“Trade in the Global Recession” (EKNR)
and
“Obstfeld and Rogoff’s International Macro Puzzles: A Quantitative Assessment” (EKN)

Brent Neiman

University of Chicago

June 2016
Introduction

• International macro models typically have 2-countries without serious “geography”, limited I/O structure

• Trade models typically static, no capital and ignore the future

• Often, this is fine. But what if need dynamic and realistic representation of sector-country linkages?
Application 1: “Trade and the Global Recession”

- Global Manufacturing Trade/GDP Dropped nearly 25%
Application 1: “Trade and the Global Recession”

- Eichengreen (2009): “The collapse of trade has been absolutely terrifying ... we lack an adequate understanding of its causes.”

- Many single-country P.E. studies (theory and empirics)
Application 2: OR (2001)’s 6 Puzzles

- Feldstein-Horioka (1980): Large and significant coefficient on regressions of investment on saving

<table>
<thead>
<tr>
<th>Data</th>
<th>00-12</th>
<th>00-08</th>
<th>09-12</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving</td>
<td>0.356**</td>
<td>0.239</td>
<td>0.633***</td>
<td>0.866***</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.150)</td>
<td>(0.127)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>Observations</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.31</td>
<td>0.16</td>
<td>0.62</td>
<td>0.61</td>
</tr>
</tbody>
</table>

- Obstfeld and Rogoff (2001) use 2-country stylized model to propose that trade frictions can explain this and other puzzles
Application 2: OR (2001)’s 6 Puzzles

- **Charles Engel:**
 “... we need more study to be able to reconcile their compelling but simplified examples with the results that emerge from simulation of more fully specified dynamic models.”

- **John Leahy:**
 “... the effects ... might turn out to be quantitatively small in a realistically calibrated model.”
What We Do

- Multi-country multi-sector dynamic GE framework for analyzing global fluctuations in GDP, production, and trade.

- Framework extracts shocks that fully “explain” data and can generate counterfactuals. Similar in spirit to CKM (2007).

- Use counterfactuals to understand drivers of trade/GDP and quantitatively evaluate O/R’s hypothesis
Related Literature

Agenda

- Simplified Model
 - Less Sectors
 - No Intermediates
 - No I/O Heterogeneity

- Key Equations

- Change Formulation

- Backing Out Shocks

- Counterfactuals

- Applications / Results
Simplified Economy: Technology and Preferences

• Multiple countries $n = 1, ..., N$.

• Good S ("Services") is a CES bundle of varieties $z \in [0, 1]$. Nontraded and used for consumption.

• Good D ("Durables") is a CES bundle of varieties $z \in [0, 1]$. Traded and used for investment.

• Country n may import durable variety from i, subject to $d_{ni,t}$.

• Complete markets, no uncertainty, perfect competition
Simplified Economy: Technology and Preferences

- Production in country n of variety z in sector $j \in \{D, S\}$:
 \[
y_{n,t}^j(z) = a_{n,t}^j(z) B \left(L_{n,t}^j(z) \right)^{\beta_L} \left(K_{n,t}^j(z) \right)^{\beta_K}
 \]

- Efficiencies $a_{n,t}^j(z)$ drawn from:
 \[
 \Pr \left[a_{n,t}^j(z) \leq a \right] = \exp \left(- \left(\frac{a}{\gamma A_{n,t}^j} \right)^{-\theta} \right)
 \]

- Factors of production are constrained by:
 \[
 K_{n,t} = \int_0^1 K_{n,t}^D(z) dz + \int_0^1 K_{n,t}^S(z) dz \\
 L_{n,t} = \int_0^1 L_{n,t}^D(z) dz + \int_0^1 L_{n,t}^S(z) dz
 \]
Simplified Economy: Technology and Preferences

- Capital accumulation:
 \[K_{n,t+1} = \chi_{n,t} \left(\frac{I_{n,t}}{K_{n,t}} \right)^\alpha K_{n,t} + (1 - \delta)K_{nt} \]

- Investment:
 \[I_{n,t} = \left(\int_0^1 x_{n,t}^D(z)^{\sigma-1}/\sigma \, dz \right)^{\sigma/(\sigma-1)} \]

where \(x_{n,t}^D(z) \) is absorption in \(n \) of variety \(z \) of good \(D \).
Demand shocks allow for changes in relative spending:

\[U_n = \sum_{t=0}^{\infty} \rho^t \phi_{n,t} \ln C_{n,t} \]

Consumption:

\[C_{n,t} = \left(\int_{0}^{1} x_{n,t}^S(z)^{(\sigma - 1)/\sigma} \, dz \right)^{\sigma/(\sigma-1)}, \]

where \(x_{n,t}^S(z) = y_{n,t}^S(z) \) is absorption in \(n \) on vty \(z \) of good \(S \).
Simplified Economy: Planner’s Problem

- We solve Planner’s problem. Planner uses weights ω_n.

- We impose a restriction so demand has no global component:

 $$\sum_{n=1}^{N} \omega_n \phi_{n,t} = 1$$

- We interpret shadow prices as competitive prices. For example, we replace $\lambda^K_{n,t}$ with $r_{n,t}$.
Simplified Economy: First Order Conditions

• Price of Consumption Good:

\[p^S_{n,t} = \frac{(w_{n,t})^{\beta_L} (r_{n,t})^{\beta_K}}{A^S_{n,t}} \]

• Capital Rental Rates:

\[r_{n,t} = p^j_{n,t} \beta^K \frac{y^j_{n,t}}{K^j_{n,t}} \]

• Labor Rental Rates:

\[w_{n,t} = p^j_{n,t} \beta^L \frac{y^j_{n,t}}{L^j_{n,t}} \]
Simplified Economy: First Order Conditions

- Price of Investment Good:

\[p_{n,t}^D = \left[\sum_{i=1}^{N} \left(\frac{(w_{i,t})^{\beta_L} (r_{i,t})^{\beta_K} d_{ni,t}}{A_{i,t}^D} \right)^{\frac{-\theta}{-1}} \right]^{-1/\theta} \]

- Bilateral Trade Shares:

\[\pi_{ni,t} = \left(\frac{(w_{i,t})^{\beta_L} (r_{i,t})^{\beta_K} d_{ni,t}}{p_{n,t}^D A_{i,t}^D} \right)^{\frac{-\theta}{-1}} \]
Simplified Economy: Consumption

