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1 Introduction

Consider an unbalanced panel time series yit for i = 1, . . . , N and t = 1, . . . , T , where each

variable can come from a different distribution. Such heterogeneous panel data sets may occur

in many areas of economics and finance. The need for a joint modeling framework for variables

from different distributions with common features has become more apparent in recent years

with the increasing availability of data resources. For example, the construction of an accurate

and reliable business cycle indicator requires many different measurements of economic activity.

Some of these may have a Gaussian distribution (typical macroeconomic time series), whereas

others are fat-tailed (such as stock returns), integer-valued or binary (such as the well-known

NBER recession dates), or categorical (such as low/moderate/high consumer confidence levels)

variables. All of these variables reflect a common exposure to the business cycle, but at the

same time each variable requires its own appropriate distribution. We propose an observation

driven dynamic modeling framework for the simultaneous analysis of mixed-measurement time

series that are subject to common features.

An additional challenge in multiple time series analysis is that the observation frequencies

can be different for each time series. Some series are observed every year while other series

are observed every quarter or month. A simultaneous analysis of time series with different

observation frequencies is a challenging task. Different methodologies have been developed

for this purpose. For example, Mariano and Murasawa (2003) adopt a state space approach

for the construction of a coincident business cycle index using quarterly and monthly data

while Ghysels, Santa Clara, and Valkanov (2006) adopt a mixed-data sampling analysis for

predicting the volatility of financial time series using intra-daily returns of different frequencies.

Our mixed-measurement modeling framework incorporates a mixed-data sampling approach by

explicitly formulating a high-frequency time series process and allowing for missing observations

in the analysis.

Our main motivation to develop a mixed-measurement, mixed-frequency dynamic modeling

framework is for the estimation, analysis and forecasting of credit risk. Credit risk analysis has

become highly relevant in the aftermath of the 2008 financial crisis. Financial institutions and

regulators are specifically trying to assess what is the common variation in firm defaults in order

to correctly assess risk. In our empirical analysis we focus on the systematic variation in cross-
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sections of macroeconomic data, credit rating transitions, and bond loss rates upon default

(also known as loss given default). Our data set exhibits the complications as discussed above.

While the number of credit rating transitions between rating categories is modeled as a discrete,

ordered random variable, the macroeconomic variables are modeled as continuous variables, and

the percentage amounts lost on the principal in case of default are modeled as continuous and

bounded between zero and one. Some of the macro series are observed quarterly while others

are observed monthly. Furthermore, the loss given defaults are only observed if there are

defaults, such that we have many missing observations in these series by construction. Finally,

all series exhibit some common dynamic features related to the business cycle. Loss rates and

defaults both tend to be high during an economic downturn, indicating important systematic

covariation across different types of data. In our modeling framework, the commonalities are

captured by latent dynamic factors. The total data set forms an unbalanced panel with 19,540

rating transition events for 7,505 companies, 1,342 cases of (irregularly spaced) defaults with

associated losses given default, and six selected macroeconomic series of mixed quarterly and

monthly frequency.

After the parameters in the model have been estimated, we can use the model to forecast

credit risk conditions in the economy and to construct predictive loss densities for portfolios of

corporate bonds at different forecasting horizons. The model can therefore be used to stress test

current credit portfolios and determine adequate capital buffers using the high percentiles of

the simulated portfolio loss distributions. Our modeling framework provides a relatively simple

observation driven alternative to the parameter driven frailty models of McNeil and Wendin

(2007), Koopman, Lucas, and Monteiro (2008), and Duffie, Eckner, Horel, and Saita (2009).

In addition, our proposed model allows for the identification of three components of credit risk

simultaneously: macro risk, rating migration/default risk, and loss given default risk. Earlier

models have concentrated on defaults only, defaults and ratings, or defaults and macro risk.

Our proposed modeling framework is entirely observation driven. This is a distinguishing

feature of our approach. It allows parameters to vary over time as functions of lagged dependent

variables and exogenous variables. The time-varying parameters are stochastic, but perfectly

predictable given the past information. The alternative class of parameter driven models, by

contrast, does not share this property of perfect predictability; see Cox (1981) for a more

detailed discussion of the two classes of models. The main advantage of an observation driven
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approach is that the likelihood is known in closed form. This leads to simple procedures for

likelihood evaluation and in particular avoids the need for simulation based methods to evaluate

the likelihood function. Observation driven time series models have become popular in the

applied statistics and econometrics literature. Typical examples of these models include the

generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and

Bollerslev (1986), the autoregressive conditional duration (ACD) model of Engle and Russell

(1998), and the dynamic conditional correlation (DCC) model of Engle (2002). In the same

spirit, we develop a panel data model for mixed-frequency observations from different families

of parametric distributions which are linked by a small set of latent dynamic factors. The

likelihood function is available in closed form and can be maximized in a straightforward way.

A number of well-known methods for the modeling of large time series panels and based on

latent dynamic factors have been explored in the literature, such as (i) principal components

analysis in an approximate dynamic factor model framework, see, for example, Connor and

Korajczyk (1988, 1993), Stock and Watson (2002), Bai (2003), Bai and Ng (2002, 2007); (ii)

frequency-domain estimation, see, for example, Sargent and Sims (1977), Geweke (1977), Forni,

Hallin, Lippi, and Reichlin (2000, 2005); and (iii) signal extraction using state space time series

analysis, see for example, Engle and Watson (1981), Watson and Engle (1983), Doz, Giannone,

and Reichlin (2006) and Jungbacker and Koopman (2008). When compared to the approaches

of (i) and (ii), our current framework provides an integrated parametric framework for obtain-

ing in-sample estimates and out-of-sample forecasts for the latent factors and other variables in

the model. When compared to the state space methods of (iii), the likelihood function in our

modeling framework is known in closed form, even when the model is fully or partially nonlin-

ear and/or when it includes non-Gaussian densities. In our framework we provide basic and

simple procedures for likelihood evaluation and parameter estimation without compromising

the flexibility of model formulations to construct effective forecasting distributions.

In Section 2, we introduce observation driven mixed-measurement dynamic factor models.

We present our empirical study using the new framework for the joint modeling of macro-

economic dynamics, credit rating and default dynamics, and losses given default dynamics in

Section 3. In Section 4, we use the new model to estimate and forecast time-varying credit risk

and loss given default risk factors jointly with macroeconomic variables. Section 5 concludes.

