

In summary, our analysis focuses on 1,323,071 calls with the private service type, received on weekdays during weeks without a holiday in the interval April–September 2008, between 9 a.m. and 2 p.m., having entered the system through the VRU and proceeded to a wait in the queue and having normal termination,
transfer, short abandonment, and abandonment as an outcome. We are focusing on the subcall starting with the wait in the queue and including the encounter with the first agent. The summary statistics for this portion of the data are given in Table 2.

5. Estimation
In this section, we first discuss the identification of callers' parameters from the data. Next, we describe the estimation methodology and results. Finally, we discuss the cross-validation and out-of-sample tests to examine the ability of our model to predict the abandonment behavior of callers.

5.1. Identification
As can be seen in Figure 5, our data exhibit significant intertemporal variation in the service probabilities \(\pi(t) \). This observation, along with the fact that waiting times vary across different callers (see the waiting-time histograms of the priority groups in the data in §6), allows us to identify the reward and cost

<table>
<thead>
<tr>
<th>Priority group</th>
<th>Number of observations</th>
<th>Abandonment rate (%)</th>
<th>Average waiting time (sec.)</th>
<th>Average waiting time (abandoned calls) (sec.)</th>
<th>Maximum waiting time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td>184,722</td>
<td>2.12</td>
<td>18.83</td>
<td>71.73</td>
<td>857</td>
</tr>
<tr>
<td>Medium priority</td>
<td>516,685</td>
<td>3.68</td>
<td>42.19</td>
<td>108.58</td>
<td>958</td>
</tr>
<tr>
<td>Low priority</td>
<td>253,983</td>
<td>6.66</td>
<td>72.02</td>
<td>123.25</td>
<td>949</td>
</tr>
<tr>
<td>No priority</td>
<td>367,701</td>
<td>24.65</td>
<td>96.20</td>
<td>100.31</td>
<td>960</td>
</tr>
<tr>
<td>Sum</td>
<td>1,323,071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
parameters separately. To see the intuition behind this, note from Equations (7)–(9) in Proposition 1 that the probability of abandoning in period \(t \) depends on the terms \(\{\pi(s)r_i - c_i\}_{s=t,T} \) and is given by

\[
P_{ni}(1; r_i, c_i) = \psi_i(\pi(t)r_i - c_i, \pi(t+1)r_i - c_i, \ldots, \pi(T)r_i - c_i),
\]

where \(\psi_i \) is a suitably defined function that does not depend on \(r_i \) and \(c_i \). Equation (10) shows that if there were no variation in \(\pi(t) \), i.e., \(\pi(t) = \pi \) for all \(t \), then we could only identify the difference between \(\pi r_i \) and \(c_i \). This follows because the abandonment probability \(P_{ni}(1; r_i, c_i) \) would then be solely a function of \(\pi r_i - c_i \), which would prevent the identification of the reward and cost parameters separately. However, since callers’ waiting times exhibit sufficient variability, we can identify the abandonment probabilities in each period as given in (10), from which we can identify the reward and cost parameters separately given the intertemporal variation in service probabilities \(\pi(t) \).

Moreover, heterogeneity in callers’ cost and reward (i.e., \(\sigma_r, \sigma_c \)) is identified by the variation in the abandonment behavior of callers in a given period. To see this, consider \(N \) callers who have waited for \(t \) periods, and recall that the abandonment probability in period \(t \) is given by (7). If there is no heterogeneity (i.e., \(\sigma_r = \sigma_c = 0 \)), then each caller has the same abandonment probability. Hence, the total number of abandonments in period \(t \) is a binomial random variable. In contrast, under heterogeneity, callers will have different abandonment probabilities, and the total number of abandonments in period \(t \) is the sum of \(N \) binary random variables where success probabilities are random variables (as determined through \(r_i, c_i \) in Equations (1) and (7)). Therefore, the total number of abandonments in period \(t \) exhibits more variation under heterogeneity. In other words, the degree of variation (or volatility) in the abandonment behavior of callers helps us identify the variance parameters \(\sigma_r, \sigma_c \). Nonetheless, our model is flexible enough to allow \(\sigma_r = \sigma_c = 0 \). Indeed, we find that this is the case for all but no-priority callers (Table 3). However, allowing heterogeneity can be critical, as illustrated in §6.

5.2. Estimation Methodology and Results
The estimation of callers’ parameters is carried out in two stages. We first estimate the probability of receiving service \(\pi(t) \). Next, given that probability, we construct the likelihood function of callers’ observed decisions in the data and maximize it to estimate the parameters.\(^2\)

We estimate \(\pi(t) \), the probability of receiving service in period \(t \) (which is conditional on not being served yet), directly from the data. This direct approach allows us to capture all operational aspects of the call center for the interval under analysis. Given the cumulative distribution of a caller’s waiting time (time spent in the queue before receiving service), denoted by \(F, \pi(t) \) is given by

\[
\pi(t) = \frac{F(t+1) - F(t)}{1 - F(t)}.
\]

\(^2\)This is similar to the approach taken in Rust (1987), where the author first estimates the transition probabilities in mileage directly from the data and then uses those fixed transition probabilities to estimate the structural parameters.
To estimate the waiting-time distribution of the callers, we use the Kaplan–Meier estimator (Kaplan and Meier 1958). This estimator is used to find the survival time distribution when the data is censored, which is the case herein because of the presence of abandonments. See Appendix B for details.

Next, we describe the MLE problem of callers’ parameters given the service probabilities \(\pi(t) \) for \(t \geq 1 \). Recall that callers are indexed by \(i = 1, \ldots, N \), where \(N \) is the total number of callers in the data, and that \(r_i \) and \(c_i \) are given in (1), where \(y_{i1} \) and \(y_{i2} \) are standard normal random variables. Let \(\tau_i \) denote the last period in which caller \(i \) decides between waiting and abandoning. Also, let \(\{d_{it}; t = 0, 1, \ldots, \tau_i\} \) denote the observed actions of caller \(i \), where \(d_{it} \) is the action of caller \(i \) in period \(t \).