- Consumption Spending and Production:

\[X_{n,t}^S = Y_{n,t}^S = p_{n,t}^S C_{n,t} = \omega_n \phi_{n,t} \]

- Numeraire is world consumption expenditure:

\[
\sum_{n=1}^{\mathcal{N}} Y_{n,t}^S = \sum_{n=1}^{\mathcal{N}} X_{n,t}^S = \sum_{n=1}^{\mathcal{N}} p_{n,t}^S C_{n,t} = \sum_{n=1}^{\mathcal{N}} \omega_n \phi_{n,t} = 1
\]
Simplified Economy: Investment Euler

- Investment Euler \((X_n^D = p_n^D | I_n, t) \):

\[
\frac{p_n^D}{\alpha \chi_n,t} \left(\frac{X_n^D}{p_n^D K_n,t} \right)^{1-\alpha} = \rho r_{n,t+1} + \rho \frac{p_n^D}{\alpha \chi_n,t+1} \left(\frac{X_n^D}{p_n^D K_n,t+1} \right)^{1-\alpha} \times \\
\left[\chi_n,t+1 \left(1 - \alpha \right) \left(\frac{X_n^D}{p_n^D K_n,t+1} \right)^{\alpha} + (1 - \delta) \right]
\]

- Setting \(\alpha = 1 \) and rearrange to get more standard form:

\[
\frac{p_n^D}{\chi_n,t} = \rho \frac{\phi_n,t+1}{\phi_n,t} \frac{U'(C_{n,t+1})}{U'(C_n,t)} \left[\frac{p_n^D}{p_n^S} \frac{r_n,t+1}{p_n^S} \left(1 - \delta \right) + \frac{r_n,t+1}{p_n^S} \right]
\]
• Durable production $Y_{n,t}^D$ must be globally absorbed $X_{n,t}^D$:

$$Y_{i,t}^D = \sum_{n=1}^{N} \pi_{ni,t} X_{n,t}^D$$

• GDP:

$$Y_{n,t} = Y_{n,t}^D + Y_{n,t}^S$$
Simplified Economy: System in Changes

• Now, imagine we have data on levels of GDP $Y_{n,s}$, Consumption Y^n_S, and trade shares $\pi_{ni,s}$ at some $s = t^I$

• Assume the path of shocks $\{\hat{\chi}_{n,s}, \hat{A}^D_{n,s}, \hat{L}_{n,s}, \hat{\phi}_{n,s}, \hat{d}_{ni,s}\}_{s=t^I+1}^{s=\infty}$ in changes (i.e. where $\hat{x}_{t+1} = x_{t+1}/x_t$)

• With the vector \hat{K}_{n,t^I+1}, we can iterate system forward. No need to know K_{n,t^I} or $\{\chi_{n,t^I}, A^D_{n,t^I}, L_{n,t^I}, \phi_{n,t^I}, d_{ni,t^I}\}$

• 4 equations × 4 unknowns: $\hat{Y}_{n,t+1}, \hat{Y}^S_{n,t+1}, \hat{\pi}_{n,t+1}, \hat{p}^D_{n,t+1}$.
Simplified Economy: System in Changes

- Combining Euler and Law of Motion for Capital:

\[
\frac{1}{\rho} \frac{\dot{K}_{n,t+1}}{K_{n,t+1}} - (1 - \delta) = \alpha \beta K \frac{Y_{n,t}}{Y_{n,t+1}} \frac{\dot{Y}_{n,t+1}}{Y_{n,t}} = \\
\hat{X}_{n,t+1}^D \left[(1 - \alpha) + \frac{1}{\hat{X}_{n,t+1}} \left(\frac{\dot{K}_{n,t+1} \dot{p}_{n,t+1}^D}{\hat{X}_{n,t+1}^D} \right)^\alpha \frac{1 - \delta}{\hat{K}_{n,t+1} - (1 - \delta)} \right]
\]

- Consumption (or non-traded Production):

\[
\hat{X}_{n,t+1}^S = \hat{Y}_{n,t+1}^S = \hat{\phi}_{n,t+1}
\]
Simplified Economy: System in Changes

- Trade Prices:

\[
\hat{p}^D_{n,t+1} = \sum_{i=1}^{N} \pi_{ni,t} \left[\sum_{i=1}^{N} \pi_{ni,t} \left(\frac{\hat{Y}_{i,t+1}}{\hat{L}_{i,t+1}} \right)^{\beta_L} \left(\frac{\hat{Y}_{i,t+1}}{\hat{K}_{i,t+1}} \right)^{\beta_K} \hat{d}_{ni,t+1} \right]^{-\theta} \right]^{-1/\theta}
\]

- Trade Shares:

\[
\hat{\pi}_{ni,t+1} = \left(\frac{\hat{Y}_{i,t+1}}{\hat{L}_{i,t+1}} \right)^{\beta_L} \left(\frac{\hat{Y}_{i,t+1}}{\hat{K}_{i,t+1}} \right)^{\beta_K} \hat{d}_{ni,t+1} \left(\hat{p}^D_{n,t+1} \hat{A}^D_{i,t+1} \right)^{-\theta}
\]
Simplified Economy: System in Changes

- So, given:
 1. Data on $Y_{n,t}$, Consumption $Y_{n,t}^S$, and trade shares $\pi_{ni,t}$,
 2. Assumed shock values in changes, and
 3. A guess of $\hat{K}_{n,t+1}$,

we get $\{\hat{Y}_{n,t+1}, \hat{Y}_{n,t+1}^S, \hat{\pi}_{ni,t+1}\}$ and generate $t + 1$ levels.

- We update capital growth with:

$$\hat{K}_{n,t+2} - (1 - \delta) = \hat{X}_{n,t+1} \left(\frac{\hat{X}_{n,t+1}^D}{\hat{\rho}_{n,t+1}^D \hat{K}_{n,t+1}} \right)^\alpha \left[\hat{K}_{n,t+1} - (1 - \delta) \right]$$

- Repeat for the change from $t + 1$ to $t + 2$ and march forward
Simplified Economy: Backing Out Shocks

- Where do shocks and capital (in changes) come from?