An online Appendix is available with additional estimation and model specification results.
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2 Mixed-measurement dynamic factor models

2.1 Model specification

Consider the N × 1 vector of variables yt. At time t, Nt elements are observed and N − Nt

elements are treated as missing, with 1 ≤ Nt ≤ N . Since different time series can be observed

at different frequencies and each time series can be observed within different time intervals,

missing observations are a common feature in our analysis. The measurement density for the

ith element of yt is given by

yit ∼ pi(yit|ft,Ft−1;ψ), for i = 1, . . . , N, t = 1, . . . , T, (1)

where ft is a vector of unobserved factors or time-varying parameters, Ft = {y1, . . . , yt} is the set

of past and concurrent observations at time t, and ψ is a vector of static unknown parameters.

In our mixed-measurement framework, the densities pi(yit|ft,Ft−1;ψ), for i = 1, . . . , N , can

originate from different families of distributions. All distributions, however, depend upon the

same M × 1 vector of common unobserved factors ft. We assume a factor model structure

in which the yit’s at time t are cross-sectionally independent conditional on ft and on the

information set Ft−1. We then have

log p(yt|ft,Ft−1;ψ) =
N∑
i=1

δit log pi(yit|ft,Ft−1;ψ), (2)

where δit takes the value one when yit is observed and zero when it is missing. The density in (2)

may also depend on a vector of exogenous covariates. We omit this extension here to keep the

notation simple. We further emphasize that the notation above slightly deviates from Creal,

Koopman, and Lucas (2012), where the conditioning information includes ft, . . . , f1. Given

that our model is observation driven, extending the conditional information in (2) by ft, . . . , f1

is not needed since it is subsumed by the conditioning set Ft−1. Furthermore, ft is a known,

deterministic function of Ft−1 and hence the conditioning on ft is also redundant. We leave ft

in our notation to associate the process of time-varying parameter ft with (2).
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The dynamic factor ft is modeled as an autoregressive moving average process given by

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1, t = 1, . . . , T, (3)

where s1, . . . , sT is a martingale difference sequence with mean zero, ω is an M × 1 vector of

constants and the coefficients Ai and Bj are M ×M parameter matrices for i = 1, . . . , p and

j = 1, . . . , q. The coefficients can be specified and restricted so that the process ft is covariance

stationary. The unknown static parameters in (1) together with the unknown elements in ω,

A1, . . . , Ap and B1, . . . , Bq are collected in the static parameter vector ψ. The initial value f1

is taken as fixed at the unconditional mean of the stationary process ft.

We follow Creal, Koopman, and Lucas (2012) by setting the innovation st in (3) equal to

the score of the log-density p(yt|ft,Ft−1;ψ), for t = 1, . . . , T . In particular, st is defined as

st = St∇t, where ∇t =
∂ log p(yt|ft,Ft−1;ψ)

∂ft
, (4)

and where St is an appropriately chosen scaling matrix. The scaled score st in (4) is a function of

past observations, factors, and unknown parameters. It follows immediately from the properties

of the score that the sequence s1, . . . , st is a martingale difference. The dynamic factors ft are

therefore driven by a sequence of natural innovations.

For particular choices of the measurement density p(yt|ft,Ft−1;ψ) and the scaling matrix

St, Creal, Koopman, and Lucas (2012) show that the modeling framework (2)–(3) reduces to

popular models such as the GARCH model of Engle (1982) and Bollerslev (1986), the ACD

model of Engle and Russell (1998), the multiplicative error model of Engle and Gallo (2006),

as well as other models. For our mixed-measurement model in which we allow for missing

observations and for different observation frequencies, we construct the scaling matrix from the

eigendecomposition of the Fisher information matrix as given by

It = Et−1[∇t∇′t] = E [∇t∇′t |Ft−1 ] .

The eigendecomposition of the matrix It is denoted as

It = UtΣtU
′
t ,
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with the columns of the M × r matrix Ut equal to the eigenvectors of It corresponding to its

nonzero eigenvalues, and the r× r diagonal matrix Σt containing the nonzero eigenvalues of It.
We have implicitly defined r as the rank of It. The scaling matrix is then given by

St = UtΣ
−1/2
t U ′t , (5)

which can be regarded as the generalized square root inverse matrix of It. Given that St is based

on the Fisher information matrix, the gradient ∇t is corrected for the local curvature of the

measurement density p(yt|ft,Ft−1;ψ) at time t. It also ensures that the martingale difference

series st has a finite, idempotent covariance matrix. For example, when the information matrix

is nonsingular, the covariance matrix of st equals the identity matrix for all times t.

In the mixed-measurement setting with measurement densities specified by (1) and (2), the

score vector at time t takes the simple additive form

∇t =
N∑
i=1

δit∇i,t =
N∑
i=1

δit
∂ log pi(yit|ft,Ft−1;ψ)

∂ft
, (6)

where δit is defined below (2). Similarly, the conditional information matrix is also additive,

It = Et−1[∇t∇′t] =
N∑
i=1

δitEi,t−1[∇i,t∇′i,t]. (7)

It is therefore straightforward to compute the scaling matrix in (5).

We stress the difference between our current approach and the state space approach to

dynamic factor analysis; see, for example, Engle and Watson (1981) and Watson and Engle

(1983). Our approach here is based on an observation driven time series model as defined in

Cox (1981). This means that the value of ft is known conditional on Ft−1, because ft is a

deterministic function of past data. As a result, the likelihood function is known analytically

and parameter estimation is straightforward; see also Section 2.3. The factors can also easily be

estimated using the model updating equation (3) by noting that the estimate of ft depends on

past values of yt only. By contrast, in a state space dynamic factor analysis, the factors ft are

not deterministic when we condition on Ft−1. Instead, they are still subject to their own source

of error. The factors are therefore inherently unobserved. Computation of the log-likelihood
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function requires integrating over the path space of ft taking account of the dynamic properties

of ft. Also, filtered estimates of ft in that case depend on current and past values of yt, while

smoothed estimates of ft depend on current, past, and future values of the data. Hence our

current observation driven approach is relatively simple to implement, while it can still account

for most of the flexibility of a standard parameter driven dynamic factor model, including its

ability to measure mixed measurements under a common factor structure.