Recall that \(P_i(d_{it}; r_i, c_i) \) denotes the probability of choosing the action \(d_{it} \) by caller \(i \) in period \(t \). Let \(\Theta = (m_i, m_c, \sigma_r, \sigma_c) \) denote the vector of structural parameters to be estimated. Under the assumption that \(r_i \) and \(c_i \) have log-normal distributions, the likelihood of observing the sequence of actions \(\{d_{it}; t = 0, 1, \ldots, \tau_i\} \) by caller \(i \) is given by

\[
L_i(\Theta) = \int \prod_{t=0}^{\tau_i} P_i(d_{it}; r_i, c_i) \phi(y_{i1}) \phi(y_{i2}) \, dy_{i1} \, dy_{i2},
\]

where \(\phi(\cdot) \) is the pdf of the standard normal distribution. The likelihood function of the entire sample is then the product of the individual caller’s likelihood and is defined as follows:

\[
L(\Theta) = \prod_{i=1}^{N} L_i(\Theta) = \prod_{i=1}^{N} \int \prod_{t=0}^{\tau_i} P_i(d_{it}; \exp(m_i + \sigma_r y_{i1}), \exp(m_c + \sigma_c y_{i2})) \phi(y_{i1}) \phi(y_{i2}) \, dy_{i1} \, dy_{i2},
\]

The estimation problem is to choose the structural parameters \(\Theta \) to maximize the log-likelihood function \(\log L(\Theta) \) with the integrated value function (9) as a constraint (Su and Judd 2012). To be more specific, the formulation of the estimation problem is given below:

maximize \(\log L(\Theta) \)

subject to \(\forall i \), \(\forall t \) (for all \(i = 1, \ldots, N \)):

\[
\forall i: \quad P_i(d_{it} = 1; r_i, c_i) = \frac{1}{1 + \exp(-c_i + \pi(t)r_i + (1-\pi(t))V(t, r_i, c_i))},
\]

\[
V(t, r_i, c_i) = \log(1 + \exp(-c_i + \pi(t) + 1) r_i + (1 - \pi(t))V(t+1, r_i, c_i)),
\]

\[
V(T, r_i, c_i) = 0,
\]

\[
r_i = \exp(m_i + \sigma_r y_{i1}),
\]

\[
c_i = \exp(m_c + \sigma_c y_{i2}),
\]

\[
\sigma_r, \sigma_c \geq 0.
\]

In the estimation, we assume that each caller makes the decision every five seconds. Thus, the maximum number of periods in our model is 192 (= 960/5). Because our data is more granular, we truncate the abandonment times downward and service initiation times that happen in a period upward, consistent with our modeling assumptions in \(\S 3 \).

We solve the MLE problem (14) using the nonlinear optimization solver, KNITRO (Byrd et al. 2006), with an AMPL interface. We use 50 randomly generated starting points to find a better estimate. To approximate the two-dimensional integration in the likelihood function over \(y_{i1} \) and \(y_{i2} \), we use the Gauss–Hermite integration (Judd 1998, §7.2, p. 261). We choose five points in each dimension and approximate the integral by the weighted sum of the likelihood values at the resulting 25 nodes in the two-dimensional space associated with the pair \((y_{i1}, y_{i2}) \). We also conduct a Monte Carlo experiment to show that our estimation method can recover the true parameter values; see Appendix C for details.

Our empirical analyses focus on four priority groups within the private service group as described in \(\S 4 \). For each priority group, the corresponding probability of service \(\pi(t) \) is estimated directly from the data. Note that the direct estimation of the service probabilities \(\pi(\cdot) \) allows us to capture the interaction between the different priority callers in the queue. We estimate the parameters of each priority group separately. The estimated parameter values and standard errors (shown in parentheses) are reported in Table 3. To compute standard errors, we use the parametric bootstrap method (Horowitz 2001). We generate 100 simulated data sets with the same size as the real data from the estimates. We then estimate parameters of the simulated data sets and compute the standard errors. In Table 4 we report the mean and standard deviation for callers’ rewards and costs for each priority group, which are calculated from the estimates in Table 3 using the formulas in Footnote 1.

As can be seen in Table 4, mean reward parameters increase with the priority level although they are comparable in magnitude. Similarly, the mean cost parameters are higher for the high- and medium-priority
groups. This suggests that the high-priority callers are less patient. The waiting cost is negligible for the low-priority group. Recall that the maximum waiting time in the data is about 15 minutes. The negligible cost parameter for the low-priority callers suggests that they abandon not because of high waiting costs but rather because of external events, as modeled by the random shocks. Interestingly, the waiting cost for the no-priority callers is nonzero. Recall that the no-priority callers are independent of each other. Therefore, the predicted number of abandonments in period \(t \) has a binomial distribution. Let \(m_{aban}(t) \) and \(\sigma_{aban}(t) \) denote the mean and standard deviation of this distribution, respectively. Then, \(m_{aban}(t) = N P_{aban}(t) \) and \(\sigma_{aban}(t) = \sqrt{NP_{aban}(t)(1 - P_{aban}(t))} \). Moreover, the predicted number of aggregate abandonments is \(\sum_{t=0}^{T-1} m_{aban}(t) = N \sum_{t=0}^{T-1} P_{aban}(t) \). Let \(a_{aban}(t) \) denote the actual number of abandonments in period \(t \).

We consider the relative and absolute errors in predicting the aggregate abandonment rates as the performance metrics for the cross-validation. Note that

$$\text{relative error} = \frac{\left| \sum_{t=0}^{T-1} m_{aban}(t) - \sum_{t=0}^{T-1} a_{aban}(t) \right|}{\sum_{t=0}^{T-1} a_{aban}(t)}, \quad (16)$$

and

$$\text{absolute error} = \frac{1}{N} \left| \sum_{t=0}^{T-1} m_{aban}(t) - \sum_{t=0}^{T-1} a_{aban}(t) \right|. \quad (17)$$

The averages of the performance metrics across all test sets are shown in Table 5, which shows that our estimates are fairly accurate.

