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Abstract. Theories of reference-dependent preferences propose that individuals evaluate
outcomes as gains or losses relative to a neutral reference point. We test for reference
dependence in a large data set of marathon finishing times (n � 9,789,093). Models of
reference-dependent preferences such as prospect theory predict bunching of finishing
times at reference points. We provide visual and statistical evidence that round num-
bers (e.g., a four-hour marathon) serve as reference points in this environment and as a
result produce significant bunching of performance at these round numbers. Bunching is
driven by planning and adjustments in effort provision near the finish line and cannot be
explained by explicit rewards (e.g., qualifying for the Boston Marathon), peer effects, or
institutional features (e.g., pacesetters).
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1. Introduction
Recent theories of economic behavior propose that the
evaluation of an outcome may be affected by com-
parisons of that outcome with a reference point and
not merely tastes, risk attitudes, and wealth levels, as
in classical economic models. For example, how an
employee views a bonus of $1,000 might depend on
the level of previous bonuses, what bonuses were dis-
tributed to other members of the organization, or the
employee’s expectations aboutwhat bonuseswere pos-
sible (Card et al. 2012, Kahneman 1992, Kőszegi and
Rabin 2006).
A reference point divides outcomes into gains or

losses, thus creating a qualitative difference in the
valuation of outcomes slightly above or below that
reference point. We suggest that the distinguishing
feature of reference-dependent models is some form
of discontinuity at the reference point that is psy-
chologically based and not the result of an extrinsic
benefit. For example, a primary feature of prospect
theory, the most well-known and influential account
of reference-dependent preferences, is loss aversion
(Kahneman and Tversky 1979, Tversky and Kahneman
1992). The premise that “losses loom larger than
gains” (Kahneman and Tversky 1979) has implica-
tions for a wide range of economic activities, including

risky decision making, choice of consumption bun-
dles, and effort provision (DellaVigna 2009, Tversky
and Kahneman 1991). A second property, diminishing
sensitivity, is captured by prospect theory’s character-
istic S-shaped value function that is concave for gains
and convex for losses. Although prospect theory is the
most prominent model of reference dependence, the
discontinuity at the reference point in some instances
might instead be produced by a jump (or “notch”) in
the utility function at the reference point.

Researchers have moved beyond Kahneman and
Tversky’s laboratory demonstrations of reference
dependence to explain behavioral anomalies across a
wide variety of field settings.1 In a recent review of
prospect theory, Barberis (2013) highlighted the key
challenge to researchers testing for field evidence of
reference-dependent preferences: it is often difficult to
know exactly what reference points are relevant for
individuals in field settings. The difficulty in iden-
tifying the appropriate reference point is best illus-
trated by a stream of work examining the possible
role that reference points play in labor supply and
effort provision. Camerer et al. (1997) argued that taxi
drivers have a downward-sloping labor supply curve
induced by daily income targets (see also Fehr and
Goette 2007, and Mas 2006). This paper led to addi-
tional analyses that used different data sets and econo-
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metric methods to examine if taxi drivers indeed have
reference-dependent preferences, with some arguing
against (Farber 2005, 2008, 2015) and some arguing
in favor (Ashenfelter et al. 2010, Crawford and Meng
2011). The primary empirical challenge in these papers
has been modeling reference points that are unobserv-
able, heterogeneous, and possibly nonstationary.
In this paper, we test for reference dependence in

a data set of almost 10 million marathon finishing
times. For several reasons, marathon running is an
ideal environment to look for field evidence of refer-
ence dependence. First and most importantly, we pro-
pose that there are clear and stable reference points in
this setting. Specifically, we cite survey evidence that
the majority of runners judge their performance rel-
ative to round numbers (e.g., running a marathon in
four hours). The prevalence across runners of round
number reference points provides us with a cleaner
and sharper test of reference dependence than other
settings where reference points are unknown or likely
to differ across individuals (e.g., taxi drivers). Coupled
with our large sample, these universal reference points
allow us to very easily and credibly identify evidence
of reference dependence using nonparametric meth-
ods. The richness of our data also allows us to examine
how reference points impact effort provision at differ-
ent points in the race.2

Second, these round number reference points are
largely not tied to external rewards and thus, we argue,
primarily provide psychological, not economic, moti-
vation. That said, runners may also care about how
their finishing times are perceived by others. If this is
the case, evidence for reference dependence may not
reveal an intrinsic reference point but instead reflect
an audience effect in which runners feel that they will
be evaluated more favorably if they run just faster
than a round number. For example, a runner may feel
significantly better about herself if she runs a 3:59
marathon rather than a 4:01 marathon (an intrinsic ref-
erence point), or she may feel that other people will be
demonstrably more impressed with a 3:59 than a 4:01
marathon (an audience effect).Wemake two comments
about this critique. First, most studies of reference
dependence are unable to distinguish between intrin-
sic versus audience effects. For example, does a taxi
driver care about reaching a particular target, or is she
worried about her spouse’s reaction? Is a homeowner
reluctant to sell his home for less than his purchase
price because he will feel a loss or because of concern
about what neighbors will think if they discover that
he lost money on this transaction? Like these other
studies, we acknowledge that part of the effect may
be driven by others who evaluate outcomes relative to
round numbers.3 Second, and most important, all of
these examples still reflect reference-dependent evalu-
ations, regardless of whether the reference dependence

originated with the runner, taxi driver, or homeowner
or that agent’s audience.4
Consistent with a simple model of reference-depen-

dent preferences and in sharp contrast with the pre-
dictions from a standard model of utility, we find a
lumpy distribution of finishing times, with bunching
just ahead of round numbers. For example, 50.0%more
runners finished in the minute just under three hours
than the minute just over three hours. We observe
qualitatively similar patterns for all relevant 60-minute
marks as well as 30-minute marks and many 10- and
15-minute marks. We provide evidence that this effect
is primarily psychological and cannot be explained
by financial incentives or other extrinsic rewards (e.g.,
qualifying for the Boston Marathon) or by institutional
features (e.g., pacesetters) and show that this effect
is explained in part by pacing and planning and in
part by effort provision over the final stages of the
marathon. Runners are more likely to speed up and
less likely to slow downwhen they are on pace to finish
just ahead of a round number reference point.

Our paper proceeds as follows. In Section 2, we
present a simple model that demonstrates how refer-
ence-dependent preferences such as those defined in
prospect theory will produce bunching in running per-
formanceat referencepoints in a similarway tohowtax-
payers bunch at a kink in the tax code. In Section 3, we
discuss some institutional features of marathons and
describe our data. We present the main results in Sec-
tion 4. We conclude the paper in Section 5 with a brief
discussion of the broader significance of our findings.