2.2 Measurement of the factors

The estimation of the factors at time t given past observations Ft−1 = {y1, . . . , yt−1}, for a

given value of ψ, is carried out as a filtering process. At time t, we assume that Ft−1 and the

paths f1, . . . , ft and s1, . . . , st−1 are given. When observation yt becomes available, we compute

st as defined in (4) with scaling matrix (5). Subsequently, we compute ft+1 using the recursive

equation (3). At time t+ j, once observation yt+j is available, we can compute st+j and ft+1+j

in the same way for j = 1, 2, . . .. In practice, the filtering process at t = 1 starts with f1 being

set to some fixed value. The initial value f1 can also be treated as a part of ψ or as a random

variable; see, for example, ?).

Missing values in data sets are intrinsically handled simply through the specifications of

∇t and It in (6) and (7), respectively. The variables ∇t and It enable the computation of st.

When all entries in yt are missing, it follows that st = 0 such that ft+1 slowly reverts to its

long-term average.

When the time series panel is unbalanced, missing values appear naturally at the beginning

and/or at the end of the sample period. They also appear when time series are observed at

different frequencies. The overall time index t refers to a time period associated with the

highest available frequency in the panel. Time series observed at lower frequencies contain

missing values at time points for which no new observations are available. For example, a panel

with monthly and quarterly time series adopts a monthly time index. A quarterly time series

is then arranged by having two monthly missing values after each (quarterly) observation. The

precise arrangement depends on whether the variable represents a stock (measured at a point

in time) or a flow (measured as a quantity over time, typically an average).
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2.3 Maximum likelihood estimation

Observation driven time series models are attractive because the log-likelihood is known in

closed form. For a given set of observations y1, . . . , yT , the vector of unknown parameters ψ

can be estimated by maximizing the log-likelihood function with respect to ψ, that is

ψ̂ = arg max
ψ

T∑
t=1

log p(yt|ft,Ft−1;ψ), (8)

where p(yt|ft,Ft−1;ψ) is defined in (2). The evaluation of log p(yt|ft,Ft−1;ψ) is easily incorpo-

rated in the filtering process for ft as described in Section 2.2.

The maximization in (8) can be carried out using a conveniently chosen quasi-Newton

optimization method that is based on score information. The score here is defined as the

first derivative of the log-likelihood function in (8) with respect to the constant parameter

vector ψ. Analytical expressions for the score function can be developed, but typically lead

to a collection of complicated equations. In practice, the maximization of the log-likelihood

function is therefore carried out using numerical derivatives.

Identification of the individual parameters in ψ needs to be considered carefully in factor

models. A rotation of the factors by some nonsingular matrix may yield an observationally

equivalent model. To make sure that all coefficients in ψ are identified, we impose the restriction

ω = 0 in (3). We also restrict the set of factor loadings. In particular, we restrict a set of M

rows in the factor loading matrix to form a lower triangular matrix with ones on the diagonal.

We assume that the matrices Ai and Bj of (3) for i = 1, . . . , p and j = 1, . . . , q are diagonal.

2.4 Forecasting

The forecasting of future observations and factors is straightforward. The forecast fT+h, with

h = 1, 2, . . . , H, can be obtained by iterating the factor recursion (3) in which the sequence

sT+1, . . . , sT+H is treated as a martingale difference. To obtain forecasting expectations of

nonlinear functions of the factors, the conditional mean of the predictive distribution needs to

be computed by simulation due to Jensen’s inequality. Simulating the factors is straightforward

given the recursion (3). Simulation is also the appropriate tool if other characteristics of the

forecasting distribution are of interest, such as percentiles and quantiles.
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Forecasting in our modeling framework has some advantages when compared to the two-

step forecasting approach in the approximate dynamic factor modeling framework of Stock

and Watson (2002). Forecasting the future observations and factors in our framework does

not require the formulation of an auxiliary model. Parameter estimation, signal extraction,

and forecasting occurs in a single unified step. In the two-step approach, first, the factors are

extracted from a large panel of predictor variables, and, second, the forecasts for the variables

of interest are computed via regression with the lagged estimated factors as covariates. Our

simultaneous modeling approach retains valid inference results that may be lost in a two-step

approach, and it ensures that the extracted factors are related to the variables of interest

throughout the estimation and forecasting process.

3 An application to macroeconomic and credit risk

The interest in credit risk analysis has increased considerably since the 2007-2008 financial

crises in both the professional and academic finance literature. Credit risk is often discussed in

terms of the probability of default (PD) and the loss given default (LGD): PD is the probability

that a firm or company goes into default over a specific time period, and LGD is the fraction

of the capital that is lost in case the firm enters default. It is argued that both PD and LGD

are driven by the same underlying risk factors; see the discussions in Altman, Brady, Resti,

and Sironi (2003), Allen and Saunders (2004), and Schuerman (2006). The implication is that

LGD is expected to be high when PD is expected to be high as well. As a result, the total

credit risk profile of a portfolio increases.

In our empirical study, we apply the general modeling framework of Section 2 to investigate

the linkages between macroeconomic and credit risk. We analyze firm-level data on defaults

and on changes in credit quality to obtain insight into the dynamic relations between PD, LGD

and macroeconomic fluctuations. The model for credit quality is based on a dynamic ordered

logit distribution and the model for LGD is based on a dynamic beta distribution. Both of

these are new to the literature; see Gupton and Stein (2005) and CreditMetrics (2007) for static

versions of our model. The macroeconomic variables are specified as linear Gaussian processes.
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3.1 Data

Our available time series panel consists of three groups of variables: macroeconomic, default

and ratings, and loss given default (LGD). The macroeconomic group has six time series (five

monthly and one quarterly) that we have obtained from the FRED database at the Federal Re-

serve Bank of St. Louis. General macroeconomic conditions are reflected by three variables: (i)

the annual change in log industrial production, IPt−IPt−12, where IPt is industrial production

at the end of month t; (ii) the annual change in the unemployment rate, URt −URt−12, where

URt is the unemployment rate at the end of month t; (iii) the annual change in log real gross

domestic product (GDP), RGDPt − RGDPt−12 where RGDPt is real GDP at the start of the

first month t of a quarter, and missing otherwise. These three variables are strongly related to

the state of the business cycle and intend to capture the extent of economic activity.