A more detailed comparison of the predicted and actual abandonments is provided in Figure 6. In addition to \(m_{aban}(t) \) and \(\sigma_{aban}(t) \), it also shows \(m_{aban}(t) \pm 2\sigma_{aban}(t) \) over time, which helps assess the accuracy of the prediction in relation to the inherent variability of the abandonments, as captured by \(\sigma_{aban}(t) \).

In addition to the cross-validation study, we also perform several out-of-sample tests to illustrate the accuracy of the estimation. To this end, we first split the data across weeks into two samples. The first half is used to estimate the model, whereas the second half is used for prediction and testing its accuracy.

Table 3 Estimation Results

<table>
<thead>
<tr>
<th>Priority group</th>
<th>(m_r)</th>
<th>(m_c)</th>
<th>(\sigma_r)</th>
<th>(\sigma_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td>1.842</td>
<td>-2.420</td>
<td>7.16E-06</td>
<td>2.89E-05</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.089)</td>
<td>(0.028)</td>
<td>(0.156)</td>
<td></td>
</tr>
<tr>
<td>Medium priority</td>
<td>1.820</td>
<td>-3.166</td>
<td>7.39E-06</td>
<td>5.46E-05</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.070)</td>
<td>(0.027)</td>
<td>(0.140)</td>
<td></td>
</tr>
<tr>
<td>Low priority</td>
<td>1.667</td>
<td>-10.000</td>
<td>5.69E-06</td>
<td>1.09E-03</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(1.517)</td>
<td>(0.032)</td>
<td>(0.912)</td>
<td></td>
</tr>
<tr>
<td>No priority</td>
<td>1.426</td>
<td>-7.420</td>
<td>0.152</td>
<td>2.379</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.219)</td>
<td>(0.006)</td>
<td>(0.079)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Mean and Standard Deviation for Callers’ Rewards and Costs

<table>
<thead>
<tr>
<th>Priority group</th>
<th>(r)-mean ($)</th>
<th>(c)-mean ($/minute)</th>
<th>(r)-st. dev.</th>
<th>(c)-st. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td>6.309</td>
<td>1.067</td>
<td>4.52E-05</td>
<td>3.09E-05</td>
</tr>
<tr>
<td>Medium priority</td>
<td>6.175</td>
<td>0.506</td>
<td>4.56E-05</td>
<td>2.76E-05</td>
</tr>
<tr>
<td>Low priority</td>
<td>5.299</td>
<td>5.45E-04</td>
<td>3.02E-05</td>
<td>5.91E-07</td>
</tr>
<tr>
<td>No priority</td>
<td>4.211</td>
<td>0.122</td>
<td>0.645</td>
<td>2.057</td>
</tr>
</tbody>
</table>

5.3. Cross-Validation and Out-of-Sample Tests

We use ten-fold cross-validation with stratification to examine the ability of the model to predict the abandonment behavior of callers (Kohavi 1995). The validation is done for each priority group in isolation.

Let \(P_{aban}(t) \) denote the ex ante probability of abandoning in period \(t \), which is given by

$$P_{aban}(t) = \begin{cases} (1 - F(0)) \int P_0(1; r_i, c_i) \cdot \phi(y_{i1}) \phi(y_{i2}) \, dy_{i1} \, dy_{i2} & \text{if } t = 0, \\ (1 - F(t)) \left(\prod_{i=0}^{t-1} P_i(0; r_i, c_i) \right) P_1(1; r_i, c_i) \cdot \phi(y_{i1}) \phi(y_{i2}) \, dy_{i1} \, dy_{i2} & \text{if } t > 0. \end{cases} \quad (15)$$

The callers’ decisions to abandon in each period are independent of each other. Therefore, the predicted number of abandonments in period \(t \) has a binomial distribution. Let \(m_{aban}(t) \) and \(\sigma_{aban}(t) \) denote the mean and standard deviation of this distribution, respectively. Then, \(m_{aban}(t) = N P_{aban}(t) \) and \(\sigma_{aban}(t) = \sqrt{NP_{aban}(t)(1 - P_{aban}(t))} \). Moreover, the predicted number of aggregate abandonments is \(\sum_{t=0}^{T-1} m_{aban}(t) = N \sum_{t=0}^{T-1} P_{aban}(t) \). Let \(a_{aban}(t) \) denote the actual number of abandonments in period \(t \).

We consider the relative and absolute errors in predicting the aggregate abandonment rates as the performance metrics for the cross-validation. Note that

$$\text{relative error} = \frac{\left| \sum_{t=0}^{T-1} m_{aban}(t) - \sum_{t=0}^{T-1} a_{aban}(t) \right|}{\sum_{t=0}^{T-1} a_{aban}(t)}, \quad (16)$$

and

$$\text{absolute error} = \frac{1}{N} \left| \sum_{t=0}^{T-1} m_{aban}(t) - \sum_{t=0}^{T-1} a_{aban}(t) \right|. \quad (17)$$

The averages of the performance metrics across all test sets are shown in Table 5, which shows that our estimates are fairly accurate.

A more detailed comparison of the predicted and actual abandonments is provided in Figure 6. In addition to \(m_{aban}(t) \) and \(\sigma_{aban}(t) \), it also shows \(m_{aban}(t) \pm 2\sigma_{aban}(t) \) over time, which helps assess the accuracy of the prediction in relation to the inherent variability of the abandonments, as captured by \(\sigma_{aban}(t) \).

In addition to the cross-validation study, we also perform several out-of-sample tests to illustrate the accuracy of the estimation. To this end, we first split the data across weeks into two samples. The first half is used to estimate the model, whereas the second half is used for prediction and testing its accuracy.