- **Step 1:** Imagine all shocks stop changing after t^E, i.e.
 \[\{ \hat{\chi}_s, \hat{A}_s^D, \hat{L}_s, \hat{\phi}_{n,s}, \hat{d}_{ni,s} \} = \{1, 1, 1, 1, 1\} \text{ for } s > t^E \]

 We solve for the vector \hat{K}_{n,t^E+1} which – together with data on $Y_{n,t^E}, Y_{n,t^E}^S, \pi_{ni,t^E}$ – leads to a steady state with:

 \[\hat{K}_n = \hat{Y}_n = \hat{Y}_n^S = \hat{\pi}_{ni} = 1 \]
Simplified Economy: Backing Out Shocks

Step 1: Find \widehat{K}_{t^E+1}

Data Available t^E Shocks Not Changing (Assumption) t
Simplified Economy: Backing Out Shocks

- **Step 2:** Iterate backwards by substituting LOM for K into Euler (χ cancels!) to get \hat{K}_{s+1} for $s < t^E$:

\[
\frac{\hat{K}_{i,t}}{\hat{K}_{i,t} - (1 - \delta)} = \rho \beta^K \alpha \frac{Y_{i,t-1} \hat{Y}_{i,t}}{X_{i,t-1}^D} + \rho \hat{X}_{i,t} \left((1 - \alpha) + \frac{1 - \delta}{\hat{K}_{i,t+1} - (1 - \delta)} \right)
\]
Simplified Economy: Backing Out Shocks

- **Step 3:** Given paths of $\hat{K}_{n,t+1}$, $\hat{Y}_{n,t+1}$, $\hat{Y}^S_{n,t+1}$, $\hat{p}^D_{n,t+1}$, and $\hat{\pi}_{ni,t+1}$, can back out five shocks to fit data.

1. Labor Shocks $\hat{L}_{n,t+1}$ from the data.
2. Demand Shocks from consumption spending growth:

 \[
 \hat{\phi}_{n,t+1} = \hat{X}^C_{n,t+1} = \hat{Y}^C_{n,t+1}
 \]

3. Productivity Shocks from the Dual:

 \[
 \hat{A}^D_{n,t+1} = \left(\frac{\hat{Y}_{n,t+1}}{\hat{L}_{n,t+1}} \right)^{\beta^L} \left(\frac{\hat{Y}_{n,t+1}}{\hat{K}_{n,t+1}} \right)^{\beta^K} \left(\hat{\pi}_{nn,t+1} \right)^{1/\theta} \hat{p}^D_{n,t+1}
 \]
Simplified Economy: Backing Out Shocks

- **Step 3 Cont’d:** Given paths of $\hat{K}_{n,t+1}$, $\hat{Y}_{n,t+1}$, $\hat{Y}_{n,t+1}^S$, $\hat{\rho}_{n,t+1}^D$, and $\hat{\pi}_{n_i,t+1}$, can back out all other shocks to fit data.

4. We back out trade frictions as:

$$\hat{d}_{ni,t+1} = \left(\frac{\hat{\pi}_{ni,t+1}}{\hat{\pi}_{ii,t+1}} \right)^{-1/\theta} \frac{\hat{\rho}_{n,t+1}^D}{\hat{\rho}_{i,t+1}^D}$$

5. We can then back out investment efficiencies as:

$$\hat{\chi}_{n,t+1} = \frac{\hat{K}_{n,t+2} - (1 - \delta)}{\hat{K}_{n,t+1} - (1 - \delta)} \left(\frac{\hat{X}_{n,t+1}^D}{\hat{\rho}_{n,t+1}^D \hat{K}_{n,t+1}} \right)^{-\alpha},$$

- Note: we don’t need $\chi_{n,t}$, $A_{n,t}^D$, $L_{n,t}$, $\phi_{n,t}$, $d_{n_i,t}$, or $K_{n,t}$.
Simplified Economy: Counterfactuals

- Can analyze shocks on their own, can also run counterfactuals

- Some period, expectations about the future change

- We solve system forward from pre-shock initial conditions
 \(\{ Y_{n,t}, Y^S_{n,t}, \pi_{ni,t}, \hat{K}_{n,t+1} \} \) but along new shock path

- 3 of the 4 equations of the system in changes apply.

- But investment \(\hat{I}_{n,t+1} \) must transition to new perfect foresight path, so Euler (4th equation) doesn’t hold that quarter

- We solve this by guessing investment spending, iterating forward, and seeing if converge to SS. If not, new guess...
Non-Simplified Model Used in Applications

1. \(N = 19 \) or \(21 \), four sectors \(j \in \Omega = \{C, D, N, S\} \)

2. Output from sectors \(C \) and \(D \) accumulate into capital stocks

3. Output from sectors \(N \) and \(S \) can be consumed

4. Sectors \(D \) and \(N \) are tradable, sectors \(C \) and \(S \) are not

5. Production combines factors \(K^C, K^D, \) and \(L \) with intermediates from \(j \in \Omega \)

6. Input shares are country-sector specific: \(\beta_{i,jk}^K, \beta_{i,j}^L, \) and \(\beta_{i,jl}^M \)

7. Feed in exogenous deficits in the \(S \) sector

8. Relative demand for \(N \) and \(S \) impacted by \(\psi_{n,t}^N \)
Today’s Agenda

- Simplified Open-Economy Example
- Application 1: Trade and the Global Recession
- Application 2: Obstfeld and Rogoff’s Int’l Macro Puzzles
EKNR: “Trade and the Global Recession”

Diagram showing the relative contributions of trade, construction, and production to global GDP from 2000 to 2015. The diagram highlights significant drops in 2008 and 2010, indicating the global recession and its impact on these sectors.
EKNR: “Trade and the Global Recession”

Change in Trade
Change in Production
Durables Nondurables

Change in Construction

Change in Relative GDP
Change in Real GDP
Global Recession Recovery

Durables Nondurables

Global Recession Recovery
EKNR: “Trade and the Global Recession”

- We calibrate parameters and get I-O coefficients from OECD

- We use quarterly data in levels on:
 1. Sectoral production $Y_{n,t}^j$
 2. Bilateral trade shares in each sector $\pi_{ni,t}^j$
 3. Services deficits $D_{n,t}^S$