General financial market and credit risk variables are included to account for the market’s

perception of the probability of default (PD). We include the credit spread, annual change in

stock market log-prices (returns), and stock market volatility all at a monthly frequency. The

credit spread is measured as the spread rBaat − rGov10t between the yield rBaat on Baa rated

bonds and the yield rGov10t on 10-year treasury bonds at the end of month t, where the ratings

are assigned by Moody’s. Credit spread movements capture two components of credit risk:

changes in the market’s perception of PDs and LGDs; and changes in the price that the market

charges for this type of risk. Particularly the first of these two components can be relevant for

determining default rate dynamics.

The stock market variables are the monthly observed annual returns rt = log(SPt/SPt−12)

on the S&P 500 index, where SPt is the S&P500 index at the end of month t. The volatility is

measured by the annualized daily realized volatility computed over the current month, i.e.,

(σ̂rvt )2 =
252

nt

nt∑
i=1

(Rt,i − R̄t)
2, R̄t =

1

nt

nt∑
i=1

Rt,i,

where nt is the number of working days in month t, Rt,i is the S&P500 return over day i of

month t and the value 252 proxies for the number of trading days in a year. Both the stock

market return and its volatility can be linked to default risk through the structural model of

Merton (1974) in which firms with higher asset values or lower asset volatilities are less likely to

11



default. In the aggregate, the dynamics of the two can be approximated by equity returns and

equity volatilities given that the average debt-equity proportions of the S&P index constituents

are relatively stable over time. The sample period January, 1981 to March, 2010 contains 350

monthly observations. All six macroeconomic variables are standardized by subtracting their

subsequent sample means and dividing by their sample standard deviations.

As our current empirical study focuses on the joint modeling of a diversity of macroeconomic

and credit related variables of very different type in a unified dynamic modeling framework,

we restrict ourselves here to the limited but representative set of six macroeconomic variables

above. More macro variables can be included in the analysis at the expense of an increase

in computation time. Here, however, we seek to enlarge the cross-sectional dimension of our

panel data set by mixing the macro variables with credit related time series. This yields a

cross-sectional dimension for our panel time series that goes up to 48 dimensions for specific

periods.

The default and rating transition variables contain credit ratings assigned by Moody’s,

which reflect the credit quality of the firm. We re-group the ratings of Moody’s into four rating

groups: Investment Grade (IG) that contains Moody’s rating grades Aaa down to Baa3; double

B (BB) that contains Ba1–Ba3; single B (B) that contains B1–B3; triple C (CCC) that contains

Caa1–C3. A company that defaults is marked as a transition to the absorbing category D. The

vector of possible ratings is R = (D, CCC, B, BB, IG)′. To account for all possible transitions,

including staying in the current rating group, we have five transition types that a firm can make.

Hence we keep track of twenty (four times five) different time series for rating transitions and

defaults. In April 1982 and October 1999 Moody’s redefined some of their rating categories.

This caused a large number of artificial rating transitions for some categories. We handle these

events in our model by including two dummy variables for these two months.

The loss given default (LGD) measures the fraction of the total exposure that is lost con-

ditional on a firm defaulting. Our sample contains 1342 defaults from which we obtain 1125

measurements of LGD. The LGD is measured from financial market data using what is known

as the market implied LGD. Market implied LGDs are constructed by recording the price of

a traded bond just before the default announcement and the market price of the same bond

30 days after the default announcement. The percentage drop in price then defines the loss

fraction or LGD; see McNeil, Frey, and Embrechts (2005) for further details on the different
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ways to measure LGDs. Missing LGDs in the database in case of default are due to the under-

lying bonds not being traded in the market or to the unavailability of price information on the

bonds in the underlying data sources. In month t, a number of firms Kt ≥ 0 may default. The

dimension Kt of the vector of LGD measurements at time t therefore varies over time from 0

to 22 (maximum number of defaults in one day is 22 in our data set).

3.2 The components of the joint model

The panel time series yt can be partitioned into three sub-vectors yt = (ym ′t , yc ′t , y
r ′
t )′ where

ymt contains the six macroeconomic variables, yct contains the observed proportions of twenty

possible credit rating transitions, and yrt contains the LGD variables. The business cycle features

in the macroeconomic variables are assumed to influence credit ratings and loss given default

rates. On top of this, credit ratings and LGDs also share common features in their remaining

dynamics. We consider the following observation densities at time t

ymt ∼ N (µt,Σm|ft,Ft−1) ,

ycit ∼ Ordered Logit (πijt| ft,Ft−1),

yrkt ∼ Beta (akt, bkt|ft,Ft−1) ,

where the mean vector µt = µ(ft) is a function of the M×1 vector of latent factors ft, the 6×6

variance matrix Σm is fixed over time, ycit is the ith element of yct , the probability πijt = πij(ft) for

the ordered logit density relates to the transition of firm i with rating Rit ∈ {CCC, B, BB, IG}
to rating j ∈ {D, CCC, B, BB, IG} during period t, yrkt is the kth element of yrt , k = 1, . . . , Kt,

Kt is the number of defaults in month t, and akt = ak(ft) and bkt = bk(ft) are the positive

shape coefficients for the beta density. The details for the observation densities and the dynamic

specification of ft are discussed below.
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3.3 A macro model for ymt

Define S̃t as the identity matrix I6 with the rows removed which are associated with entries

missing in ymt . The log-likelihood contribution of ymt at time t is then given by

const− 0.5 log |S̃tΣmS̃
′
t| − 0.5

(
S̃t(y

m
t − µt)

)′ (
S̃tΣmS̃

′
t

)−1 (
S̃t(y

m
t − µt)

)
, (9)

with

µt = µ(ft) = zm + Zmft, (10)

where zm is the 6 × 1 vector of intercepts and Zm is the 6 ×M matrix of factor loadings. As

the macroeconomic variables have been standardized, we set zm = 0. The conditional score

and information matrix for the Gaussian component are given by

∇m
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1
S̃t (ymt − µt) , (11)

Imt =
(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1
S̃tZ

m, (12)

from which we can compute st in (3) via (6) and (7). It follows that the dynamic updating of

ft is a linear function of the prediction error vector ymt −µt and is effectively a generalized least

squares computation.

In the online appendix, we provide the score and information matrix for a model with a time-

varying mean and an observation density based on the multivariate Student’s t distribution. In

our empirical study we have found that the results for the Student’s t and the Gaussian models

do not differ much since the estimated degrees of freedom is relatively high. Nevertheless, the

extension to the Student’s t model may be useful for applications with higher frequency data

where outliers and heavy-tails are of a more prominent concern.