<table>
<thead>
<tr>
<th>Priority group</th>
<th>Relative error (%)</th>
<th>Absolute error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td>0.29</td>
<td>6.15E-03</td>
</tr>
<tr>
<td>Medium priority</td>
<td>0.05</td>
<td>1.86E-03</td>
</tr>
<tr>
<td>Low priority</td>
<td>0.04</td>
<td>2.35E-03</td>
</tr>
<tr>
<td>No priority</td>
<td>0.15</td>
<td>0.03</td>
</tr>
</tbody>
</table>
The results for different priority groups are shown in Table 6.

As can be seen in Table 6, the estimates from the first half of the data produce fairly accurate predictions for the abandonments observed in the second half of the data. It is interesting to note, however, that because the abandonment rate is small for the high-priority group, even a small prediction error is magnified under the relative error metric. Hence, although the relative error may seem high for the high-priority group, the corresponding absolute error is small (Table 6).

Next, we repeat the out-of-sample testing for different hours of the day. We use peak-hours data (9 A.M.–2 P.M.) to estimate the parameters reported in Tables 3 and 4, and we use those parameters to predict the abandonments during off-peak hours.\(^3\) More specifically, we consider two off-peak periods: 2 P.M.–6 P.M. and 6 P.M.–10 P.M. The prediction results for 2 P.M.–6 P.M. and 6 P.M.–10 P.M. are shown in Tables 7 and 8, respectively.

Although the predictions of the model for 2 P.M.–6 P.M. (based on the peak-hours estimates) are accurate (see Table 7), they are not as accurate for 6 P.M.–10 P.M. This discrepancy can be explained by the differences in caller demographics during different hours. Our hypothesis is that the callers in 2 P.M.–6 P.M. are similar to the callers in peak hours, whereas those calling during 6 P.M.–10 P.M. are less similar to the peak-hour callers. Therefore, the reward and cost parameters and, consequently, the abandonment behavior of the callers during peak hours are

\(^3\) In the prediction, the service probabilities \(\pi(t)\) for the relevant hours are used.
more similar to those of the callers who contacted during 2 p.m.–6 p.m.

To assess the similarity of callers during different hours, we adopt the Bhattacharyya distance (between probability distributions), which is widely used in information theory literature (Bhattacharyya 1943). To be specific, for discrete probability distribution \(p \) and \(q \) over the domain \(X \), the Bhattacharyya distance is given by

\[
D_B(p, q) = - \ln \left(\sum_{x \in X} \sqrt{p(x)q(x)} \right);
\]

see, for example, Kailath (1967) and Basseville (1989). In our context, probability distributions \(p \) and \(q \) correspond to the identity of a random caller during peak and off-peak hours, respectively. To be more specific, \(p(x) \) denotes the probability that a randomly selected peak-hour caller is caller \(x \). In our data set, callers in high-, medium-, and low-priority groups are identified. Therefore, we can calculate the distance for those priority groups to assess the similarity of the callers in different hours, as shown in Table 9.

The distances in Table 9 show that callers during peak hours are more similar to those calling during 2 p.m.–6 p.m. (in the sense of overlap) than those calling during 6 p.m.–10 p.m. This explains the contrast between the prediction accuracies reported in Tables 7 and 8. In conclusion, the out-of-sample tests provide further support that our model offers accurate predictions, provided that the caller demographics in the two samples are similar.

Building on the estimation results, in the next section, we provide a counterfactual analysis to assess the impact of policy changes.

6. Counterfactual Analysis

This section provides a simulation study of the call center using the estimated reward and cost parameters. The ultimate objective is to perform what-if analyses to assess the impact of changes in the service discipline. The aforementioned assumptions will be maintained throughout this section unless stated otherwise.

The simulation study is constructed along the lines of the usual discrete-event simulations. However, it has a novel feature in that the callers decide dynamically to abandon a call or to continue to wait by computing their expected utilities under each choice. Consistent with §5, in the simulation the calls make their decision to wait or to abandon every five seconds. Consequently, the unit of time in the simulation is five seconds. The expected utility computation on the callers’ part requires the knowledge of the equilibrium service probabilities \(\pi(t), t \geq 0 \). Although these can be computed readily from the data for the current service discipline, they need to be recalculated when a new service discipline is considered. Computing these equilibrium service probabilities (for a new policy) seems intractable analytically. Therefore, we use the following iterative procedure, which seems to work well. First, given a new policy, we simulate the system as if no one abandons calls to obtain an estimate of service probabilities \(\pi^0(t), t \geq 0 \). In the next step, we allow the callers to abandon using \(\pi^0(\cdot) \) and simulate the system to get the new estimates of service probabilities \(\pi(t), t \geq 0 \). We repeat this procedure until both the average waiting time and the abandonment rate converge for all priority groups.

The first step of the simulation study is to reconstruct the existing as is performance of the call center. However, there are challenges to performing this task accurately. The difficulty stems in part from the variation in the data across different days (because of the inherent uncertainty). Therefore, we choose to replicate the aggregate performance over all days, which presents challenges too, mainly because it is not immediately clear what number of agents should be used in our simulation. In particular, the number of agents in the data vary across days (and hours within a day). Moreover, the agents handle not just the first subcalls we focus on but also the subsequent subcalls (in addition to other types of calls we do not consider). Consequently, to determine the number of agents, we vary the number of agents between 105 and 165. We pick the number of agents to be 133, for which the waiting time and abandonment statistics are closest to those in the data.⁴

In what follows, this constitutes the base case for our simulation study.

The simulated system consists of four queues and one pool of agents. Each queue corresponds to one of the priority groups in the data. Recall that the service discipline currently used by the call center is a periodic point-update priority policy. In the simulation, this policy is used to determine priority points of callers as a function of their priority type and waiting

⁴ Under each staffing level being considered, the waiting time and abandonment rate for each priority group is simulated. These values are compared with the values observed in the aggregated data and a weighted relative error, where weights are taken as the size of the priority groups relative to the size of the entire data, is considered as the comparison metric.
time. The periodicity of the priority updates is also reflected in the waiting-time histograms of the various groups, as shown in Figure 7. The simulation of the current policy yields a similar pattern of periodicity; see Figure 8.