- We use quarterly data in changes on:
 1. Sectoral prices $\hat{p}_{n,t}^j$
 2. Growth in labor supply $\hat{l}_{ni,t}^j$
EKNR: Algorithm to Back Out Shocks

Structures

- Change in Capital Stock
- 2010: 1
- 2020: 1.04
- 2030: 1.08
- 2040: 1.1
- 2050: 1.2

Durables

- Change in Capital Stock
- United States
- China
- Rest of World
EKNR: Backed-Out Shock Values

<table>
<thead>
<tr>
<th>Country</th>
<th>(\hat{d}_i^P) Prior Period</th>
<th>(\hat{d}_i^P) Global Recession</th>
<th>(\hat{d}_i^P) Recov Period</th>
<th>(\hat{d}_i^N) Prior Period</th>
<th>(\hat{d}_i^N) Global Recession</th>
<th>(\hat{d}_i^N) Recov Period</th>
<th>(\Delta \frac{D_s^r}{Y_r}) Prior Period</th>
<th>(\Delta \frac{D_s^r}{Y_r}) Global Recession</th>
<th>(\Delta \frac{D_s^r}{Y_r}) Recov Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>0.99</td>
<td>0.99</td>
<td>0.95</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Canada</td>
<td>1.00</td>
<td>1.06</td>
<td>0.94</td>
<td>0.99</td>
<td>1.04</td>
<td>0.99</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>China</td>
<td>0.99</td>
<td>1.03</td>
<td>0.94</td>
<td>1.00</td>
<td>1.00</td>
<td>0.93</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>France</td>
<td>1.02</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Germany</td>
<td>0.98</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>India</td>
<td>0.96</td>
<td>1.10</td>
<td>0.94</td>
<td>0.96</td>
<td>1.04</td>
<td>0.97</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Italy</td>
<td>0.99</td>
<td>1.00</td>
<td>0.98</td>
<td>0.99</td>
<td>0.97</td>
<td>0.97</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Japan</td>
<td>1.02</td>
<td>0.93</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>-0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.98</td>
<td>0.94</td>
<td>0.88</td>
<td>0.99</td>
<td>0.96</td>
<td>0.99</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.00</td>
<td>0.99</td>
<td>0.90</td>
<td>0.98</td>
<td>0.87</td>
<td>0.96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>United States</td>
<td>0.99</td>
<td>1.00</td>
<td>0.94</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Rest of World</td>
<td>0.99</td>
<td>0.99</td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>-0.01</td>
<td>0.06</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Comparison to LLT
EKNR: Backed-Out Shock Values

<table>
<thead>
<tr>
<th></th>
<th>\hat{A}_{t}^C</th>
<th></th>
<th>\hat{A}_{t}^D</th>
<th></th>
<th>\hat{A}_{t}^N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prior Period</td>
<td>Global Recession</td>
<td>Prior Period</td>
<td>Global Recession</td>
<td>Prior Period</td>
<td>Global Recession</td>
</tr>
<tr>
<td>World</td>
<td>1.00</td>
<td>0.92</td>
<td>1.05</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Canada</td>
<td>0.99</td>
<td>0.78</td>
<td>1.08</td>
<td>1.03</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>China</td>
<td>1.04</td>
<td>0.83</td>
<td>1.07</td>
<td>1.07</td>
<td>1.11</td>
<td>1.02</td>
</tr>
<tr>
<td>France</td>
<td>0.97</td>
<td>0.98</td>
<td>1.03</td>
<td>1.02</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Germany</td>
<td>1.00</td>
<td>0.95</td>
<td>1.04</td>
<td>1.00</td>
<td>0.95</td>
<td>1.02</td>
</tr>
<tr>
<td>India</td>
<td>1.03</td>
<td>0.93</td>
<td>1.08</td>
<td>1.04</td>
<td>1.14</td>
<td>1.07</td>
</tr>
<tr>
<td>Italy</td>
<td>1.00</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Japan</td>
<td>1.01</td>
<td>0.89</td>
<td>0.96</td>
<td>0.99</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.02</td>
<td>0.96</td>
<td>1.05</td>
<td>1.01</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.99</td>
<td>0.90</td>
<td>1.07</td>
<td>1.01</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>United States</td>
<td>0.99</td>
<td>0.98</td>
<td>1.04</td>
<td>1.01</td>
<td>1.02</td>
<td>1.00</td>
</tr>
<tr>
<td>Rest of World</td>
<td>1.00</td>
<td>0.90</td>
<td>1.06</td>
<td>1.03</td>
<td>0.97</td>
<td>1.05</td>
</tr>
</tbody>
</table>
EKNR: Global Trade Counterfactuals

- Comparison of Domar-weighted Aggregate TFP

United States

![Graph showing TFP Growth for United States from 2000 to 2015]

- **Fernald (Business Sector)**
- **EKNR (Aggregate Economy)**
EKNR: Backed-Out Shock Values