3.4 A rating transition model for ycit

For the credit rating transitions, we specify a dynamic ordered logit model. Previous research

on credit risk has focused on a standard multinomial specification; see the contributions by, for

example, Koopman, Lucas, and Monteiro (2008) and Koopman, Kraeussl, Lucas, and Monteiro

(2009). The multinomial density does not take into account the fact that ratings are ordered.
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By using the ordered logit specification, the ordering of the ratings is taken into account. The

model then becomes a dynamic alternative to the static ordered probit model of CreditMetrics,

which is one of the industry standards, see Gupton and Stein (2005). However, it is far from

evident how to construct an observation driven dynamic ordered logit model as opposed to a

dynamic multinomial model. In particular, it is not clear what functions of the data should

be chosen to drive the changes in the probabilities for the transitions. Our observation driven

modeling framework solves these issues by relying conveniently on the score of the conditional

log-likelihood, which in this case becomes the score of the ordered logistic log-likelihood.

We specify the binary probability that the rating of firm i does not exceed rating j at the

end of period t by

π̃ijt = P [Ri,t+1 ≤ j | Ft−1] =
exp(θijt)

1 + exp(θijt)
, (13)

where Rit is the rating of firm i at the start of month t, with j ∈ {D, CCC, B, BB, IG} and

π̃i,IG,t = 1. From (13) it follows that the probability of a transition of firm i from rating Rit to

Ri,t+1 = j is given by

πijt = P [Ri,t+1 = j | Ft−1] = π̃ijt − π̃i,j−1,t, (14)

with π̃i,j−1,t = 0 for j = D. The log-likelihood contribution at time t becomes

∑
i

∑
j

ycijt log (πijt) , (15)

where the first summation is over all firms, the second summation is over all five ratings, and

the indicator ycijt equals unity if firm i has moved from rating Rit to rating j during month t,

and zero otherwise.

We specify the logit probability θijt as a linear function of the time-varying factor ft,

θijt = θijt(ft) = zcijt − Zc
itft, (16)

where zcijt is a scalar intercept and Zc
it is an 1×M vector of factor loadings, both of which can

vary over time due to dependence on firm specific information such as the firm’s initial rating,

its industry sector, and time-varying financial ratios. The zcijt determine the baseline transition

probabilities in the ordered logit specification and need to be estimated.
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The conditional score function for the specified ordered logit model is given by

∇c
t = −

∑
i

∑
j

[
π̇ijt

ycijt
πijt

]
Zc ′
it , (17)

where

π̇ijt = π̃ijt (1− π̃ijt)− π̃i,j−1,t (1− π̃i,j−1,t) . (18)

The term ycijt / πijt is intuitive since it compares the actual outcome of ycijt with its proba-

bility πijt. In expectation, the ratio ycijt / πijt is one and ∇c
t is zero since

∑
j π̇ijt = 0. It is

straightforward to show that the corresponding information matrix E[∇c
t∇c′

t ] is given by

Ict =
∑
i

nit

[∑
j

π̇2
ij,t

πij,t

]
Zc ′
it Z

c
it, (19)

where nit is one if firm i exists at the start of period t, and zero otherwise.

We have included time dummies in the specification (16) for the months of April 1982 and

October 1999 in order to handle outliers which are due to the redefinitions of rating categories.

As mentioned earlier, these redefinitions have caused substantial incidental rerating activity

during these months.

3.5 A loss given default model for yrkt

The Kt× 1 vector yrt of loss given defaults (LGD) has a dimension which in our data set varies

over time from Kt = 0 to Kt = 22, depending on how many firms default and on whether

their LGD is recorded. The LGD rates are reported in percentage terms and it is therefore

appropriate to model these with a beta distribution. The log-likelihood contribution at time t

is then given by

Kt∑
k=1

(akt − 1) log (yrkt) + (bkt − 1) log (1− yrkt)− log [B (akt, bkt)] , (20)

where akt and bkt are positive scalar coefficients and B (akt, bkt) = Γ (akt) Γ (bkt) /Γ (akt + bkt) is

the Beta function with Γ(·) denoting the Gamma function. The specifications for akt and bkt

are implied by the mean and variance of the beta distrubution.
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We define the mean of the kth contribution of the beta distribution as µrkt = µrk(ft), which

is a function of the factor ft. To let the mean range within the [0, 1] interval, we set

log (µrkt/ (1− µrkt)) = zr + Zrft, (21)

where zr is a scalar intercept and Zr is the 1×M vector of factor loadings. The intercept and

loading coefficients are common to all defaults.

Let βr > 0 be an unknown scalar and define the variance of the beta distribution as

(σrkt)
2 = µrkt · (1− µrkt)/(1 + βr). (22)

This specification insists that as long as the conditional mean remains within the boundaries

of the unit interval, the variance remains positive. From the specifications of the mean µkt in

(21) and the variance (σrkt)
2 in (22), the shape parameters akt and bkt follow directly,

akt = βr · µrkt, bkt = βr · (1− µrkt) .

The conditional score and information matrix in our case are now given by

∇r
t = βrµ

r
t (1− µrt ) (Zr)′ (1,−1)

Kt∑
k=1

(
(log(yrkt), log(1− yrkt))

′ − Ḃ (akt, bkt)
)
, (23)

Irt = (βrµ
r
t (1− µrt ))

2 (Zr)′ (1,−1)

(
Kt∑
k=1

B̈ (akt, bkt)

)
(1,−1)′ Zr, (24)

where Ḃ (akt, bkt) and B̈ (akt, bkt) are the first and second order derivatives of the log Beta

function with respect to (akt , bkt)
′, respectively.

3.6 Further details of the joint model

We have introduced observation driven dynamic logit and dynamic beta model specifications

which are, as far as we know, new in the literature. Furthermore, the three different dynamic

model specifications (for the normal, the ordered logit and the beta densities) are integrated

naturally into a joint observation driven dynamic factor model. The contribution for the log-
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likelihood value of all observations at time t is simply obtained by adding the components in

(9), (15), and (20). Similarly, the score and information matrix contributions at time t are

given by ∇m
t +∇c

t +∇r
t and Imt + Ict + Irt , respectively.