To illustrate the usefulness of our approach, we consider assessing the impact of policy changes to the service discipline. To this end, in addition to the current policy, we consider the following policies: first-come, first-served (FCFS) policy, a static (and nonpreemptive) priority policy, and a threshold policy. Under the FCFS policy, calls are served in the order they arrive irrespective of their group. The static priority policy gives the highest priority to the high-priority group, next to the medium-priority group, then to the low-priority group. The lowest priority is given to the no-priority group. The threshold policy acts like the static priority policy when the number of no-priority calls waiting is less than or equal to the threshold. Otherwise, the no-priority calls have the highest priority and the other groups preserve their relative priority levels amongst themselves. The average waiting times and the abandonment rates under these policies are given in the top panel of Table 10. As expected, the waiting times under the FCFS policy are similar across different priority groups though the abandonment rates differ.

Recall that the callers are forward looking in our model and their behavior may change as the service discipline changes. To shed light on this, we also consider modeling the abandonment behavior of callers using an exogenous time-to-abandon distribution.
To this end, we first estimate the exogenous distribution from the data. Because the abandonments are censored (by the callers’ entering service), we use the Kaplan–Meier estimate. The hazard rates of time to abandon are as shown in Figure 9. Treating these as if they were constant, we use a geometric distribution for the time to abandon, where the probability of abandonment is estimated using the 25% quartile of the Kaplan–Meier estimate of the cumulative distribution function. The lower panel of Table 10 shows the average waiting times and the abandonment rates resulting from the model with exogenous abandonment distribution under the static priority and threshold policies.

Comparisons between the endogenous model with strategic customers and the model using an exogenous time to abandon lead to the four major observations below.

First, if a caller has a negligible waiting cost, her probability of abandoning decreases as the service probability gets worse. For such callers, the exogenous model will underestimate waiting times relative to the endogenous model, under policies that deteriorate service probability for these callers.

As can be seen in Table 10, the no-priority group suffers from long waiting times and high abandonment rates under the current policy or the static priority policy. Recall that callers in this group are unidentified and some are new customers. Therefore, the call center may wish to improve the service quality they receive for retention purposes. Although there is a large number of alternatives for improving the service quality of no-priority callers, we focus attention on the threshold policy (described above) for simplicity. Setting the threshold at 15 improves the waiting times and lowers the abandonment rates somewhat for the no-priority group. For the low-priority group, this leads to significantly higher waiting times and abandonment rates; see the top panel of Table 10. (The impact on the other two groups is small.)

Under the threshold policy (with 15 as the threshold), the model with exogenous abandonment distribution underestimates the service degradation to the low-priority group (in terms of waiting times, 236.75 sec. versus 265.50 sec.); see Table 10. Next, we clarify the source of discrepancy for the low-priority group (which sheds light on what happens to other classes as well). Recall that the delay cost c is negligible for the low-priority group; see Table 4. Substituting $c = 0$ in Equation (9) shows that the integrated value function is $V(t) > r$ for all t. Then it is straightforward to conclude from Equations (7) and (8) that as the service quality worsens (i.e., $\pi(t)$ decreases), the probability of abandoning decreases. Intuitively, as the service probability decreases, the probability of getting served in later periods increases, and the callers are willing to wait longer to receive service (because their waiting costs are negligible). The decreased abandonment probability and service degradation lead to higher queue lengths.

Given this observation, comparing the current policy with the threshold policy (with 15 as the threshold) reveals that the service quality gets worse for the low-priority calls when switching from the current

6 Brown et al. (2005) observe that the Kaplan–Meier estimates may be biased under heavy censoring. Therefore, following Brown et al. (2005), we use the first quartile when estimating the probability of abandoning.

7 To test the significance of the differences between the results of the exogenous and endogenous models, we use the two-sample t-test (Snedecor and Cochran 1989). Under the threshold policy with 15 as the threshold for the average waiting time of the low-priority callers, the difference is significant with 90% confidence (t-statistic = 1.75).
We consider the reversed strict priority policy, in which the priority order of the groups in the static priority policy is reversed. Although this policy is not practical, it is of theoretical interest because it provides additional insights. For the high-priority group, the comparisons under the reversed strict priority policy show the model with exogenous abandonment distribution significantly overestimates the waiting times and somewhat underestimates the abandonment rates (397.79 sec. versus 89.06 sec. and 57.66% versus 62.98%).

Switching to the reversed strict priority policy degrades the service quality for the high-priority group. The model with exogenous abandonment distributions works precisely as explained above. In contrast, given positive delay costs, callers anticipate the significant future delay costs (embedded in the integrated value function) in our model and they choose to abandon early with high probability. This effect is illustrated in Figure 11, which shows the abandonment probability of the high-priority callers under the current policy and the reversed strict priority policy. This effect leads to significantly shorter queue lengths and waiting times than those in the model with exogenous abandonments. Comparing the abandonment rates in the two models requires trading off the counteracting forces: shorter queue lengths but a significantly higher probability of abandoning during each period in our model. The net effect leads to a higher, albeit comparable, abandonment rate in our model. This will be elaborated on further below.