<table>
<thead>
<tr>
<th></th>
<th>Prior Period</th>
<th>$\hat{\chi}_i^C$</th>
<th>Recov Period</th>
<th>Prior Period</th>
<th>$\hat{\chi}_i^D$</th>
<th>Recov Period</th>
<th>Prior Period</th>
<th>$\hat{\phi}_i$</th>
<th>Recov Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>1.01</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
<td>0.77</td>
<td>1.08</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Canada</td>
<td>1.04</td>
<td>1.10</td>
<td>1.01</td>
<td>0.95</td>
<td>0.69</td>
<td>1.07</td>
<td>1.03</td>
<td>0.89</td>
<td>1.08</td>
</tr>
<tr>
<td>China</td>
<td>1.08</td>
<td>1.24</td>
<td>1.05</td>
<td>1.04</td>
<td>1.04</td>
<td>1.10</td>
<td>1.13</td>
<td>1.16</td>
<td>1.09</td>
</tr>
<tr>
<td>France</td>
<td>1.06</td>
<td>0.90</td>
<td>0.93</td>
<td>1.00</td>
<td>0.72</td>
<td>1.02</td>
<td>1.01</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>Germany</td>
<td>0.98</td>
<td>0.97</td>
<td>0.95</td>
<td>1.01</td>
<td>0.74</td>
<td>1.04</td>
<td>0.99</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>India</td>
<td>1.03</td>
<td>1.03</td>
<td>1.04</td>
<td>1.03</td>
<td>0.85</td>
<td>1.11</td>
<td>1.03</td>
<td>0.93</td>
<td>1.18</td>
</tr>
<tr>
<td>Italy</td>
<td>1.03</td>
<td>0.94</td>
<td>0.94</td>
<td>1.01</td>
<td>0.63</td>
<td>1.06</td>
<td>1.01</td>
<td>1.01</td>
<td>0.93</td>
</tr>
<tr>
<td>Japan</td>
<td>0.93</td>
<td>1.23</td>
<td>1.05</td>
<td>0.96</td>
<td>0.88</td>
<td>1.03</td>
<td>0.93</td>
<td>1.25</td>
<td>1.00</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.01</td>
<td>0.75</td>
<td>0.98</td>
<td>0.96</td>
<td>0.58</td>
<td>1.03</td>
<td>1.00</td>
<td>0.74</td>
<td>1.08</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.02</td>
<td>0.85</td>
<td>0.87</td>
<td>0.98</td>
<td>0.75</td>
<td>1.00</td>
<td>0.98</td>
<td>0.74</td>
<td>0.93</td>
</tr>
<tr>
<td>United States</td>
<td>0.97</td>
<td>0.97</td>
<td>0.87</td>
<td>0.95</td>
<td>0.79</td>
<td>1.03</td>
<td>0.98</td>
<td>1.06</td>
<td>0.96</td>
</tr>
<tr>
<td>Rest of World</td>
<td>1.03</td>
<td>0.91</td>
<td>0.99</td>
<td>1.03</td>
<td>0.72</td>
<td>1.11</td>
<td>1.04</td>
<td>0.98</td>
<td>1.04</td>
</tr>
</tbody>
</table>
EKNR: Country Trade Counterfactuals

Trade Friction Shocks

Inv. Efficiency in Durables Shocks

Inv. Efficiency in Structures Shocks

Demand Shocks
EKNR: Country GDP Counterfactuals

- Trade Friction Shocks
- Inv. Efficiency in Durables Shocks
- Inv. Efficiency in Structures Shocks
- Demand Shocks
EKNR: Impact of Non-DEU Shocks

Impact of Only U.S. Shocks
EKNR: Conclusions

- Decline in Trade during global recession primarily reflected change in spending composition away from tradables

- Shift in composition driven by durables investment shocks, not others (contemporaneous or future)

- Changes in relative nominal GDPs due to demand shocks

- Foreign shocks critical for some countries like DEU, domestic shocks matter most for others like USA

- Additional Uses for Framework: Impact of China slowdown? Recent global trade decline (See IMF WEO)?
Today’s Agenda

• Simplified Closed-Economy Example

• Simplified Open-Economy Example

• Application 1: Trade and the Global Recession

• Application 2: Obstfeld and Rogoff’s Int’l Macro Puzzles
Introduction

- Obstfeld and Rogoff (Macro Annual 2001, “OR”) see international macro as replete with puzzles:
 1. Home Bias in Absorption
 2. Feldstein-Horioka Puzzle
 3. Home Bias in Equities
 4. Low Consumption Correlation
 5. Failure of Relative Purchasing Power Parity
 6. Exchange Rate Disconnect

- OR propose that all six can be accounted for by trade frictions

- Killing 6 birds with one stone! Plus, trade frictions are easier to measure than capital market imperfections

- OR’s story is provocative, but does it have quantitative bite?
Generate World Without Trade Costs

- Remember we extract trade costs from data with:

$$
\hat{d}_{ni,t+1}^j = \left(\frac{\pi_{ni,t+1}^j}{\pi_{ii,t+1}^j} \frac{\pi_{ni,t+1}^j}{\pi_{ii,t+1}^j} \right)^{-1/\theta} \frac{p_{n,t+1}^j}{p_{n,t}^j} \frac{p_{i,t+1}^j}{p_{i,t}^j}
$$

- But trade cost reductions that hypothetically bring free trade would result in $\pi_{ni,t+1}^j = \pi_{ii,t+1}^j$ and in $p_{n,t+1}^j = p_{i,t+1}^j$

- So we can implement a counterfactual with:

$$
\hat{d}_{ni,t+1}^{j,FT} = \left(\frac{\pi_{ii,t}^j}{\pi_{ni,t}^j} \right)^{-1/\theta} \frac{p_{i,t}^j}{p_{n,t}^j}
$$
Generate World Without Trade Costs

- We have data on $\pi_{ni,t}$ as before

- We obtain $(p_{i,t}^j/p_{n,t}^j)$ from the World Bank’s ICP, using “Machinery and Equipment” for durables and “Food and beverages” and “Clothing and Footwear” for nondurables.

- We run counterfactuals from initial levels in 2000:Q1, where all shocks are taken from the data except that $\hat{d}_{ni,t+1}^j = \hat{d}_{ni,t+1}^{FT}$ for 2000:Q2 and $\hat{d}_{ni,t+1}^j = 1$ thereafter

- After transition, think of system as behaving as if it had no trade frictions but was otherwise identical
Puzzle 1: Home Bias in Trade

Ratio of Home Purchases to Imports in 2005:Q4

<table>
<thead>
<tr>
<th>Country</th>
<th>Baseline Durables</th>
<th>Baseline Nondurables</th>
<th>Frictionless Trade Durables</th>
<th>Frictionless Trade Nondurables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.30</td>
<td>0.50</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Canada</td>
<td>0.75</td>
<td>1.99</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.62</td>
<td>1.15</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.17</td>
<td>0.42</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Finland</td>
<td>1.19</td>
<td>2.14</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Germany</td>
<td>1.16</td>
<td>1.37</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Greece</td>
<td>1.12</td>
<td>1.84</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>India</td>
<td>3.24</td>
<td>8.00</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Italy</td>
<td>2.42</td>
<td>3.14</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Japan</td>
<td>6.39</td>
<td>6.50</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.77</td>
<td>3.39</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Poland</td>
<td>0.88</td>
<td>2.04</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Romania</td>
<td>0.61</td>
<td>1.11</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>South Korea</td>
<td>3.30</td>
<td>4.56</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>Spain</td>
<td>1.50</td>
<td>2.56</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.86</td>
<td>1.12</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.63</td>
<td>1.67</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>United States</td>
<td>2.18</td>
<td>5.13</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Rest of World</td>
<td>2.54</td>
<td>4.82</td>
<td>0.14</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Puzzle 1: Home Bias in Trade