2. Conceptual Framework
We show how a simple model of reference dependence
produces bunching of performance at a reference
point. Reference dependence implies that individuals
evaluate outcomes just above or just below the neutral
reference point in a manner that is inconsistent with
standard utility theory. The qualitatively distinct per-
ception of outcomes that are just above or below a ref-
erence point can take several forms. Let vr( · ) denote
a utility function that shows reference dependence
around a reference point r. Below, we detail three pri-
mary forms of reference dependence:

1. A jump or discontinuity at r: limε→0 vr(r + ε) ,
limε→0 vr(r − ε).

2. A kink or discontinuity in the first derivative
at r: limε→0 v′r(r + ε), limε→0 v′r(r − ε).

3. A kink or discontinuity in the second derivative
at r: limε→0 v′′r (r + ε), limε→0 v′′r (r − ε).

The first form of reference dependence leads to a
discontinuity or jump in the utility function. In tax
settings, this has been called a “notch” (Kleven and
Waseem 2013). Such a jump is featured in models of
level of aspiration that have appeared in both psy-
chology (March and Shapira 1987) and economics
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Figure 1. Three Forms of Reference-Dependent Preferences
(a) Jump at r
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(Diecidue and Van De Ven 2008, Fishburn 1977). For
example, Diecidue and Van De Ven (2008) axioma-
tize an expected utility representation with a jump at
the reference point, assuming that the decision maker
is concerned with the probability of reaching a refer-
ence point or, in their language, aspiration level. The
final two forms of reference dependence follow from
prospect theory’s characteristic S-shape. Loss aversion
and diminishing sensitivity are special cases of the
utility having a discontinuous first and second deriva-
tive (Tversky and Kahneman 1992). The solid lines in
Figure 1 show discontinuities of all three forms.Markle
et al. (2015) found evidence for all three forms of ref-
erence dependence in a survey of marathon runners:
satisfaction as a function of performance relative to a
runner’s time goal exhibited loss aversion and dimin-
ishing sensitivity as in prospect theory, as well as a
jump in satisfaction at the goal.
Below we show that each of these three forms

of reference dependence can independently produce
bunching near the reference point. The proofs for all
propositions are found in Section A.2 of the online
appendix. Let τ denote a runner’s finishing time, and
t � k − τ indicate the amount of time that a run-
ner is faster than the worst possible finishing time k.
(For expository clarity, we redefine performance so
that agents are maximizing, rather than minimizing,
time.) We assume that an individual has a utility func-
tion that is additively separable in benefits, b(t), and
costs, c(t); i.e., U(t) � b(t) − c(t). We assume that the
benefit function is increasing in t and has at least one
of the three forms of reference-dependent preferences
described above. Furthermore, we assume that c(t) > 0
and c′(t) > 0; i.e., costs are positive and increasing.
Throughout, we take agents to be optimizers, choos-
ing t to maximize U(t), denoting t∗(c(t), b(t)) to be the
maximum performance for an agent with cost func-
tion c(t) and benefit function b(t).
One convenient way to model the heterogeneity in

performance across runners is to posit a family of
cost functions, c1(t), . . . , cN(t), where each cost func-
tion captures the abilities and preparation of each of N
runners, as well as features of the marathon course,
weather, etc. In contrast, we assume homogeneity in

the benefit function but perform comparative statics
on b(t) along the three dimensions of reference depen-
dence, looking across the family of cost functions.
In each case, the comparative statics show that bunch-
ing above the reference point increases as the relevant
discontinuity becomes more severe. The resulting dis-
tribution of performance will be in sharp contrast to
the smooth distribution that is produced by the well-
behaved cost and benefit functions assumed in stan-
dard economic models (e.g., Prendergast 1999).

We first formalize the notion of bunching by identi-
fying, for a particular benefit function, the set of cost
functions or set of individual runners in which perfor-
mance exceeds the reference point by δ or less.

Definition (δ-Bunching). For a particular benefit func-
tion, b(t), a set of cost functions, C(δ, b(t)), exhibits
δ-bunching around reference point r if, for all c(t) ∈
C(δ, b(t)), 0 ≤ t∗(c(t), b(t)) − r ≤ δ.
It is clear that a jump or notch at the reference point

will lead to bunching exactly at the reference point. We
provide a simple definition of “more discontinuous” at
reference point r. This notion is depicted in panel (a)
of Figure 1 as the difference between the solid and dot-
ted curves. The more discontinuous benefit function is
identical to the less discontinuous function except for
a shift at the reference point.

Definition (More Discontinuous at r). A benefit function
b1(t) is more discontinuous at reference point r than
b2(t) if limε→0 b1(r + ε) − limε→0 b1(r − ε) > limε→0 b2(r +
ε) − limε→0 b2(r − ε) and b′1(t) � b′2(t) for all t , r and
b1(t)� b2(t) for t < r.

Proposition 2.1. Let b1(t) be more discontinuous at r
than b2(t). Then for all δ > 0, C(δ, b2(t)) ⊆ C(δ, b1(t)).
Here, a psychological jump in utility plays a simi-

lar role as would monetary incentives at performance
thresholds (e.g., Asch 1990, Murphy 2000, Oyer 1998).

We next turn to a discontinuity in the first deriva-
tive at r. We assume that this discontinuity reflects loss
aversion. Although researchers have proposed a num-
ber of definitions of loss aversion, we use a relatively
standard one: an agent is loss averse if b′(r + ε) < b′ ·

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

17
0.

19
9.

19
5]

 o
n 

29
 M

ar
ch

 2
01

8,
 a

t 1
3:

17
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Allen et al.: Reference-Dependent Preferences: Evidence from Marathon Runners
1660 Management Science, 2017, vol. 63, no. 6, pp. 1657–1672, ©2016 INFORMS

(r − ε) for all ε > 0 (Wakker and Tversky 1993); i.e., the
benefit function is everywhere steeper in losses than
for the comparable gains. We first define the notion of
a benefit function exhibiting more loss aversion than
another benefit function.

Definition (More Loss Aversion). A benefit function
b1(t) is more loss averse than b2(t) if b1(t) � b2(t) and
b′1(−t) > b′2(−t) for all t > r.

The definition requires that the benefit functions
coincide for gains but that b1(t) be steeper than b2(t)
everywhere in losses (see panel (b) of Figure 1).
The following proposition shows that this straight-

forward definition of “more loss averse” is related to
bunching of performance above the reference point.

Proposition 2.2. Let b1(t) and b2(t) exhibit loss aversion
with b1(t) more loss averse than b2(t). Then, for all δ > 0,
C(δ, b2(t)) ⊆ C(δ, b1(t)).
We interpret Proposition 2.2 as indicating that, as

loss aversion increases, more individuals will bunch
just above the reference point r. Intuitively, loss aver-
sion increases the marginal benefit of a unit of time
short of the reference point, thus boosting the motiva-
tion to get into gains.5
We next show that a specific discontinuity in the

second derivative of the utility function, diminishing
sensitivity in gains, can also lead to bunching.

Definition (More Diminishing Sensitivity in Gains).Aben-
efit function b1(t) shows more diminishing sensitivity
in gains than b2(t) on (r, r + δ) if b′′1 (t) < 0 and b′′2 (t) < 0
for t > r, b1(t)� f (b2(t)) for t ∈ [r, r+δ], and b1(t)� b2(t)
for t < (r, r + δ), where f (·) is a continuous strictly con-
cave function.

See panel (c) of Figure 1 for a depiction of this prop-
erty. This property requires that the benefit functions,
b1(t) and b2(t), coincide except on an interval (r, r + δ).
In that interval, b1(t) is strictly more concave than b2(t).
Note that the proposition requires that b1(r + δ) � b2 ·
(r + δ) so that the cumulative benefits on [r, r + δ] are
the same for both benefit functions.

Proposition 2.3. Let b1(t) exhibit more diminishing sensi-
tivity for gains than b2(t) on (r, r + δ). Then C(δ, b2(t)) ⊆
C(δ, b1(t)).
The intuition of Proposition 2.3 is straightforward.

More diminishing sensitivity in gains decreases the
marginal benefit of running faster and therefore leads
more runners to slack off once they have achieved their
reference point, thus leading to bunching just above
the reference point. Of course, prospect theory’s char-
acteristic S-shaped value function also involves dimin-
ishing sensitivity of losses. Our theoretical treatment
has only focused on gains because more diminishing
sensitivity of gains (i.e., more discontinuous at r and

more loss averse) increases bunching above the refer-
ence point. However, it is straightforward to show that
more diminishing sensitivity in losses results in less
mass just below the reference point.