Table 10
Average Waiting Times and Abandonment Rates of Different Caller Groups Under Various Service Disciplines for the Endogenous and Exogenous Models

<table>
<thead>
<tr>
<th>Policy</th>
<th>High priority</th>
<th>Medium priority</th>
<th>Low priority</th>
<th>No priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sec.</td>
<td>% ab.</td>
<td>Sec.</td>
<td>% ab.</td>
</tr>
<tr>
<td>Endogenous model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current policy</td>
<td>5.49</td>
<td>0.22</td>
<td>17.13</td>
<td>0.91</td>
</tr>
<tr>
<td>FCFS policy</td>
<td>80.67</td>
<td>7.51</td>
<td>83.23</td>
<td>5.39</td>
</tr>
<tr>
<td>Static priority policy</td>
<td>5.46</td>
<td>0.22</td>
<td>8.47</td>
<td>0.39</td>
</tr>
<tr>
<td>Threshold policy (th = 15)</td>
<td>7.02</td>
<td>0.28</td>
<td>17.82</td>
<td>0.90</td>
</tr>
<tr>
<td>Threshold policy (th = 5)</td>
<td>7.66</td>
<td>0.34</td>
<td>23.36</td>
<td>1.17</td>
</tr>
<tr>
<td>Exogenous model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static priority policy</td>
<td>5.37</td>
<td>0.73</td>
<td>8.26</td>
<td>0.86</td>
</tr>
<tr>
<td>Threshold policy (th = 15)</td>
<td>7.07</td>
<td>0.91</td>
<td>17.91</td>
<td>1.89</td>
</tr>
<tr>
<td>Threshold policy (th = 5)</td>
<td>7.54</td>
<td>1.09</td>
<td>22.54</td>
<td>2.31</td>
</tr>
</tbody>
</table>

Note: For each group, the first and the second column show the average waiting times and the abandonment rates, respectively.

Moreover, the abandonment probability estimated from the data is extrapolated beyond what is observed under the current policy.

Under the threshold policy with 5 as the threshold for the average waiting time of the low-priority callers, the difference between the results of the exogenous and endogenous models is significant with 90% confidence (t-statistic = 9.28).
Third, when there is heterogeneity in the callers’ waiting cost, both the first and the second observations made immediately above are present. In this case, it is the heterogeneity in the cost estimate and its composition that will determine which effect will dominate for such callers. (See Appendix D for a discussion about the impact of callers’ heterogeneity.)

The comparison of the results for the no-priority group under the endogenous versus the exogenous abandonment time distribution reveals a surprising result and exemplifies the usefulness of the random coefficients model. Although the mean waiting cost of the no-priority group is positive, the callers in that group do not behave like the callers in the high-priority group, who have positive waiting costs too. Note, however, that the waiting cost for the no-priority group exhibits significant heterogeneity (whereas that for the high-priority group does not).

Indeed, the no-priority group can be seen as a mix of callers from the low- and high-priority groups qualitatively as far as their delay cost is considered. Hence, we expect to see a decrease in the abandonment probability for those callers who have negligible delay costs under service degradation. On the contrary, we expect to see an increase in the abandonment probability if the caller has a high delay cost.

A simple plot of the probability density function of the waiting cost for the no-priority group reveals that the great majority of no-priority callers have negligible waiting costs. Hence, we expect their behavior to be similar to those callers in the low-priority group (see the first observation made above). Indeed, comparing the average waiting time of the no-priority callers for the two models (with the endogenous versus exogenous abandonment distribution) under the
static priority rule verifies this intuition (160.61 sec. versus 183.69 sec.).

In addition, comparing the two models under the threshold policy, we expect the abandonment probability to be higher for the model with the endogenous abandonment distribution because the threshold policy improves the service for the no-priority group (relative to the current policy). The threshold policy will ensure that the queue lengths for the no-priority group in both models will be close to the threshold and, hence, close to each other. Combining these two suggests that the overall abandonment rate will be determined by the (per period) probability of abandoning, which is higher in the model with the endogenous abandonment distribution. Comparing the results for the two models under the threshold policies verifies this intuition; see Table 10 (20.70% versus 24.97% for \(t = 15\) and 8.28% versus 11.10% for \(t = 5\)).

Fourth, the effect of forward-looking callers is more prominent in waiting-time estimates than abandonment rate estimates. Consider the two forces that contribute to the overall abandonment rate: queue length and the probability of abandoning in a period. For the low-priority group, our endogenous model suggests longer queues and lower probability of abandoning, whereas the model with exogenous abandonment distribution has shorter queues and higher probability of abandoning. However, the simulation results show that the abandonment rates (which can be approximated by the product of the two) are comparable. This suggests that the waiting-time estimates are likely to be off significantly if one ignores the endogenous caller behavior, but the difference in the abandonment rate estimates will be smaller. Nonetheless, when the threshold is 15, the abandonment rate of the low-priority group is higher under the exogenous abandonment distribution because the effect of the higher abandonment probability dominates.

In many contexts such as making outsourcing decisions, designing service-level agreements, and service contracting, the ex ante performance analysis of the call center by simulation is essential. Our model highlights the importance of modeling callers’ behavior endogenously. Namely, we observe that using a model with exogenously given abandonment distributions may lead to waiting-time estimates that can be off significantly. This would be problematic in a setting like call center outsourcing where service-level measures on waiting-time distributions are used. The estimates of the abandonment rate are less problematic because of the counteracting forces of queue length and the probability of abandoning as explained above. Our modeling approach offers another potential advantage: its ability to estimate what happens when extrapolation is needed. Consider a promotional campaign that increases the number of high-priority calls significantly. Simulating the system performance in this case may require understanding callers’ abandonment patterns in a regime where waiting times are longer than those observed in the data. This is challenging to do nonparametrically, whereas our approach can be helpful in studying such situations.

7. Concluding Remarks

This paper studies the patience of callers in call center queues. Understanding customer patience behavior is essential in call center management. The individual level decision-modeling approach we take herein allows us to draw a natural bridge between observed behavior (in the data) and subsequent modeling of strategic customers in queues. The callers’ valuation for the service obtained and their cost for waiting are empirically estimated from call center data using a structural estimation approach. The estimation can be used within models that explore the management of informational or delay announcements, dynamic routing or priority-type choices, and, more generally, as part of a call center’s overall customer relationship efforts.