Gravity Regressions in 2005:Q4

<table>
<thead>
<tr>
<th>Country</th>
<th>Baseline Durables</th>
<th>Baseline Nondurables</th>
<th>Frictionless Trade Durables</th>
<th>Frictionless Trade Nondurables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-1.301***</td>
<td>-1.432***</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.105)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Contiguous</td>
<td>0.073</td>
<td>0.148</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.210)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Common Language</td>
<td>0.508***</td>
<td>0.554***</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(0.120)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.217***</td>
<td>-4.188***</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.187)</td>
<td>(0.167)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Importer FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Exporter FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.93</td>
<td>0.92</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Puzzle 2: Feldstein-Horioka (Baseline)

2001-2012

Investment / GDP vs. Saving / GDP

2001-2008

Investment / GDP vs. Saving / GDP

2009-2012

Investment / GDP vs. Saving / GDP

Long Difference

Change in Investment / GDP vs. Change in Saving / GDP
Puzzle 2: Feldstein-Horioka (Counterfactual)

2001-2012

2001-2008

2009-2012

Long Difference

Investment / GDP vs. Saving / GDP for various countries and years.
Puzzle 2: Feldstein-Horioka

Dependent Variable: Investment

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Frictionless Trade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.378**</td>
<td>0.254*</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.144***</td>
<td>0.174***</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Observations</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.34</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Puzzle 4: Low International Consumption Correlations

The graph shows the density of bilateral consumption correlations under two scenarios:

- **Baseline**
- **Frictionless Trade**

The x-axis represents the bilateral consumption correlation, ranging from -1 to 1.

The y-axis represents the density, ranging from 0 to 2.

The baseline scenario is depicted with a solid black line, while the frictionless trade scenario is shown with a dashed red line.
Puzzle 4: Low International Consumption Correlations

Moments of Distribution of Bilateral Pairs

<table>
<thead>
<tr>
<th></th>
<th>Quarterly</th>
<th></th>
<th>Annual</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Frictionless Trade</td>
<td>Baseline</td>
<td>Frictionless Trade</td>
</tr>
<tr>
<td>Mean</td>
<td>0.03</td>
<td>0.10</td>
<td>0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>Median</td>
<td>0.04</td>
<td>0.10</td>
<td>0.01</td>
<td>0.23</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.45</td>
<td>0.74</td>
<td>0.84</td>
<td>0.98</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.55</td>
<td>-0.45</td>
<td>-0.80</td>
<td>-0.83</td>
</tr>
</tbody>
</table>
Puzzle 5: Relative Purchasing Power Parity

Standard Deviation of Inflation Across Countries

<table>
<thead>
<tr>
<th></th>
<th>Quarterly</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Frictionless Trade</td>
</tr>
<tr>
<td>Construction</td>
<td>0.177</td>
<td>0.147</td>
</tr>
<tr>
<td>Durables</td>
<td>0.095</td>
<td>0.000</td>
</tr>
<tr>
<td>Nondurables</td>
<td>0.100</td>
<td>0.000</td>
</tr>
<tr>
<td>Services</td>
<td>0.124</td>
<td>0.088</td>
</tr>
<tr>
<td>CPI</td>
<td>0.114</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Puzzle 6: Exchange Rate Disconnect