Note that our simple model does not involve any
uncertainty about a runner’s finishing time. Of course,
a marathon runner does not know his or her actual
cost function on a particular day. Although incorpo-
rating uncertainty and risk preferences into this frame-
work will generate similar comparative statics, a model
with uncertainty will have implications for the specific
shape of the finishing time density function, in partic-
ular producing more diffuse bunching behavior.

The conceptual framework we have laid out in this
section examines three differentmanifestations of refer-
ence dependence. Each form involves a discontinuity at
the reference point of some kind. Our framework sug-
gests that the distribution of marathon finishing times
should be smooth if the distribution of cost functions
is smooth and the benefit function is well behaved as
is commonly assumed in standard economic models.
We have illustrated, however, that reference-dependent
preferences of any of the three forms outlined above can
produce bunching or excessmass just above a reference
point, even if the family of cost functions is smooth. We
further proved that the amount of bunching is weakly
increasing in the degree of the discontinuity at the ref-
erence point. In Section 4, we directly test for evidence
of bunching at round number reference points. In Sec-
tion A.9 of the online appendix, we calibrate a simple
model of prospect theory and show that the observed
amount of excess mass at the reference points is con-
sistent with parameters that have previously been esti-
mated in the literature.

3. Institutional Setting and Data
The marathon is a 42.195-kilometer (26.2-mile) road
race that is popular with both professional athletes and
recreational runners. Approximately 1,100 marathons
were held in the United States during 2013, with an
estimated 541,000 finishers (Running USA 2014). The
vast majority of runners receive no financial compen-
sation for their performance. For example, the 2013
Chicago Marathon had a prize pool of $487,000 dis-
tributed across 40 finishers over 8 divisions. The slow-
est prize winner finished 721st (or in the top 1.8%) out
of 39,122 finishers. The race also offered time bonuses,
with the slowest time bonus winner finishing 189th
(or in the top 0.5% of finishers). Thus, we suggest that,
for the overwhelming majority of runners, finishing
times are a source of internal pride and fulfillment and
not an extrinsic reward.

An important technological innovation in marathon
running is a radio frequency identification (RFID) chip
that is attached to a runner’s shoelace or running bib
and thus precisely measures a runner’s finishing time.
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For large marathons, many runners do not cross the
start line until many minutes after the official start
(e.g., it took runners in the 2013 Berlin Marathon an
average of 15.59 minutes to reach the start line). The
computer chip registers when a runner crosses the start
line, the finish line, and various intermediate points
on the course (often at 10, 20, 30, and 40 kilometers
and at the half marathon). The “chip time” is the dif-
ference between when a runner reaches the start line
and when a runner crosses the finish line, whereas the
“clock time” is the difference between when the race
starts and when a runner crosses the finish line. For
most races, the chip time is regarded as the official
time. Runners, therefore, usually start their watches
when they cross the start line and consult their watches
to check their elapsed time at various points in the
race. Given that we will be testing for bunching that
occurs in marathon finishing times, it is very important
to have precise data. For example, self-reported data
may produce bunching simply due to rounding that
is common in self-reports. The available chip data are
therefore essential for our purposes.6
The data used in this paper were obtained from

various public websites.7 In total, we have finishing
times for 9,789,093 marathon finishes. The full sam-
ple contains data from 1970–2013 (88.97% of data
are from 2000 or later) for 6,888 different marathon-
years. For some of our analysis, we will focus on a
smaller sample of 873,674 finishing times with com-
plete 10-kilometer, half-marathon, 30-kilometer, and
40-kilometer split times. We refer to this smaller sam-
ple as the “full-split sample.” The more detailed data
in this smaller sample will allow us to examine some
mechanisms driving the bunching of finishing times.
Table 1 provides summary statistics for our full sample,
as well as the full-split sample. The average finishing
time is 4 hours and 26 minutes and 33 seconds (4:26:33
for short) for the full sample and 4:41:52 for the full-
split sample.8 Our marathon sample includes multiple
years of all of the 50 largest U.S. marathons (as mea-
sured by 2013 rank), a relatively complete sample of all

Table 1. Summary Statistics for Full Sample and Full-Split Sample

Full sample Full-split sample

Mean Standard deviation Observations Mean Standard deviation Observations

Finishing time (HH:MM:SS) 4:26:33 0:59:11 9,789,093 4:41:52 1:04:37 873,674
Marathon year 2,005.88 6.49 9,789,093 2,009.21 2.50 873,674
Age 39.03 10.85 5,403,441 38.89 10.34 645,521
Male (1�Male, 0� Female) 0.66 0.48 8,061,134 0.61 0.49 812,152
Split 10 kilometers (HH:MM:SS) 1:02:22 0:17:54 2,103,830 1:01:53 0:13:14 873,674
Split half marathon (HH:MM:SS) 2:09:19 0:28:17 3,296,656 2:11:49 0:29:05 873,674
Split 30 kilometers (HH:MM:SS) 3:12:25 0:44:51 1,508,388 3:12:26 0:43:43 873,674
Split 40 kilometers (HH:MM:SS) 4:25:04 1:01:09 1,040,154 4:26:22 1:01:24 873,674

Notes. The full-split sample includes the marathons from the full sample with complete 10-, 30-, and 40-kilometer splits, as well as
half-marathon splits. See http://faculty.chicagobooth.edu/george.wu/research/marathon/list.htm for a full list of marathons.

U.S. and Canadian marathons from 2000 to 2013, and
several large marathons from Europe, South America,
Africa, Asia, and Australia.

A runner may evoke many potential reference points
for judging his or her marathon performance. For
example, a runner may compare his or her finish-
ing time to the finishing time of a close relative or
friend, the average time for other people of that run-
ner’s age and or gender, the time equivalent of running
8-minute miles or 5-minute kilometers throughout the
marathon, or any number of other finishing times that
happen to be relevant for a particular runner.9 We focus
on round numbers (e.g., four-hour marathon time) as
reference points for two primary reasons. First, these
reference points are knowable to researchers, unlike,
for example, the finishing time of a close friend. Sec-
ond, round numbers are frequentlymentioned as goals
by marathon runners themselves. For example, Sackett
et al. (2015) asked marathoners running 15 major U.S.
marathons from 2007 to 2009 for their specific time
goals. Of marathoners in that study, 86.2% indicated
that they had a time goal. Of these individuals, 27.5%,
48.5%, 63.8%, and 67.2%had time goals thatwere divis-
ible by 60, 30, 15, and 10 minutes, respectively. Thus,
a significant fraction of marathon runners have round
number time goals. In that sample, 25.5% of runners
ran faster than their time goal, indicating that time
goals were on average optimistic.

Below we test whether performance exhibits ref-
erence-dependent bunching around these round
numbers.

4. Results
4.1. Excess Mass at Round Numbers
Figure 2 provides the distribution of finishing times
(with 1-minute bins) for our full sample of runners.10
The highlighted bars are the bins in the minute just
before every 30-minute mark (e.g., 3:59:00–3:59:59) and
indicate clear excess mass just to the left of the 30-min-
ute marks. For example, there are 100,294, 103,018, and
97,012 finishers in the minute before the 3:58, 3:59, and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
2.

17
0.

19
9.

19
5]

 o
n 

29
 M

ar
ch

 2
01

8,
 a

t 1
3:

17
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://faculty.chicagobooth.edu/george.wu/research/marathon/list.htm


Allen et al.: Reference-Dependent Preferences: Evidence from Marathon Runners
1662 Management Science, 2017, vol. 63, no. 6, pp. 1657–1672, ©2016 INFORMS

Figure 2. Distribution of Marathon Finishing Times
(n � 9,789,093)
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Note. The dark bars highlight the density in the 1-minute bin just
before each 30-minute threshold.