To illustrate this, the estimation results are used to study the role endogenous abandonment behavior modeling plays in call center performance analysis. A comparison is made between the proposed model with endogenous abandonment behavior and one where the abandonment distribution is exogenously determined from the data, as is typically done in the literature. In a series of experiments that contrast the performance under the service discipline in place at the call center, with several different alternatives, it is shown that the two models can lead to significantly different results in terms of waiting-time performance. These examples highlight the importance of modeling callers as strategic agents for managerial decisions that are based on caller waiting times (like delay announcements or service-level agreements in outsourcing).

A growing literature in operations management deals with models where customers are modeled...
as strategic decision makers; see Hassin and Haviv (2003). Empirical analyses for such models is mostly lacking in the operations management literature. Our paper illustrates how customer preference parameters can be estimated for such models making use of structural estimation. Although we focus on the estimation of a linear utility model in a queuing wait situation, the technique is not restricted to our specific model or setting.

Our analysis points to several future research directions worth exploring. In our estimation, the equilibrium service probability, \(\pi(t) \), is estimated directly from the data. Although this is a reasonable approach for our estimation, in a call center with delay announcements, the equilibrium service probabilities that take into account caller reactions need to be recomputed for counterfactual studies. Also, our model assumes that callers make decisions at discrete time periods. We analyzed the effect of the length of these periods in our estimation, but the question of what decision period length is the most appropriate for a given setting remains to be answered. This is a topic for experimental investigation that is beyond the scope of our analysis. In our model, we assume that the callers’ waiting cost has a linear form and that the reward and cost parameters are independent. We also assume that the idiosyncratic shocks have type I extreme value distribution. It would be worth examining these assumptions in future research.

Acknowledgments

The authors thank the Service Enterprise Engineering (SEE) lab at the Technion (http://ie.technion.ac.il/Labs/Serveng/) for generously providing the data and ongoing technical support regarding the data in preparation of this paper. The authors are especially indebted to Avi Mandelbaum, Valery Trofimov, Igor Gavako, and Ella Nadjarov, who not only provided a clean data set but also helped them understand the intricacies of the data and with further structuring of the data.

Appendix A. Proofs

Proof of Proposition 1. We first derive the formula for the choice probabilities \(P_a(d_{ij}; r_j, c_i) \) and then the recursive formula for the integrated value function \(V(t, r_j, c_i) \).

Recall that caller \(i \) takes action \(d_{ij} \) if the utility of choosing \(d_{ij} \) is higher than the utility of taking the reverse action, \(1 - d_{ij} \): that is,

\[
 u(t, r_j, c_i, e_i(d_{ij}), d_{ij}) = v(t, r_j, c_i, d_{ij}) + e_i(d_{ij}) > v(t, r_j, c_i, 1 - d_{ij}) + e_i(1 - d_{ij}) = u(t, r_j, c_i, 1 - d_{ij}, 1 - d_{ij}).
\]

Therefore, we have

\[
P_a(d_{ij}; r_j, c_i) = \int_{d_{ij}(0) = d_{ij} - \epsilon(d)}_{d_{ij}(1) = \epsilon(d)} \int_{r_j} v(t, r_j, c_i, d_{ij}) + e_i(d_{ij}) \cdot g(e_i(0), g(e_i(1), d_{ij}, 0), d_{ij}, 1)) \, dr_j.
\]

We assume that the idiosyncratic shocks have iid type I extreme value distribution with scale parameter 1 and location parameter \(\beta \in \mathbb{R} \) with the pdf \(\exp(-\exp(-(e(d) - \beta))) \cdot \exp(-\exp(-(e(d) - \beta))) \) for \(d = 0, 1 \). As will be seen below, for technical convenience, we will set \(\beta = -\gamma \), where \(\gamma \) is Euler’s constant. From (A1), by Ben-Akiva and Lerman (1985, §5.2) and the fact that \(v(t, r_j, c_i, 1) = 0 \), we obtain the formula for the choice probability as follows:

\[
P_a(d_{ij}; r_j, c_i) = \frac{\exp(v(t, r_j, c_i, d_{ij}))}{\exp(v(t, r_j, c_i, 1)) + \exp(v(t, r_j, c_i, 0))} = \frac{\exp(v(t, r_j, c_i, d_{ij}))}{1 + \exp(v(t, r_j, c_i, 0))}.
\]

What remains is to derive the recursive formula for the integrated value function. Recall from (5) that the integrated value function is given by

\[
V(t, r_j, c_i) = E \left[\max_{d \in [0, 1]} u(t + 1, r_j, c_i, v(t + 1, r_j, c_i, d), d) \right],
\]

where the expectation is taken over the distribution of \(v(t + 1, r_j, c_i, d), \) and \(v(t + 1, r_j, c_i, d) \). By Ben-Akiva and Lerman (1985, §5.2), max\(_{d \in [0, 1]} u(t + 1, r_j, c_i, v(t + 1, r_j, c_i, d), d) \) has type I extreme value distribution with scale parameter 1 and location parameter \(\beta + \log(e^{3d} + e^{5d}) \), where \(v_i = v(t + 1, r_j, c_i, k), k = 0, 1 \). Therefore, we have

\[
V(t, r_j, c_i) = E \left[\max_{d \in [0, 1]} u(t + 1, r_j, c_i, v(t + 1, r_j, c_i, d), d) \right] = \beta + \log(e^{3d} + e^{5d}) + \gamma.
(\text{A3})
\]

For technical convenience, we assume that the location parameter for the distribution of the idiosyncratic shocks \(\beta \) is equal to \(-\gamma \). Then, by definitions of \(v_1 \) and \(v_0 \) and (A3), it follows that

\[
V(t, r_j, c_i) = \log(\exp(v(t + 1, r_j, c_i, 1)) + \exp(v(t + 1, r_j, c_i, 0))).
(\text{A4})
\]

By substituting the values of the nominal utilities into (A4), the integrated value function can be written as follows:

\[
V(t, r_j, c_i) = \log(1 + \exp(-c_i + \pi(t + 1)r_j + (1 - \pi(t + 1))V(t + 1, r_j, c_i)c_i)),
(\text{A5})
\]

which provides the recursive formula for the integrated value function. To conclude the proof, note that for period \(T - 1 \), the integrated value function is given by

\[
V(T - 1, r_j, c_i) = \log(1 + \exp(-c_i + \pi(T - 1 + 1)r_j + (1 - \pi(T - 1 + 1))V(T, r_j, c_i)c_i)).
(\text{A6})
\]

Since \(\pi(T) = 1 \), from (A5) and (A6), the integrated value functions in period \(T - 1 \) and consequently all earlier periods do not depend on \(V(T, r_j, c_i) \), and for convenience, we assume that \(V(T, r_j, c_i) = 0 \) for all \(i \).