Variation in Nominal GDP, Real GDP, Real Exchange Rate

<table>
<thead>
<tr>
<th>Country</th>
<th>Quarterly Baseline Nominal GDP</th>
<th>Quarterly Baseline Real GDP</th>
<th>Quarterly Baseline RER</th>
<th>Quarterly Frictionless Trade Nominal GDP</th>
<th>Quarterly Frictionless Trade Real GDP</th>
<th>Quarterly Frictionless Trade RER</th>
<th>Annual Baseline Nominal GDP</th>
<th>Annual Baseline Real GDP</th>
<th>Annual Baseline RER</th>
<th>Annual Frictionless Trade Nominal GDP</th>
<th>Annual Frictionless Trade Real GDP</th>
<th>Annual Frictionless Trade RER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.066</td>
<td>0.026</td>
<td>0.066</td>
<td>0.095</td>
<td>0.044</td>
<td>0.056</td>
<td>0.031</td>
<td>0.008</td>
<td>0.031</td>
<td>0.028</td>
<td>0.014</td>
<td>0.015</td>
</tr>
<tr>
<td>Canada</td>
<td>0.109</td>
<td>0.021</td>
<td>0.107</td>
<td>0.077</td>
<td>0.028</td>
<td>0.062</td>
<td>0.046</td>
<td>0.011</td>
<td>0.044</td>
<td>0.026</td>
<td>0.015</td>
<td>0.021</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.102</td>
<td>0.020</td>
<td>0.100</td>
<td>0.117</td>
<td>0.073</td>
<td>0.050</td>
<td>0.062</td>
<td>0.014</td>
<td>0.057</td>
<td>0.043</td>
<td>0.028</td>
<td>0.018</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.068</td>
<td>0.031</td>
<td>0.059</td>
<td>0.163</td>
<td>0.060</td>
<td>0.112</td>
<td>0.025</td>
<td>0.007</td>
<td>0.029</td>
<td>0.047</td>
<td>0.019</td>
<td>0.033</td>
</tr>
<tr>
<td>Finland</td>
<td>0.057</td>
<td>0.037</td>
<td>0.068</td>
<td>0.052</td>
<td>0.039</td>
<td>0.033</td>
<td>0.032</td>
<td>0.016</td>
<td>0.033</td>
<td>0.018</td>
<td>0.017</td>
<td>0.011</td>
</tr>
<tr>
<td>Germany</td>
<td>0.057</td>
<td>0.024</td>
<td>0.064</td>
<td>0.045</td>
<td>0.023</td>
<td>0.040</td>
<td>0.029</td>
<td>0.017</td>
<td>0.036</td>
<td>0.024</td>
<td>0.013</td>
<td>0.023</td>
</tr>
<tr>
<td>Greece</td>
<td>0.119</td>
<td>0.060</td>
<td>0.097</td>
<td>0.081</td>
<td>0.063</td>
<td>0.055</td>
<td>0.079</td>
<td>0.046</td>
<td>0.042</td>
<td>0.032</td>
<td>0.045</td>
<td>0.020</td>
</tr>
<tr>
<td>India</td>
<td>0.120</td>
<td>0.043</td>
<td>0.112</td>
<td>0.068</td>
<td>0.051</td>
<td>0.046</td>
<td>0.065</td>
<td>0.018</td>
<td>0.051</td>
<td>0.041</td>
<td>0.035</td>
<td>0.014</td>
</tr>
<tr>
<td>Italy</td>
<td>0.066</td>
<td>0.014</td>
<td>0.066</td>
<td>0.038</td>
<td>0.018</td>
<td>0.028</td>
<td>0.038</td>
<td>0.006</td>
<td>0.039</td>
<td>0.021</td>
<td>0.010</td>
<td>0.015</td>
</tr>
<tr>
<td>Japan</td>
<td>0.209</td>
<td>0.034</td>
<td>0.207</td>
<td>0.125</td>
<td>0.048</td>
<td>0.092</td>
<td>0.093</td>
<td>0.015</td>
<td>0.088</td>
<td>0.054</td>
<td>0.024</td>
<td>0.037</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.164</td>
<td>0.027</td>
<td>0.164</td>
<td>0.082</td>
<td>0.029</td>
<td>0.062</td>
<td>0.084</td>
<td>0.016</td>
<td>0.072</td>
<td>0.034</td>
<td>0.016</td>
<td>0.022</td>
</tr>
<tr>
<td>Poland</td>
<td>0.152</td>
<td>0.031</td>
<td>0.167</td>
<td>0.070</td>
<td>0.031</td>
<td>0.063</td>
<td>0.070</td>
<td>0.018</td>
<td>0.076</td>
<td>0.033</td>
<td>0.022</td>
<td>0.026</td>
</tr>
<tr>
<td>Romania</td>
<td>0.179</td>
<td>0.066</td>
<td>0.170</td>
<td>0.104</td>
<td>0.067</td>
<td>0.085</td>
<td>0.095</td>
<td>0.032</td>
<td>0.075</td>
<td>0.052</td>
<td>0.043</td>
<td>0.019</td>
</tr>
<tr>
<td>South Korea</td>
<td>0.147</td>
<td>0.032</td>
<td>0.133</td>
<td>0.072</td>
<td>0.038</td>
<td>0.044</td>
<td>0.085</td>
<td>0.016</td>
<td>0.081</td>
<td>0.041</td>
<td>0.019</td>
<td>0.025</td>
</tr>
<tr>
<td>Spain</td>
<td>0.075</td>
<td>0.020</td>
<td>0.064</td>
<td>0.045</td>
<td>0.028</td>
<td>0.020</td>
<td>0.052</td>
<td>0.013</td>
<td>0.042</td>
<td>0.031</td>
<td>0.021</td>
<td>0.012</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.086</td>
<td>0.028</td>
<td>0.079</td>
<td>0.061</td>
<td>0.032</td>
<td>0.039</td>
<td>0.049</td>
<td>0.012</td>
<td>0.041</td>
<td>0.032</td>
<td>0.019</td>
<td>0.015</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.091</td>
<td>0.020</td>
<td>0.090</td>
<td>0.086</td>
<td>0.031</td>
<td>0.065</td>
<td>0.053</td>
<td>0.010</td>
<td>0.049</td>
<td>0.045</td>
<td>0.019</td>
<td>0.030</td>
</tr>
<tr>
<td>United States</td>
<td>0.153</td>
<td>0.020</td>
<td>0.147</td>
<td>0.119</td>
<td>0.033</td>
<td>0.096</td>
<td>0.067</td>
<td>0.012</td>
<td>0.060</td>
<td>0.053</td>
<td>0.020</td>
<td>0.040</td>
</tr>
<tr>
<td>Rest of World</td>
<td>0.050</td>
<td>0.007</td>
<td>0.050</td>
<td>0.048</td>
<td>0.019</td>
<td>0.040</td>
<td>0.030</td>
<td>0.003</td>
<td>0.029</td>
<td>0.025</td>
<td>0.009</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Pooled | **0.120** | **0.042** | **0.115** | **0.089** | **0.051** | **0.065** | **0.064** | **0.033** | **0.056** | **0.042** | **0.037** | **0.030** |
Puzzle 6: Exchange Rate Disconnect

Dependent Variable: Log Change in Real GDP

<table>
<thead>
<tr>
<th></th>
<th>Quarterly Baseline</th>
<th>Quarterly Frictionless Trade</th>
<th>Annual Baseline</th>
<th>Annual Frictionless Trade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Change in Nominal GDP</td>
<td>0.099*** (0.019)</td>
<td>0.064*** (0.017)</td>
<td>0.401*** (0.024)</td>
<td>0.369*** (0.021)</td>
</tr>
<tr>
<td></td>
<td>0.401*** (0.024)</td>
<td>0.369*** (0.021)</td>
<td>0.627*** (0.062)</td>
<td>0.505*** (0.041)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.019* (0.006)</td>
<td>0.007 (0.008)</td>
<td>0.142*** (0.007)</td>
<td>0.138*** (0.007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.019*** (0.007)</td>
<td>0.013*** (0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.108*** (0.005)</td>
<td>0.100*** (0.003)</td>
</tr>
<tr>
<td>Country FE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Time FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>893</td>
<td>893</td>
<td>893</td>
<td>893</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.37</td>
<td>0.63</td>
<td>0.70</td>
<td>0.82</td>
</tr>
</tbody>
</table>

R-squared values are 0.37 for the Quarterly Baseline model, 0.63 for the Quarterly Frictionless Trade model, 0.70 for the Annual Baseline model, and 0.82 for the Annual Frictionless Trade model.
• Obstfeld and Rogoff’s proposition has quantitative bite

• We knew we needed trade frictions to explain bilateral trade

• Eliminating trade frictions large enough to explain home bias and gravity goes far in open-economy macro puzzles
Overall Conclusions

- Framework can be confronted with realistic data on many countries to back out country sector quarter specific shocks.