4:00 marks, compared to 74,968, 69,648, and 67,861 fin-
ishers in the 4:00, 4:01, and 4:02 bins. Although the
four-hour mark is particularly dramatic, qualitatively
similar differences exist at other hour and half-hour
marks and, to a lesser extent, at 10- and 15-minute
marks. There are 50.0%, 21.5%, and 29.5%, more fin-
ishers in the 1-minute bin before 3:00, 3:30, and 4:00,
respectively, than the 1-minute bin after these round
numbers. This excess mass measure for 10-minute
marks is less dramatic but still substantial: 11.9%,
8.5%, 9.4%, and 7.0% for 3:10, 3:20, 3:40, and 3:50,
respectively.11
We next measure the amount of excess mass around

the round number reference point and test whether
the excess mass is statistically significant by adapting a
methodology proposed in Chetty et al. (2011) to quan-
tify the extent of excess mass in an interval around a
round number.12 We draw an analogy between our set-
ting and individual taxpayer responses to “kinks” in
the tax code (e.g., Kleven andWaseem 2013, Saez 2010).
Consistent with the hypothesis that income will bunch
around tax rate thresholds, Chetty et al. (2011) found
that Danish taxpayers bunch around the income cut-
off for the top marginal income tax rate. In our setting,
we hypothesize that round number reference points
serve as a discontinuity in a marathoner’s utility func-
tion in a similar manner to how income thresholds
do for taxpayers (see Section 2). As in Chetty et al.
(2011), the observed bunching is likely to be diffuse
rather than a point mass. Runners are unable to per-
fectly control their effort levels over the course of the
race. They may underestimate the amount of energy
they have left, incorrectly calculate the required pace
to meet the benchmark, or build a cushion into their
pacing that causes them to beat the reference point by
more than a small amount. As a result, rather than see-
ing a sharp increase in runners just beating the refer-
ence point and then an immediate drop (as required by

Propositions 2.1 and 2.2), we expect to see somewhat
diffuse bunching of finishing times around the refer-
ence point. This dispersion will reflect runners who
attempt to meet the reference point and just miss, as
well as those who beat it by a few minutes.

To calculate the amount of bunching, we follow the
Chetty et al. (2011) methodology. The counterfactual
distribution is estimated by fitting a quintic polyno-
mial to the local density of finishing times around the
reference point excluding the bunching region. The
difference between the actual density in the bunch-
ing region and the fitted counterfactual density is the
excess number of finishers around the reference point,
with the standard error for the amount of excess mass
determined by a bootstrap procedure. Throughout, we
take the local window around each potential round-
number reference point to be 16 minutes (8 minutes
before a round number and 8 minutes after a round
number). For example, to test for bunching at 3 hours
and 30 minutes, we use a window from 3 hours and
22 minutes to 3 hours and 38 minutes. We choose this
window to avoid bunching that may occur at a 10-
minute mark in the counterfactual distribution either
above or below the reference point of interest. We look
for evidence of bunching itself in a 4-minute window
right before each round number. As recommended by
Chetty et al. (2011), this window was chosen based
on visual inspection of the bunching. We employ a
conservative test and use the same window for every
potential reference point. Finally, before calculating
the excess mass measure, we shift the entire counter-
factual distribution upward so that the area under-
neath the counterfactual curve is equivalent to the
area under the actual density function, thus avoiding
the bias that would otherwise occur since the bunch-
ing is likely drawing from individuals just outside the
bunching region. Thus, without this correction, we
would essentially be double counting runners that are
bunching at the reference point and causing the coun-
terfactual distribution to be lower than it would other-
wise be in a truly counterfactual world.

The main results of the bunching estimation applied
to our full sample are depicted in Figure 3 and sum-
marized in Table 2. Figure 3 graphically shows the
16-minute window around reference points at 3:00,
3:10, 3:20, 3:30, 4:00, 4:30, 5:00, and 6:00. The actual fin-
ishing times are plotted in 15-second intervals along
with the counterfactual distribution that we estimate
using the procedure above. The figures show clear evi-
dence of bunching at the majority of the round number
reference points. The bunching is particularly evident
at the 3- and 4-hour marks. In Sections A.5–A.7 of
the online appendix, we present the same results for
all 10- and 15-minute marks from 2:30 to 6:00 and
show that our results are robust to variations in the
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Figure 3. Distribution of the Number of Finishers Around Round Number Reference Point and the Fitted
Counterfactual Distribution

(a) 3:00

3

4

5

6

7

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)
N

um
be

r 
of

 f
in

is
he

rs
(i

n 
th

ou
sa

nd
s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

N
um

be
r 

of
 f

in
is

he
rs

(i
n 

th
ou

sa
nd

s)

2:50 2:55 3:00 3:05 3:10

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

Finishing time (15-second
increments)

(b) 3:10

4

6

8

10

3:00 3:05 3:10 3:15 3:20

(c) 3:20

8

10

12

14

16

3:10 3:15 3:20 3:25 3:30

(d) 3:30

10

12

14

16

18

3:20 3:25 3:30 3:35 3:40

(e) 4:00

16

18

20

22

24

26

3:50 3:55 4:00 4:05 4:10

(f) 4:30

15

16

17

18

19

4:20 4:25 4:30 4:35 4:40

(g) 5:00

9

10

11

12

13

14

4:50 4:55 5:00 5:05 5:10

(h) 6:00

2.5

3.0

3.5

4.0

4.5

5:50 5:55 6:00 6:05 6:10

Notes. The vertical axis shows the number of finishers in each 15-second bin. The jagged line reflects the actual density function, and the
smooth curve is the counterfactual density fitted by using the Chetty et al. (2011) procedure. The “bunching region” starts four minutes before
a round number and ends at the round number.

16-minute window around a reference point, the 4-
minute bunching region for excess mass, and other
polynomial specifications for fitting the local density
function.13
Table 2 provides summary measures from the pro-

cedure that is shown graphically in Figure 3. Specif-
ically, we show the number of actual finishers in the
4-minute window around each of the round numbers
as well as the number of finishers based on the coun-
terfactual density function (after shifting the counter-
factual function up). This gives us estimates for the

Table 2. Summary of Chetty et al. (2011) Test for Excess Mass

Nonmissing
age and gender, Correcting for

Full sample 2002–2012 Boston marathon
(n � 9,789,093) (n � 3,925,864) qualifier

Reference Actual Counterfactual % excess % excess % excess
point finishers finishers finishers t-statistic finishers finishers t-statistic

3:00 90,762 73,077 24.2 52.95 23.7 23.7 27.82
3:10 115,770 109,077 6.1 15.76 7.7 4.2 4.95
3:20 165,968 164,131 1.1 3.59 1.6 0.9 1.46
3:30 259,756 234,405 10.8 42.09 11.1 11.1 21.90
4:00 419,945 371,715 13.0 64.34 13.3 13.4 35.50
4:30 316,967 303,231 4.5 20.09 4.7 4.7 12.47
5:00 218,170 206,858 5.5 19.14 5.6 5.6 12.96
5:30 115,737 113,314 2.1 5.78 2.8 2.8 5.24
6:00 63,643 61,694 3.2 6.12 3.0 3.0 4.42

Notes. t-Statistics are obtained using 1,000 bootstrap samples. The correction for the Boston Marathon uses the nonmissing age and
gender/2002–2012 subsample (n � 3,925,864) and omits runners for which that reference point is a Boston Marathon qualifying time. For
example, the 4:00 reference point omits males between the ages of 60 and 64 and females between the ages of 45 and 49.