The dynamic specification of the factors is given by (3), where we set p = q = 1. After

a preliminary data analysis, we focus for illustrative purposes on models with three or four

macro factors, one or two frailty factors, and possibly a separate LGD factor. All these model

specifications capture the salient features of our heterogeneous data set.

We impose a recursive block-structure on the factor loading matrix for identification and

interpretation purposes. In particular, the transformed signal can be represented as

zt + Ztft =


zm

zct

zr

+


Zm

Zc
t

Zr

 ft =


zm

zct

zr

+


Zmm 0 0

Zcm
t Zcc

t 0

Zrm Zrc Zrr




fmt

f ct

f rt

 , (25)

where the partitioned intercept vectors and block loading matrices have appropriate dimensions,

and zct and Zc
t collect the entries zcijt and Zc

it in (16), respectively. For identification purposes,

we require that an appropriate selection of rows in the block matrix Zmm is equal to a lower

triangular matrix with unit diagonal and dimension m ×m, where m is the number of macro

factors. The same restrictions apply to loading matrices Zcc and Zrr, but then with dimensions

c× c and r×r, respectively. The three loading matrices Zcm, Zrm and Zrc have no restrictions.

Using specification (25), we allow the macro factors in fmt to influence the macro series, the

transition probabilities, and the LGD mean and variance. The frailty (or transition) factors

f ct influence the transition probabilities and the LGD mean and variance. Frailty factors thus

capture default and rating transition clustering above and beyond what is implied by shared

exposure to common macroeconomic risk factors. Such excess default clustering is also con-

sidered in studies by Das, Duffie, Kapadia, and Saita (2007), Duffie, Eckner, Horel, and Saita

(2009), Azizpour, Giesecke, and Schwenkler (2010), and Koopman, Lucas, and Schwaab (2011).

The LGD factor f rt influences the LGD dynamics only and can be used to investigate whether

LGD dynamics coincide with macro and/or frailty dynamics. Each model is referred to by its

number of composite factors, that is (m, c, r). For example, a model labeled as (3, 2, 1) denotes

a model with three macro factors, two credit risk (frailty) factors, and one LGD factor.
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Although some factors do not contemporaneously load into all of the observation densities,

information in series with zero loading coefficients can still affect the factors in future periods

through the score function that drives the factor recursion (3). For example, the credit (frailty)

factors and the LGD factor do not enter the equation for the conditional mean of the macros

µt in (10), but the macro factors do load into the transformed mean and variance of the LGDs.

Therefore, information in the credit rating transitions and LGDs helps to determine the value

of the macro factors at time t+ 1 because they are part of the score vector.

4 Empirical results

The empirical results are presented in four parts. First, we discuss the in-sample estimations

results of the model. Second, we present the estimated time-varying factors and a set of

diagnostic graphics. Third, we use the model to forecast economic and credit risk scenarios out-

of-sample. Fourth, we present the impulse response functions for our nonlinear non-Gaussian

model.

4.1 In-sample estimation results

Table 1 contains a list of estimated models with their maximized log-likelihood values and the

corresponding Akaike information criterion (AIC) and Schwarz Bayesian information criterion

(BIC) values. We have considered for illustrative purposes the models with 3 and 4 macro

factors, 0, 1 and 2 frailty factors, and 0 and 1 LGD factors. We observe clear improvements in

the log-likelihood values when more factors are added. The likelihood value increases particu-

larly when we include a fourth macro factor or a first frailty factor in the model. The addition

of a second frailty factor also provides an increase in the likelihood value, but this increase is

more modest. The inclusion of a separate LGD factor appears to have a negligible effect on

the likelihood value. It seems sufficient that the LGD variables only depend on the macro and

frailty factors.

The model selection criteria point to the (4,2,0) model as the preferred model within the

considered range of models. Hence we take the (4,2,0) model as our model of choice in our

empirical study. Table 2 presents the estimated parameters and their corresponding standard
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errors. To reduce the number of estimated parameters, we have imposed zero restrictions on

parameters that have initially been estimated to be insignificant. Standard errors are computed

using the inverse Hessian matrix of the maximized log likelihood. Estimation results for the full

model, or for models with a different number of macro factors or with a multivariate Student’s

t observation density for the macros are all reported in our online Appendix that accompanies

this paper.

The coefficients in the matrices A and B determine the properties of the dynamic factor

process ft. Their estimates are presented in Table 2 and are clearly significant. The factors

appear highly persistent since all the B coefficients are estimated as 0.9 or higher. This implies

that rating transition probabilities, including default probabilities, may deviate from their

unconditional values as well as from their macro fundamentals for a substantial number of

months. From a risk management perspective, it means that capital levels must be set in

accordance with an episode (rather than an incidence) of high default rates for any portfolio of

credit exposures.

The estimated loading coefficients in Zm reveal that the first macro factor loads on industrial

production growth, real GDP growth, negative changes in the unemployment rate and negative

credit spreads. The first macro factor can therefore be interpreted as a mix of business cycle

and credit market indicators. Figure 1 reveals that the estimates of the first factor are low

during recession periods. In the 1980s the first factor estimates appear to respond to the

savings and loans crisis rather than to the state of the business cycle only. The estimates for Zc

corresponding to the first macro factor are only significant for the rating transition probabilities

of lower grade companies. It implies that higher default probabilities can be expected for CCC

and B rated companies during recession periods.

The second macro factor loads significantly on unemployment rate changes, negative GDP

growth and on negative returns on the S&P500; and less significantly on stock market volatility.

Also the second factor is related to the business cycle but also to financial market conditions

given its reliance on stock markets rather than on credit spreads. The time series of factor

estimates show clear peaks at all major recession and crisis periods. However, the recession in

the early 1990s is more dominant. The estimated Zc coefficients for the second macro factor

are significant and positive for the sub-investment grade rating groups B and BB. It confirms

that the second factor represents financial market conditions to some extent.
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The third macro factor estimates depend mainly on credit spreads, negative annual stock

returns, and equity market volatility. We may interpret this factor as the perception of economic

and risk conditions by financial markets. The corresponding elements of Zc for the third

macro factor are significant for all transition probabilities, but particularly for those of higher

grade firms. When markets perceive credit risk to be high, more defaults and downgrades

are expected. The element of Zr for the third macro factor is significant and positive. It

implies that a credit risk environment with negative sentiments will lead to higher LGD rates.