Appendix B. Kaplan–Meier Estimator

Because some callers abandon the queue, and we cannot observe the actual waiting times of all callers, the data is censored. Therefore, we use the Kaplan–Meier estimator to estimate the cumulative distribution of callers’ waiting times, which is denoted by \(F(t) \).

Recall that \(N \) denotes the number of callers in the data. Suppose that \(t_1 < t_2 < \cdots < t_m \) are the ordered waiting times of the callers who receive service, where \(m \) is the number of distinct waiting times. Note that \(m \leq N \) because some callers may receive service at the same time.
Suppose that \(n_j \) callers have not received service or abandoned the queue just prior to \(t_j, j = 1, \ldots, m \). In addition, \(\delta_j \) denotes the number of callers who receive service at \(t_j \). The conditional probability that a caller receives service after \(t_j \) given that the caller has not received service before \(t_j \) is given by \(q_j = 1 - \delta_j/n_j \). Denote by \(S(t) \) the probability that a caller’s waiting time exceeds \(t \). The Kaplan–Meier estimation of \(S(t) \) for \(t \in [t_k, t_{k+1}) \) is given by \(\hat{S}(t) = \prod_{j=1}^{k} q_j \). Let \(\hat{F}(t) \) denote the Kaplan–Meier estimation for \(F(t) \). Then, \(\hat{F}(t) = 1 - \hat{S}(t) \).

Appendix C. Monte Carlo Experiments

To test the capability of the proposed estimation method to identify the true parameters of the callers, we use Monte Carlo experiments. To do so, we first generate simulated data sets assuming certain values for the structural parameters. We denote these values by true values. Then, we estimate the parameters of the simulated data sets, construct the 95% confidence intervals, and check whether the true values are in the corresponding confidence intervals.

To implement the Monte Carlo experiment, we consider the following true values for the structural parameters: \(m_1 = 1.8, m_2 = -3, \sigma_r = 0.2, \) and \(\sigma_c = 1 \). We set the maximum waiting time of the callers \(T \) to 120 periods. In addition, for the waiting-time distribution and probability of receiving service, \(F(t) \) and \(\pi(t) \), we use those from the data (suitably truncated), which are estimated using the Kaplan–Meier estimator (see Appendix B). We generate 40 simulated data sets such that each data set contains 100,000 callers.

To simulate the abandonment behavior of the callers, for each caller, we draw \(y_1 \) and \(y_2 \) from the standard normal distribution. Then, we find \(r \) and \(c \) of the callers making use of the assumed true values of the structural parameters and, consequently, can calculate the integrated value function and the nominal utilities of the callers. Next, we add iid type I extreme value distributed random shocks to the nominal utilities to find the utilities of waiting and abandoning.

With the probability of receiving service \(\pi(t) \) and the utilities of waiting and abandoning, we can decide if the simulated caller receives service, abandons the queue, or continues to wait as follows:

1. Draw a random variable \(x \) from the uniform distribution between \(0 \) and \(1 \). If \(x \leq \pi(t) \), the caller receives service and we end the procedure.
2. If \(x > \pi(t) \), compare the utilities of waiting and abandoning. If the utility of abandoning is larger, the caller abandons the queue and we end the procedure. If not, the caller continues to wait and we repeat steps 1 and 2 for the next period.

Table C.1 shows the mean, standard deviation, and upper and lower bounds of the 95% confidence intervals for the estimated parameters of the simulated data sets. These results as well as a series of extensive Monte Carlo experiments (available from the authors) show that our estimation method can recover the true parameter values from the data.

Appendix D. The Impact of Callers’ Heterogeneity on System Performance

The estimation results (Table 4 in §5.2) show that there is little heterogeneity in the high-, medium-, and low-priority groups, whereas there is significant heterogeneity in the no-priority group. To study the impact of increased heterogeneity on system performance, we consider two scenarios (see cases 1 and 2 in Table D.1), where we vary the degree of heterogeneity in the high-priority group. To be more specific, we change the variance of the cost parameter for the high-priority group while keeping all other parameters the same as the estimated ones for simplicity. We focus attention on the reversed strict priority policy because under that policy the high-priority callers experience long delays. Hence, the effect of heterogeneity is significant. The resulting average waiting times and abandonment rates of different caller groups are shown in Table D.2.

Table D.2 shows that the average waiting time of the high-priority callers increases with the amount of heterogeneity. This indicates that the heterogeneity impacts system performance. To see the reason behind this, consider the probability density function of the waiting cost for the high-priority callers (Figure D.1). It shows that increasing heterogeneity increases the proportion of high-priority callers with negligible waiting costs. Following the first major observation in §6, callers with a negligible waiting cost stay longer in the system if the service quality degrades. Therefore, by increasing the amount of heterogeneity, the proportion of the callers who tend to stay longer in the system increases, which contributes to the increase in the average waiting time of the high-priority callers.

13 Case 1 corresponds to a moderate degree of heterogeneity, and Case 2 corresponds to a high degree of heterogeneity.
Figure D.1 Probability Density Function of the Waiting Cost of the High-Priority Callers in Cases 1 and 2

References