number and percentage of excess finishers along with
a t-statistic obtained by bootstrapping with 1,000 iter-
ations. The largest number of runners (48,230) is dis-
placed into the bunching region at four hours, whereas
the largest percentage increase in finishers (24.2%)
occurs at three hours. We find statistically significant
evidence of bunching for all of the round numbers in
Table 2 and, more generally, all 10-minute marks from
2:30 to 6:00, with the exception of 4:20, 4:50, 5:20, 5:40,
and 5:50. This pattern of bunching also argues against
left-digit bias as a mechanism. Left-digit bias is the
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tendency to focusmore attention on the left-most digits
of numbers than digits further to the right (Anderson
and Simester 2003, Lacetera et al. 2012). Left-digit
bias, however, provides an incomplete account of our
bunching patterns. For example, left-digit bias predicts
a similar amount of bunching at every left-digit change
(3:10, 3:20, 3:30, 3:40, etc.). However, there is signif-
icantly more bunching at the rounder 3:30 and 4:30
marks than the less round 3:20, 3:40, 4:20, and 4:40
marks. Left-digit bias also cannot explain the small but
statistically significant amount of bunching that occurs
at 15-minute marks since there is no change in the left
digit at thosemarks. Therefore, we argue that reference
points established at round numbers offer a more nat-
ural psychological explanation of our pattern of data.
It is important to note that our instantiation of the

Chetty et al. (2011) procedure is quite conservative. We
use the same large bunching region for all tests to avoid
issues with overfitting and to provide a measure of the
number of excess finishers. Nevertheless, the panels in
Figure 3 indicate that our bunching region provides
significantly lower point estimates of the excess mass
percentage, because it averages regions with consider-
able excess mass (the bins closest to the round number)
with regions with less excess mass (the bins at the edge
of the bunching region). For example, we find 24.2%
excess mass (t � 52.95) at three hours using a bunch-
ing region of [2:56, 3:00]. The excess mass percentage is
28.3% (t � 58.42) if we restrict the bunching region to
[2:57, 3:00] and 32.5% (t � 45.64) if the bunching region
is [2:59, 3:00].
Finally, we examine the robustness of our bunch-

ing results by repeating the Chetty analysis for subsets
of the data. These results, which use our full sam-
ple of data, are summarized in Table 3. We find that
bunching of finishing times around the 3-, 4-, and
5-hour thresholds holds for recent marathons as well
as marathons that took place decades ago; large as
well as small marathons; relatively fast as well as rela-
tively slow marathons; marathons in the United States,
as well as marathons across other parts of the world;
and, finally, for runners across a wide range of ages.
Although the t-statistics naturally vary to reflect thedif-
ferent sample sizes for each data restriction, the effect
sizes are remarkably uniformacross different subsets of
ourmarathon sample.

We also test for heterogeneity in bunching by run-
ning experience. Our measure of experience is the
number of times a runner has previously run each
given marathon. For example, a runner in the Chicago
Marathon may have participated in three previous
ChicagoMarathons.14 Previous research has found that
experience may eliminate market anomalies such as
the endowment effect (e.g., List 2003). However, experi-
ence in this domain does not provide a clear prediction.
More experienced runners may be less likely to have

reference-dependent preferences or nonround-number
reference points; however, if they do, then they may
be better at hitting targets/goals more easily than run-
ners with less experience. Table 3 reports the amount
of excess mass for marathon runners with varying lev-
els of experience. The results do not suggest that there
are any differences across the experience spectrum (the
differences are small and not monotonic).

4.2. Boston Marathon Qualifying Times
We have suggested that our runners are reference
dependent and that the bunching of finishing time is
driven by the motivation to finish just ahead of a ref-
erence point. However, an alternative explanation for
the bunching is that there is a change in the utility
function at these round numbers due to an extrinsic
benefit, as in Asch (1990). One obvious candidate for
an extrinsic benefit at a round number is qualifying for
the Boston Marathon. The Boston Marathon is the old-
est annual marathon in the world and one of the few
major marathons that has a qualifying time (although
runners may also participate by working through char-
itable organizations). To qualify to participate in the
Boston Marathon, a runner must complete a marathon
faster than a qualifying time that is determined by that
runner’s age and gender. For example, from 2003 to
2012, the large majority of our sample, 18- to 34-year-
old males, had to run a marathon in under 3 hours and
10 minutes to qualify for the Boston Marathon. The
qualifying time for females of the same agewas 3 hours
and 40 minutes. Since the cutoffs for qualifying for the
Boston Marathon are at round numbers, it is conceiv-
able that this extrinsic reward is driving the observed
bunching.15

It is fairly easy to show that the extrinsic benefit of
qualifying to run the Boston Marathon cannot explain
the full extent of our findings. For example, the 3-hour
mark has not been a qualifying time for the Boston
Marathon since 1989. Thus, bunching at 3 hours must
be due to something else. Similarly, from 2003 to 2012,
4 hours only qualified 60- to 64-year-old males and
45- to 49-year-old females. Therefore, the bunching
observed at the 4-hour mark must be driven by these
two very small categories of runners. To systematically
show how sensitive our results are to BostonMarathon
qualifying times, we limit the sample to marathons
conducted between 2002 and 2012 and include those
whose age and gender indicate that the round num-
ber is not associated with a Boston Marathon qualify-
ing time.16 The last two columns in Table 1 indicate
that these sample exclusions do very little to our esti-
mates of excess finishers. The largest changes are at the
3:10 mark, where excess bunching drops from 7.7% to
a still statistically significant 4.2%, and the 3:20 mark,
where excess bunching drops from 1.6% to a statisti-
cally insignificant 0.9%.17
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Table 3. Robustness Results of Excess Mass Measure for Subsets of Years, Number of Finishers, Mean Marathon Finishing
Time, Geographical Region, and Age

3:00 mark 4:00 mark 5:00 mark

Number of Finishing Number of % excess % excess % excess
Data restriction marathons time finishers finishers t-statistic finishers t-statistic finishers t-statistic

Year
≤1990 64 232.59 374,513 16.8 10.81 13.6 12.11 14.3 6.73
1991–2000 267 258.85 1,007,019 21.0 14.40 11.7 17.83 5.9 6.11
2001–2010 4,319 269.86 5,765,069 25.3 34.39 12.6 44.77 5.1 14.25
2011–2013 2,234 267.34 2,607,383 27.1 25.19 14.3 33.59 5.6 9.78

Number of finishers
≥10,000 208 272.06 4,508,237 26.2 32.85 12.6 38.03 4.4 10.36
5,000–9,999 227 256.81 1,579,138 27.1 23.49 12.5 23.08 5.0 6.60
1,000–4,999 1,114 262.49 2,441,691 22.4 20.64 14.4 32.92 6.9 11.89
200–999 2,069 264.25 968,238 14.6 8.76 12.6 18.01 6.9 7.63
<200 3,270 275.75 291,789 14.8 4.63 8.8 6.65 8.3 4.96

Mean marathon finishing time
≤4:00 703 230.75 1,305,498 25.4 28.30 13.5 25.01 7.1 5.66
(4:00,4:30] 3,619 256.68 5,358,117 24.7 34.85 13.6 47.74 5.2 13.58
>4:30 2,566 298.41 3,125,478 19.1 13.49 10.8 22.96 5.6 11.93

Marathon location
United States 5,313 275.40 6,387,995 19.8 27.27 12.4 41.87 5.7 17.35
Europe 603 248.87 2,792,130 29.6 36.99 14.2 36.78 4.9 8.01
Canada 570 253.37 304,951 23.3 7.29 11.2 10.36 4.4 2.41
Other 402 256.20 304,017 21.9 8.87 14.3 11.92 5.7 3.30