- Many obvious additional applications:
 - Impact of China crash?
 - Monetary policy transmission?
 - Relevance of invoicing currency?
 - Imbalances within Eurozone?

- Next steps for model include incorporating:
 - Uncertainty
 - Imperfect Competition
 - Nominal Rigidities
 - Financial Market Frictions
Extra Slides
Simplified Economy: Planner’s Problem

\[\mathcal{L} = \sum_{n=1}^{N} \sum_{t=0}^{\infty} \rho^t \omega_n \phi_{n,t} \ln C_{n,t} \]

\[+ \rho^t \lambda_{n,t}^L \left[L_{n,t} - \sum_{j \in \Omega} \int_0^1 L_{n,t}^j(z) \, dz \right] \]

\[+ \rho^t \lambda_{n,t}^K \left[K_{n,t} - \sum_{j \in \Omega} \int_0^1 K_{n,t}^j(z) \, dz \right] \]

\[+ \rho^t \sum_{j \in \Omega} \int_0^1 \lambda_{n,t}^j(z) \left[a_{n,t}^j(z) B \left(L_{n,t}^j(z) \right)^{\beta_L} \left(K_{n,t}^j(z) \right)^{\beta_K} - y_{n,t}^j(z) \right] \]

\[+ \ldots \]
Simplified Economy: Planner’s Problem

\[\begin{align*}
&+ \rho_t \lambda_{n,t}^S \left[\left(\int_0^1 y_{n,t}^S(z)^{(\sigma-1)/\sigma} \, dz \right)^{\sigma/\left(\sigma - 1\right)} \right] - C_{n,t} \\
&+ \rho_t \lambda_{n,t}^D \left[\left(\int_0^1 x_{n,t}^D(z)^{(\sigma-1)/\sigma} \, dz \right)^{\sigma/\left(\sigma - 1\right)} \right] - I_{n,t} \\
&+ \rho_t \int_0^1 \hat{\lambda}_{n,t}^D(z) \left[y_{n,t}^D(z) - \sum_{m=1}^N d_{mn,t} x_{mn,t}^D(z) \right] \, dz \\
&+ \rho_t \int_0^1 \tilde{\lambda}_{n,t}^D(z) \left[\sum_{i=1}^N x_{ni,t}^D(z) - x_{n,t}^D(z) \right] \, dz \\
&+ \rho_t \lambda_{n,t}^V \left[\chi_{n,t} (I_{n,t})^\alpha (K_{n,t})^{1-\alpha} + (1 - \delta)K_{n,t} - K_{n,t+1} \right],
\end{align*} \]

plus non-negativity and transversality
Simplified Economy: Consumption and Investment

- Investment Euler:

\[
\frac{p_{n,t}^D}{\alpha \chi_{n,t}} \left(\frac{X_{n,t}^D}{p_{n,t}^D K_{n,t}} \right)^{1-\alpha} = \rho r_{n,t+1} + \rho \frac{p_{n,t+1}^D}{\alpha \chi_{n,t+1}} \left(\frac{X_{n,t+1}^D}{p_{n,t+1}^D K_{n,t+1}} \right)^{1-\alpha} \times \\
\left[\chi_{n,t+1} (1 - \alpha) \left(\frac{X_{n,t+1}^D}{p_{n,t+1}^D K_{n,t+1}} \right)^\alpha + (1 - \delta) \right]
\]

- Divide the LHS by \(\omega_n = p_{n,t}^S C_{n,t}/\phi_{n,t} \) and the RHS by \(\omega_n = p_{n,t+1}^S C_{n,t+1}/\phi_{n,t+1} \), and substitute \(\alpha = 1 \) to get:

\[
\frac{p_{n,t}^D}{\chi_{n,t}} = \rho \frac{\phi_{n,t+1}}{\phi_{n,t}} \frac{U'(C_{n,t+1})}{U'(C_{n,t})} \left[\frac{p_{n,t+1}^D/\chi_{n,t+1}}{p_{n,t+1}^S/p_{n,t}^S} (1 - \delta) + \frac{r_{n,t+1}}{p_{n,t+1}^S/p_{n,t}^S} \right]
\]
EKNR (2015): Benefit of Multi-Sector, Multi-Country

- Sector- and bilateral-specific wedges important for full story
- Compare our U.S. import demand wedge to LLT (2010):

\[
\text{wedge} = \ln \hat{X}_{n,t+1}^M - \theta \left(\ln \frac{\hat{P}_{n,t+1}}{\hat{P}_M} \right) - \ln \hat{X}_{n,t+1}
\]

<table>
<thead>
<tr>
<th></th>
<th>Overall, Non-Oil</th>
<th>Durables</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLT</td>
<td>-0.401</td>
<td>-0.251</td>
<td>-0.019</td>
</tr>
<tr>
<td>EKNR</td>
<td>-0.561</td>
<td>-0.274</td>
<td>-0.011</td>
</tr>
</tbody>
</table>

- But LLT can only look at U.S. imports by sector. We find largely offsetting positive wedges elsewhere.

Changes in Counterfactual

Changes in Imports in Data

Imports

Changes in Exports in Data

Exports

Changes in Production in Data

Production

Changes in GDP in Data

GDP
EKNR (2015): Global Trade Counterfactuals

- Comparison of Domar-weighted Aggregate TFP
Large literature showing investment efficiency shocks matter for growth and fluctuations including Greenwood et al. (1997), Fisher (2006), Justiniano et al. (2010).

Both $\hat{\chi}^D$ and \hat{A}^D can reduce Trade/GDP, but have very different implications in open-economy.

As shown in Boileau (1999), $\hat{\chi}^D$ shocks generate much greater output co-movement.

Net export behavior differs too – negative $\hat{\chi}^D$ generates countercycle trade balance, negative \hat{A}^D does opposite.

What are these shocks? Won’t shed light here, though promising for future work. Others, like Kondo and Papanikolaou (2015), microfound with financial frictions.
Some of the Challenges

- Recent trade models often written in “changes” to avoid need to calibrate bilateral trade frictions. Apply to macro side?

- Linearizing around SS may undesirable with 20+ countries with changing GDP shares, plus big shock

- Difficult to find high frequency data on durables vs. nondurables consumption, etc., for many countries