The fourth macro factor has significant loading coefficients for volatility, real GDP growth and

realized returns. This may indicate that it is a proxy for the business cycle only. However,

its association with realized volatility implies that uncertainty also drives the factor upwards.

Also the fourth factor estimates as displayed in Figure 1 appear to represent more than only

the business cycle. The corresponding Zc coefficient estimates are all negative for higher grade

firms which is consistent with the estimated negative loading for LGD rates in Zr: a higher

value for this factor implies lower default and downgrade probabilities and lower LGD rates.

The frailty factors capture the changes in default and downgrade probabilities, and changes

in LGD rates that cannot be explained by the macro and finance variables through the first

four factors. The first frailty factor is most important as the estimated coefficients for three

rating categories in Zc are substantial and significant. When this frailty factor is high, default

and downgrade probabilities increase. The estimated first fraily factor as presented in Figure 1

captures excess default clustering in the early 1990s and in the early 2000s. It also captures the

low number of defaults and downgrades in the run-up to the financial crisis, much lower than

what we can expect from the macro factors only. This frailty factor is also highly significant for

the LGD equation: excessive risk related to credit migrations and LGD clearly move together.

The second frailty factor mainly loads positively on CCC firms and negatively on IG firms.

The factor estimates capture two historical features of the corporate bond market. First, in

the mid 1980s and in recent years, the number of defaults for investment grade firms is higher

than expected, which may explain the significantly negative coefficient for the investment grade

loading in Zc. Second, given the positive loading coefficient for the CCC graded firms, this

factor also appears to be affected by the benign default climate before the financial crisis. Since

the second factor appears to reflect these historical default periods accurately, its coefficient for

the LGD equation is also highly significant. We may therefore conclude that rating migrations,
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defaults and LGDs are affected by more than macro factors only.

Other estimated coefficients reported in Table 2 are those for the intercepts and the variances

of the disturbances in the macro equations. The estimated intercepts zcij for the ordered logit

specification reveal that ratings are highly persistent on a monthly basis. For example, by

considering only the cut-off points of the ordered logit specification, we find that the probability

of remaining in investment grade is about (1 + exp(−6.299))−1 ≈ 99.82%, while the probability

of a CCC company defaulting over the next month is (1 + exp(3.751))−1 ≈ 2.30%.

4.2 Signal extraction and diagnostic checking

The estimated transition and default probabilities presented in Figure 2 are driven by both

the macro and frailty factors. Given that we consider transitions at the monthly frequency,

all probabilities are close to zero, except the probabilities that ratings remain unchanged. The

peaks in the estimated probabilities differ across rating grades. For example, the investment

grade class has its highest default probability peaks in the financial and the dotcom crises,

and some substantially lower peaks in the mid 1980s and the 1991 recession. By contrast, the

CCC class has its highest peak in 1991. However, even though the magnitude of the peaks and

troughs differs across rating grades, they are all subject to clusters of high and low probabilities.

To verify whether the model specification is appropriate for our observed data set, we present

a selection of diagnostic graphs. In Figure 3 we present the sample correlograms for the six

macroeconomic time series and for their one-step ahead prediction errors for the reported (4,2,0)

model. We may conclude that most of the dynamic features in the macro series are captured by

our model specification. The negatively correlated prediction error at lag 12 points to a seasonal

monthly feature that is not captured by the model. Given the disparity of the dynamic features

in these six time series, we conclude that the model is appropriate for the economic variables.

Further improvements can be made when higher order lags are considered in the dynamic

specification for the factors.

In Figure 4 we present diagnostic graphs for the rating transitions. The top graphs with

the actual number of downgrades/upgrades on the vertical axis against the one-step ahead pre-

dicted number of downgrades/upgrades implied by the model indicate that the model captures

movements in credit rating transitions well. The clouds of points cluster around the 45 degree
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line. Since the monthly numbers of downgrades tend to be higher, the precision for downgrades

also appears higher compared to upgrades. The corresponding standardized prediction errors

provide a more balanced picture. Our (4,2,0) model succeeds in the accurate prediction of

downgrades and upgrades.

The upper right panel of Figure 5 reveals that LGDs are noisy and irregularly spaced. The

extracted factors from our model appear to capture these salient features accurately. LGDs

correlate positively with default rate dynamics; they tend to be high and low in the same

periods. The effect of time variation in the parameters of the beta distribution is visualized in

the left panels of Figure 5. The upper left panel presents the cross-sectional beta distributions

for LGDs in the quiet month of June 2006. For the (4,2,0) model, the probability mass is

strongly skewed to the left which indicate that LGDs are typically low. The distribution

implied by the (4,2,0) model in January 2009 presents the opposite picture: the probability

mass is skewed to the right. According to the model, one expects that LGD rates are much

higher on average. In comparison with the (4,0,0) model that has four macro factors but no

frailty factors, the implied beta distribution for LGDs in June 2006 is substantially different,

while the differences are small in January 2009. The differences in the fit of the LGDs by

the two models is made apparent in the upper right panel where the signal for the (4,0,0)

model appears to miss the periods with expceptionally high and low LGDs. The implication

of including frailty fractors for credit risk is also evident when we compare the estimated

transition probabilities for the two models. For example, in the lower right panel in Figure 5

we present the estimated transition probability from BB to default. The estimated probabilities

are substantially different between the two models. The (4,0,0) model misses some peaks and

troughs which are captured by the (4,2,0) model.

4.3 Forecasting and credit risk management

The observation driven mixed measurement dynamic factor model can be used for the joint

forecasting of macro variables, rating transition and default probabilities, and LGDs. Such

forecasts can be used to simulate credit portfolio loss distributions. Lando (2004) argues that

the forecasting distributions for portfolio losses are an important ingredient for assessing and

managing the risk of credit exposures.
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We assume a scenario where at the end of the sample, time T , a financial institution holds a

large portfolio of bonds. The risk management department would like to know the distribution

of credit losses at a specified future time T+H to set up capital requirements or hedge positions.

To simplify the simulation experiment, we concentrate on default losses only. We do not include

credit losses due to downgrades in a mark-to-market setting. We also assume a zero discounting

rate to cumulate losses that materialize at different points in time. We set the initial portfolio of

bonds equal to the current exposures in the last period of our sample. This leads to a portfolio

of 1144 firms rated IG, 265 firms rated BB, 615 firms rated B, and 311 firms rated CCC.