Age
≤29 — 275.57 1,168,315 21.9 13.13 13.1 19.27 3.9 5.19
30–39 — 267.30 1,733,982 23.4 19.13 13.5 24.79 5.2 7.84
40–49 — 267.76 1,562,812 27.3 19.25 13.4 24.58 6.2 9.28
≥50 — 285.98 1,027,637 27.7 9.89 12.3 16.54 6.1 7.82

Experience
1st time — 282.55 1,136,885 21.5 11.05 10.7 15.09 4.3 5.70
2nd time — 276.05 272,591 24.1 6.79 11.4 8.42 6.0 3.57
3rd time — 274.47 113,003 30.3 5.54 12.7 5.68 8.2 3.10
4th time — 277.82 158,949 23.3 5.68 11.0 5.71 5.0 2.23

Notes. Analysis uses the total marathon sample (n � 9,789,093) with the exception of the age and experience restrictions. The data restrictions
divide marathon-years by year, number of finishers, mean finishing time, and marathon location. In addition, we divide all participants by
participant age and participant marathon experience as defined in Section 4.1. The excess mass measure uses the Chetty et al. (2011) procedure
with the t-statistics obtained by using 1,000 bootstrap samples.

4.3. Pacesetters and Peer Effects
Most major marathons have pace teams to assist run-
ners in achieving a desired time. For example, the 2013
Chicago Marathon provided pace teams for 3:00, 3:05,
3:10, 3:15, 3:20, 3:25, 3:30, 3:35, 3:40, 3:45, 3:50, 3:55,
4:00, 4:10, 4:25, 4:30, 4:40, 4:55, 5:00, 5:10, 5:25, and 5:45.
The institution of pace teams then could provide an
alternative explanation for the bunching we observe
at round numbers. Although pacesetters are a reason-
able alternative hypothesis, several pieces of evidence
suggest that pacing cannot be the major driver of our
effects. For example, the results we present in the next
subsection on late race effort provision are difficult to
explain with pacesetters. Additional evidence suggests
that pacesetters cannot fully explain our results.

In large marathons such as the Chicago Marathon,
runners cross the start line at very different clock times

(the average difference between finishing clock time
and finishing chip time in 2011 was 11.97 minutes). If
pace teams are the primary explanation for our pattern
of bunching, then a large group of runners should cross
the finish line at the same clock time (since pacesetters
can onlywork if runners are physically in the same area
as the pacesetters). In Figure 4, we plot the finishing
clock time for all Chicago Marathon runners with a
chip time between 3:58 and 4:00. The figure shows that
the clock times for these runners who bunch just short
of 4 hours are very spread out. The fact that the runners
who are bunching just before the 4-hour mark in chip
time are finishing the race at very different clock times
suggests that pacesetting is not a good explanation for
the effects that we find.

A more direct way to rule out pacesetters as the pri-
mary driver of our results is to focus onmarathons that
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Figure 4. Distribution of Clock Times for Runners with a
Chip Time Between 3:58 and 4:00, Chicago Marathon,
1998–2011
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almost surely do not have institutionalized pace teams.
We do so by examining small marathons. Figure 5
plots the distribution of finishing times for marathon-
ers (n � 291,789) who participated in one of the 3,270
marathons with fewer than 200 finishers.18 There con-
tinues to be strong graphical evidence of bunching at
round numbers for thesemarathonswith very few run-
ners. Table 3 shows that the amount of excess mass for
these small marathons is large and significant. Finally,
formalized pace teams are a relatively new innovation,
becoming widespread in the early 2000s, with the first
instance in 1995.19 Table 3 shows that bunching at the
hour marks is substantial for marathons held before
1990 and between 1991 and 2000.
A related alternative explanation is that some of

our bunching is driven by peer effects. In a classic
study, Triplett (1898) found that cycling performance

Figure 5. Finishing Times for Marathons with Fewer than
200 Finishers
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Note. The dark bars highlight the density in the 1-minute bin just
before each 30-minute threshold.

was facilitated by the presence of others. (Other eco-
nomic analyses of peer effects are found in Falk and
Ichino 2006, andMas andMoretti 2009.) It is important
to note that peer effects do not imply that there is no
reference dependence but merely suggest that some of
the bunching around round numbers might be driven
by one marathoner running near another runner who
has a round number time as a reference point. Our sub-
set of small marathons also suggests that peer effects
cannot be driving the bunching results, since the aver-
age difference in finishing times between one runner
and the next runner is 2.61 minutes for all runners and
1.43minutes for runners finishing between 3 hours and
50 minutes and 4 hours and 10 minutes.

4.4. How Does the Bunching Occur?
Individuals can respond to a kink in the tax code in
several different ways. They can choose a job that pays
an income close to the kink, plan their hours starting
in January that will cause them to end at the kink, or
adjust their hours in December in order to finish with
income right at the kink.

Similarly, a marathon runner who has reference-
dependent preferences can employ a number of differ-
ent strategies that each could create bunching at the
reference point. We use the richness of the marathon
data to examine effort provision throughout various
stages of the race. In particular, we explore two poten-
tial mechanisms for the bunching of finishing times.
First, runnersmay adopt a reference point at the start of
the race and pace themselves so as to finish just faster
than that reference point. Second, runners may adjust
their effort toward the end of the race so as to finish
faster than a reference point. All of the analyses below
are conducted on the full-split sample.

To look for evidence of reference-dependent pac-
ing, we examine whether there is bunching in split
times that correspond to a finishing time of a partic-
ular round number. For example, a 3-hour marathon
is equivalent to a 10-kilometer split of 42 minutes and
40 seconds, a distinctly nonround number. Bunching
of 10-kilometer-split times at 42.66 minutes would be
evidence that runners are targeting a particular round
number from the very beginning of the race.

Figure 6 shows the distribution of finishing times
linearly extrapolated from split times at 10, 30, and
40 kilometers, as well as the half marathon. The bunch-
ing at split times equivalent to round number finish-
ing times is not as stark as with actual finishing times
at round numbers, but there is still clear evidence of
bunching at each of these split times, with bunching
becoming more pronounced as runners advance fur-
ther in the marathon. For example, the excess mass
percentages and t-statistics from the Chetty et al. (2011)
analysis at the 3-hour marks are 6.7% and 4.89 (10 kilo-
meters), 15.2% and 10.52 (half marathon), 12.2% and
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Figure 6. Histogram of Extrapolated Finishing Times, Based on Intermediate Splits
(a) 10-kilometer pace
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(b) Half-marathon pace
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Notes. Splits times are extrapolated linearly to project finishing time. For example, the 10-kilometer split is multiplied by 4.2195.

