Budget Options for the U.S.
The Initiative on Global Markets: Myron Scholes Forum

Harald Uhlig¹

¹University of Chicago
Department of Economics
huhlig@uchicago.edu

January 9, 2011
The Labor Tax Laffer Curve (USA)

The Labor Tax Laffer Curve

\[\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn \]

where: \(c \) cons., \(n \) labor, \(\tau \) tax rate, \(w \) wage.

- Long-run growth: income=substitution effect. Example:
 \[u(c, n) = \log(c) - v(n). \]
- Therefore: \(\tau \) has no effect on \(n \)!

\[\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn + s \]

where \(s > 0 \) are transfers.
- Transfers are key to the shape of the Laffer curve!
The Labor Tax Laffer Curve

\[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn
\]

where: \(c \) cons., \(n \) labor, \(\tau \) tax rate, \(w \) wage.

- Long-run growth: income = substitution effect. Example:
 \(u(c, n) = \log(c) - \nu(n) \).

- Therefore: \(\tau \) has no effect on \(n \)!

\[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn + s
\]

where \(s > 0 \) are transfers.

- Transfers are key to the shape of the Laffer curve!
The Labor Tax Laffer Curve

- \[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn
\]
 where: \(c \) cons., \(n \) labor, \(\tau \) tax rate, \(w \) wage.

- Long-run growth: income\(=\)substitution effect. Example:
 \[u(c, n) = \log(c) - \nu(n). \]

- Therefore: \(\tau \) has no effect on \(n \)!

- \[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn + s
\]
 where \(s > 0 \) are transfers.

- Transfers are key to the shape of the Laffer curve!
The Labor Tax Laffer Curve

\[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn
\]

where: \(c \) cons., \(n \) labor, \(\tau \) tax rate, \(w \) wage.

- Long-run growth: income = substitution effect. Example:
 \[
 u(c, n) = \log(c) - v(n).
 \]

- Therefore: \(\tau \) has no effect on \(n \)!

\[
\max u(c, n) \quad \text{s.t.} \quad c = (1 - \tau)wn + s
\]

where \(s > 0 \) are transfers.

- Transfers are key to the shape of the Laffer curve!
Tax Revenues as Percentage of GDP

How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r)}{(1 + g)} \frac{Debt_{t-1}}{GDP_{t-1}} - 0.1 \]

\(r \): nom. interest rate, \(g \) nom. growth rate of GDP.

- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).
 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%. Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[\text{Debt}_t = (1 + r) \text{Debt}_{t-1} - 0.1 \text{GDP}_t \]

or

\[\frac{\text{Debt}_t}{\text{GDP}_t} = \frac{(1 + r) \text{Debt}_{t-1}}{(1 + g) \text{GDP}_{t-1}} - 0.1 \]

- \(r \): nom. interest rate, \(g \) nom. growth rate of GDP.

- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).

 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%.\) Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r)}{(1 + g)} \frac{Debt_{t-1}}{GDP_{t-1}} - 0.1 \]

\(r \): nom. interest rate, \(g \) nom. growth rate of \(GDP \).

- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).

 - For 3-mo T-Bills: −1.8%, negative!
 - For 10-yr T-Bonds: −0.04% or −0.01%. Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r)}{(1 + g)} \frac{Debt_{t-1}}{GDP_{t-1}} - 0.1 \]

- \(r \): nom. interest rate, \(g \) nom. growth rate of GDP.
- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).

 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%. \) Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r)Debt_{t-1}}{(1 + g) GDP_{t-1}} - 0.1 \]

- \(r \): nom. interest rate, \(g \) nom. growth rate of \(GDP \).
- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02\), get \(Q = 5 = 500\% \).
 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%\). Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r) Debt_{t-1}}{(1 + g) GDP_{t-1}} - 0.1 \]

\(r \): nom. interest rate, \(g \) nom. growth rate of GDP.

- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02\), get \(Q = 5 = 500\% \).

 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%\). Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r) Debt_{t-1}}{(1 + g) GDP_{t-1}} - 0.1 \]

\(r \): nom. interest rate, \(g \) nom. growth rate of \(GDP \).

- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).

 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%.\) Still negative!
 - “Grow out of debt”, roll over debt forever!
How much debt can be sustained?

- Suppose, at most 10% of GDP to cover “debt service”,

\[Debt_t = (1 + r)Debt_{t-1} - 0.1 GDP_t \]

or

\[\frac{Debt_t}{GDP_t} = \frac{(1 + r)}{(1 + g)} \frac{Debt_{t-1}}{GDP_{t-1}} - 0.1 \]

- \(r \): nom. interest rate, \(g \) nom. growth rate of \(GDP \).
- Keep Debt-GDP ratio constant at some \(Q \). Then:

\[(r - g)Q \approx 0.1 \]

- For \((r - g) = 2\% = 0.02 \), get \(Q = 5 = 500\% \).
 - For 3-mo T-Bills: \(-1.8\%\), negative!
 - For 10-yr T-Bonds: \(-0.04\%\) or \(-0.01\%. Still negative!
 - “Grow out of debt”, roll over debt forever!
The gap between interest rates and growth rates

Source: Data per Federal Reserve Bank of St. Louis, own calculations.

Harald Uhlig (University of Chicago)
Budget Options for the U.S.
January 9, 2011