8.15 (30 kilometers), 14.2% and 7.82 (40 kilometers),
and 31.2% and 15.59 (finish). This analysis indicates
that at least part of the bunching of finishing times is
due to planning and pacing to better a round number
reference point.
We next look for evidence that runners adjust their

effort provision at the end of a race based on their prox-
imity to a reference point. We start by calculating each
runner’s pace for the last 2.195 kilometers of the race rel-
ative to that runner’s pace for the first 40 kilometers.We
term this measure a runner’s normalized pace, with a
ratio of 1 indicating constant pace. A runner’s 40-kilo-
meterpace is calculatedbymultiplying the40-kilometer
split by 42.195/40.20 Panel (a) of Figure 7 plots the nor-
malizedpace against the 40-kilometer pace, focusing on
the runners who are on pace to finish in approximately
4 hours. The vertical axis in panel (a) indicates that run-
ners ran the final 2.195 kilometers of their marathon on
average 3%–8% slower than they ran the first 40 kilo-
meters. However, normalized pace is clearly driven by

a runner’s pace through 40 kilometers. Runners who
were on pace to finish between 3:45 and 3:55 or between
4:05 and 4:15 ran approximately 6%–8% slower in the
last 2.195 kilometers. In contrast, runners who were
on pace to finish close to the 4-hour mark (3:55–4:02)
ran only 4%–6% slower in the last 2.195 kilometers.
The sharp difference in relative pace as a function of
proximity to the reference point is highlighted by the
relatively narrow 95% confidence intervals. (We omit
statistical tests because of the narrow confidence inter-
vals.) Panel (b) of Figure 7 zooms out to show this
normalized pace for runners across a wider range of
40-kilometer-pace times. The same qualitative pattern
around 4 hours is observed at other round numbers
in the distribution. Thus, there is clear evidence that
runners finish the last 2.195 kilometers relatively faster
when they are close to a round number thanwhen they
are farther away.

Note that this pattern of effort allocation is not
because some runners choose different strategies for
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Figure 7. Normalized Pace for Last 2.195 Kilometers as a Function of 40-Kilometer Pace
(a) Runners on 3:45 to 4:15 pace through 40 kilometers
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Notes. Normalized pace is calculated as the ratio of the pace for the last 2.195 kilometers (in minutes per kilometer) over the pace for the
first 40 kilometers (also in minutes per kilometer). The plot shows normalized pace as a function of pace through 40 kilometers, linearly
extrapolated to finishing time (i.e., the 40-kilometer split multiplied by 42.195/40); 95% confidence intervals are depicted by the shaded
regions.

allocating energy. For example, the pattern could be
explained by a mixture of runners who run more
quickly from 30 to 40 kilometers, expendingmore effort
so they can coast in, and runners who are more con-
servative, saving energy for a last push. A mixture of
this kind would produce what looks like reference-
dependent effort provision but would also result in a
negative correlation between normalized pace from 30
to 40 kilometers and normalized pace from 40 kilo-
meters on. On the contrary, the Spearman correlation
between normalized pace from 30 to 40 kilometers and
normalized pace over the last 2.195 kilometers is 0.54
(p < 0.001). The correlation remains positive (ρ � 0.49,
p < 0.001) even when we drop the 25% of runners who
slow down the most from 30 to 40 kilometers. Indeed,

Figure 8. Percentage of Marathoners Who Speed Up Over the Last 2.195 Kilometers

(a) Runners on 3:45 to 4:15 pace through 40 kilometers
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Note. Speeding up is determined by comparing the pace for the last 2.195 kilometers to the pace for the first 40 kilometers; 95% confidence
intervals are depicted by the shaded regions.

the pattern documented in Figure 7 holds if we normal-
ize the pace for the last 2.195 kilometers relative to the
pace from 30 to 40 kilometers.

Figure 7 shows that effort provision in the last 2.195
kilometers of a race depends heavily on a runner’s
proximity to a round number reference point. This
speed adjustment can occur in different ways. For
example, runners who are close to running 4 hours
may be more likely to increase their speed relative to
runners who are not near a round number. Alterna-
tively, runners who are close to 4 hours may just be less
likely to decrease their speed.We look at both speeding
up and slowing down in Figures 8 and 9.

Figure 8 plots the probability that a runner runs
the last 2.195 kilometers at a faster pace than the first
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Figure 9. Percentage of Marathoners Who Slow Down over the Last 2.195 Kilometers by 10% or More
(a) Runners on 3:45 to 4:15 pace through 40 kilometers
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(b) Runners on 2:40 to 5:20 pace through 40 kilometers
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Note. Slowing down is determined by comparing the pace for the last 2.195 kilometers to the pace for the first 40 kilometers; 95% confidence
intervals are depicted by the shaded regions.

40 kilometers. Panel (a) indicates that approximately
30% of runners increase their speed in the last 2.195
kilometers. This fraction, however, increases to almost
40% if a runner was right on target to finish at a round
number. Once again, panel (b) shows the likelihood
of speeding up across a wider range of 40-kilometer-
pace times.
Most runners, however, are unable to maintain their

pace near the end of the race. In fact, runners ran on
average 5.6% slower over the last 2.195 kilometers. In
Figure 9, we show the probability that a runner ran
at least 10% slower over this last interval. Panel (a)
depicts this probability near the 4-hour mark, whereas
panel (b) looks at a wider range of 40-kilometer-pace
times. We find that individuals who were just on pace
to reach a round number were significantly less likely
to slow down in the last stretch of the marathon than
runners who were not in range to finish ahead of the
reference point.

Collectively, Figures 6–9 indicate that finishing just
short of a round number is driven by effort provision
both in terms of planning and pacing, as well as the
dynamic effort provision that occurs at the end of the
marathon.

5. Discussion
We found significant bunching of marathon finish-
ing times at round numbers. We hypothesized that
this bunching was driven by reference dependence,
as captured by models such as prospect theory, and
showed that the stark bunching around the 30-minute
marks is not caused by external benefits, such as qual-
ifying for the Boston Marathon, or institutional fea-
tures, such as pace groups. We proposed and found
evidence for two mechanisms, planning and pacing

and reference-dependent effort provision near the fin-
ish line. Although we do not report on these analyses
here, we observe similar patterns for shorter racing dis-
tances, such as 10 miles and half marathons. However,
these patterns are less pronounced, perhaps because
these shorter races are run more often and thus refer-
ence points such as last or best previous performance
are likely to substitute for round numbers.21
Our paper makes a number of broader contribu-

tions to the literature on reference dependence. First,
our paper highlights the methodological benefits of
nonparametric bunching estimation procedures for
investigating patterns and implications of reference
dependence. Unlike the studies of Camerer et al. (1997)
and Crawford and Meng (2011), our procedure is non-
parametric in that we do not estimate a reference point
and instead allow the reference point to “pop out.”
This strategy is most clearly exploited in our analy-
ses of effort provision toward the end of a marathon.
This research clearly complements a growing body of
research that follows similar strategies for identifying
and estimating models of reference dependence. For
example, Rees-Jones (2014) tested for evidence of loss
aversion in tax sheltering and found significant bunch-
ing of tax returns around a zero balance. Baker et al.
(2012) showed that stock offer price acceptances bunch
at recent peak prices, consistent with recent peaks serv-
ing as reference points. Finally, DellaVigna et al. (2015)
found bunching at unemployment insurance benefit
cut points and argued that recent income serves as a
reference point.

Second, our paper broadens the class of potential
nonstatus-quo reference points. Much current work on
reference dependence has taken either expectations or
the status quo to be the reference point. The round
number reference points in this investigation may be
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what Rosch (1975) termed cognitive reference points.
Round numbers (as well as focal colors) are cognitive
reference points in the sense that stimuli are naturally
compared to these reference points. Pope and Simon-
sohn (2011), for example, found that Major League
Baseball players are more likely to finish the season
with a 0.300 than a 0.299 batting average, and that
high school students who take the SAT and just miss
a round number score are more likely to retake the
exam than those who just beat it. Because round num-
bers are so cognitively accessible, one clear organiza-
tional implication is that sales figures (or performance
on many naturally occurring productivity tasks) may
bunch around round numbers, even when these round
numbers are not tied to extrinsic benefits (such as
bonuses).
These round numbers may also be goals that indi-

viduals set to motivate themselves (Heath et al. 1999).
Sackett et al. (2015) found that most marathoners set
goals, but that these goals were for the most part
optimistic, with 26% of runners achieving their self-
reported goals. Thus, goals are clearly related to expec-
tations, but unlike in the theoretical framework put
forth by Kőszegi and Rabin (2006, 2007, 2009), goals
are not always rational expectations. Thus, this paper
also provides initial empirical linkages between a large
psychological literature on the importance of goals (see
Austin and Vancouver 1996 for a review of the psychol-
ogy literature on goals, and Heath et al. 1999 for a psy-
chological proposal that goals act as reference points)
and emerging theoretical work in economics on goals
and self-control (Hsiaw 2013, Koch andNafziger 2011).

That said, in this setting, as in most natural field set-
tings, other standards, besides round numbers, might
also serve as reference points. We propose that there
may be nothing special psychologically about round
numbers relative to other reference points that a run-
ner, or more generally an economic agent, might adopt.
Put differently, we would expect empirical patterns
similar to the ones we have documented in this paper
to hold for nonround-number reference points. Round
numbers do, however, play a unique and essential role
in our empirical strategy. It is intuitive and indeed
true that round numbers often serve as reference
points, and, of course, we know when a number is in
fact round.
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Endnotes
1Section A.1 of the online appendix contains a list of field demon-
strations of reference dependence.
2Temporal demonstrations of effort provision are relatively rare.
See, however, Larkin (2014) and Misra and Nair (2011) for recent
examples.
3Similarly, accounting research has documented bunching in firm
financial performance: earnings, change in earnings, and earnings
relative to analysts’ consensus forecasts (e.g., Burgstahler andDichev
1997, Hayn 1995). Do managers set these profit targets as goals (an
intrinsic reference point) or are they concerned that investors, ana-
lysts, and the media are focused on these profit targets (an audience
effect)?
4A similar argument could be made about football coaches who
do not follow the optimal fourth-down strategy outlined by Romer
(2006). Are these football coaches acting suboptimally, or are they
merely reacting appropriately to fans, writers, and owners who are
not sufficiently sophisticated to know that going for a first down is
a better strategy than punting? Either way, someone, the coach or
the audience, is making a mistake. See also Lefgren et al. (2015) for a
similar point regarding outcome bias.
5The standard prospect theory value function is invariant to multi-
plicative scale. As a result, the notion of “more loss averse” could
involve a “stretching” along the loss dimension, a “contraction”
along the gain dimension, or both. Each interpretation yields bunch-
ing, although with different implications for whether the bunching
comes from below (losses are stretched) or above (gains are con-
tracted). Recent psychological (McGraw et al. 2010), measurement
(Markle et al. 2015), and neuroimaging research (e.g., Tom et al.
2007) provides indirect but converging evidence for stretching of
the scale in the loss domain, which we use as justification of this
interpretation.
6Many of the marathons in our sample do not distinguish between
chip time and clock time. In addition, the technology was not
adopted by large marathons until 1996, when the Boston Marathon
was the first U.S. marathon to use RFID chips to record marathon
times (O’Connor 2007). When we only have a single finishing time as
a measure of performance, we treat that time as if it were a chip time.
Analyses reported in Endnote 13 indicate that this is a conservative
assumption.
7Our data set comes from results posted on the websites of individ-
ual marathons and from http://www.marathonguide.com/, which
has a relatively complete set of results for U.S. and Canadian (as
well as some international) marathons from 2000 to the present. A
full list of marathons in our sample is available at http://faculty
.chicagobooth.edu/george.wu/research/marathon/list.htm.
8The considerably faster times in the full sample reflect a signif-
icantly older sample of marathon finishing times. In our sample,
marathon finishing times have gotten slower by an average of 54 sec-
onds each year.
9We created a panel data set of marathon finishing time by using
names and ages as identifiers.We then testedwhether a runner’s pre-
vious marathon time served as a reference point for the subsequent
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version of the same marathon. We found very limited evidence for
bunching at this potential reference point.
10Figure A.1 in the online appendix contains a plot of the residuals
between the actual density function and a 15th-order polynomial
fitted to the density function in Figure 2.
11Note that all of these thresholds are to the left of 4:17:20, the
median of the distribution, and thus this measure of excess mass
would be negative for normal, lognormal and many other single-
peaked continuous distributions.
12 In Section A.4 of the online appendix, we conduct an alternative
test in which we examine whether there is a significant disconti-
nuity in the density function at round numbers and whether the
largest discontinuity occurs at the round number, or merely around
the round number. This test, which uses a regression discontinuity
procedure developed by McCrary (2008), produces similar results to
the analysis presented here.
13To verify that runners are using chip times and not clock times to
evaluate their performance, we repeated the same analysis for clock
time instead of chip time, finding considerably stronger results for
chip time. To do so, we restricted our sample to runners with both
clock and chip times (n � 5,618,168). Using the Chetty et al. (2011)
procedure on this sample, we estimated 5.6% excess mass for clock
time and 13.3% excess mass for chip time at four hours. The effect is
even more dramatic when we restrict our analysis to runners with
a clock time at least one minute slower than their chip time (n �

4,070,840) (2.9% excess mass for clock time and 13.1% excess mass
for chip time) or at least two minutes slower than their chip time
(n � 3,253,757) (1.0% excess mass for clock time and 12.6% excess
mass for chip time). We find similar results at other round numbers.
14The data used for this heterogeneity cut are 11 of the 12 largest U.S.
marathons (excluding Honolulu). For each of these marathons, we
have the first and last name of each runner. We restrict the sample to
names that are not so common as to show up multiple times in the
same marathon (this name restriction drops 8% of the sample). We
also restrict the sample to marathons run after 2003 (the years before
2003 are used to help to calculate the number of marathons a runner
has run as of 2003 and beyond). Based on this sample, we are able to
construct a measure for each observation that indicates how many
times the runner previously ran a given marathon.
15From 1997 to 2012, the Boston Marathon rounded times down,
and thus a time of 3:10:59 qualified a 31-year-old male runner. This
threshold suggests that we should find bunching at 3:11, rather
than 3:10. In contrast, we observe considerably more excess mass for
[3:06, 3:10] (6.1%) than for [3:07, 3:11] (3.9%).
16To estimate these new effects, we restrict the data to marathons
for which we have both the age and gender for each runner. The
third-to-last column in Table 2 replicates our earlier results using
this restricted sample and serves as a baseline to compare the Boston
Marathon qualifying results.
17Some marathons have limited capacity, with demand for entries
outstripping supply. Although entry is often determined by lottery,
some marathons provide a “guaranteed entry” based on time quali-
fication. In most cases these standards are more challenging than the
Boston Marathon qualifying standards. For example, the standards
for the Berlin Marathon are 2:45 for men 45 and under, and 3:00 for
women 45 and under. The New York Marathon standards are almost
as difficult, with a qualifying time of 2:53 for males 18–34. Note that
8 of the 13 qualifying times under 4 hours for New York occur at
nonround numbers such as 2:53. Qualifying times for the Chicago
Marathon are 3:15 for men and 3:45 for women. Although the Hous-
ton Marathon has a 4-hour qualifying time for men and women, the
relatively small size of this marathon (6,664 finishers in 2013), the
difficulty of achieving most guaranteed entry times, and the robust-
ness of our results across round number levels, locations, and years

suggests that these standards cannot fully explain the observed pat-
terns of bunching.
18 Indeed, the website http://findmymarathon.com/ indicates that
none of these marathons have pace teams.
19http://runcim.org/got-pacers-you-bet/ (accessed April 10, 2016).
20Because the split data are somewhat noisy (almost 5% of the results
have a slower 40-kilometer split than finishing time), we excluded
the bottom and top 5% of normalized pace data.
21Grant (2014) shows how ultramarathoners exert effort to finish a
100-mile race within 24 hours.
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