Given the portfolio, the model and its parameter estimates, we can generate the dynamic

evolution of the macro variables and the rating composition of the portfolio in a simulation

study. If one of the firms transits into default, the LGD component with its beta distribution

is used to generate the corresponding LGD realization. By simulating the portfolio and macros

forward in this way, we obtain a realization of default losses between T and the horizon date

T + H. This process can be repeated many times. In our simulation study, we use 500, 000

simulations for the loss distribution at different horizons.

The forecasts of loss distributions are conditional on the estimated factors at the end of

the sample, fT , rather than on the variables yT . For policy and risk analyses such as stress

tests, it can be useful to condition directly on the variables of interest rather than on the

estimated factors. We have two main reasons for conditioning on shocks in the factors rather

than on shocks in the variables themselves. First, we model several variables at the same time.

An assumption for one variable should therefore be consistent with the dynamic properties of

other variables. For example, assuming a large drop in industrial production growth in a stress

scenario without simultaneously assuming related effects on other macro variables in the model,

such as the unemployment rate, appears contrived. The construction of consistent scenarios

for a potentially larger set of macro variables is far from trivial. By concentrating on shocks in

factors rather than shocks in variables, we resolve the issue to some extent as all variables in

our framework are subject to the same underlying factor structure. Second, in the forecasting

analyses we require multi-step scenarios for all macro, rating and LGD variables. If one opts

for administering a shock to a specific variable at time T , one therefore also needs to account

for the dynamics of such a shock, including its spillover into other variables in the system over

time. This is effectively accomplished in our integrated modeling framework.
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The model specification and the starting value fT are important ingredients of the analysis.

We expect differences between models with and without frailty factors. We further anticipate

differences when fT has values associated with expansion or with recession periods. Given the

high persistence of the factors, these different starting conditions will have different impacts

on the loss experience in future periods. Figure 6 presents the initial results of our forecasting

study. It presents simulated loss distributions at four different horizons for the (4,2,0) model.

At the one month horizon, we clearly visualize the differences in the forecasting distributions.

Starting from a recession, the losses in the next month are expected to be higher with more

variations. If current economic conditions are good, the losses are expected to be low in the

next month with less variations. Even at the 1-month horizon, there is a significant non-overlap

of the 99% confidence regions of the two densities.

When the forecast horizon H increases, the two densities gradually start to overlap.This

effect is due to the stationary process of the factors in ft. The high persistence in ft causes

the expected LGD densities to be different for a large number of months so that the cumulated

losses remain substantially different. In our simulation study, a current recession turns into an

expansion phase, and vice versa, in a period of three years.

The same forecasting study is carried out for the (4,0,0) model and the results are compared

with those for the (4,2,0) model in Figure 7. Hence we compare the economic contribution

of the frailty factors to capital requirements. When the initial factor fT is set to zero, the

forecasting distributions of models with and without the two frailty factors are similar for the

one-month horizon. The differences become clearer for longer forecast horizons. The models

with only macro factors produce more concentrated loss distributions. The locations of the two

distributions are roughly the same but the one for the (4,2,0) model is much more dispersed.

Also, the 99% confidence loss quantiles for the (4,2,0) model are substantially larger than for

the (4,0,0) model. We therefore may conclude that the model with only macro factors leads to

a severe underestimation of the required capital, particularly at long horizons.

When the initial factors fT are started with recession values, the differences in the results are

even more pronounced, even at shorter horizons. In such a scenario, not only the four macro

factors start in a recession, but also the two credit related frailty factors. The anticipated

increases in expected loss rates are therefore substantial. The upper quantiles of the loss

distribution increase when the frailty factors are added. The increase for the highest quantiles
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is close to 100% in most settings, which implies that capital requirements at these horizons

need to be doubled. At the longest horizon of 36 months, the distributions start to overlap,

similar to the setting with fT = 0, but the differences in dispersion remain. We conclude that

models that account for only macro dynamics appear to miss substantial parts of credit loss

dynamics and potential credit loss sizes. The absolute numbers for the losses (as a percentage of

the notional losses) can be viewed as small. However, typical portfolios hold many investment

grade bonds that lead to a high quality portfolio with small losses on average. When we focus

on the 99% quantile of the loss distribution at long horizons, including frailty factors in the

model can shift the loss quantiles by more than 80%.

4.4 Impulse response analysis

The observation driven mixed measurement model can also be used for an impulse response

analysis in which a shock in an unobserved factor can be traced through all variables over time.

In particular we are interested in how a shock affects the credit loss distribution over time. The

dynamic factor model is non-linear and non-Gaussian and therefore we follow the non-linear

impulse response methodology of Koop, Pesaran, and Potter (1996).

The impulse response functions for the macros are presented in Figure 8 and they confirm

the estimation results as presented in Table 2. The impulse response function for the first macro

factor has the largest impact on the business cycle related variables. A negative shock decreases

industrial production growth and real GDP growth and increases the unemployment rate. This

impact is persistent as it takes 3 to 4 years before the effect dies out. Similar findings are

obtained for the other three macro factors. These effects correspond to the loading estimates

for Zm as reported in Table 2. However, we observe differences in persistence. The impulse

response effects for the last two macro factors die out after faster, after approximately 2 years.

Given the imposed factor loading structure in our model, the impulse response functions for

the frailty factors confirm that they have no direct impact on the macro variables.

The results for the mean and the 90th percentile of the credit loss distributions are presented

in Figure 9. Both the means and percentiles reveal similar patterns. The first and third macro

factor have the largest and most persistent impact on portfolio credit losses. These are also the

factors that directly load on the CCC migrations into default, which is the main determinant of
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the large portfolio losses. The effect of a shock can last up to three or four years. The impact

of the second macro factor is equally persistent but it is smaller in magnitude. We can verify

from Table 2 that this factor mainly affects B and BB downgrade (and default) probabilities

but it does not affect the subsequent CCC to default probability. Hence it has a limited impact

on portfolio losses. The fourth macro factor has a small impact and it vanishes quickly after

one to two years.

The frailty factors have a bigger impact on credit losses. Both frailty factors have an effect

similar in size to the business cycle and the financial markets related macro factors. It implies

that by omitting the frailty factors from the model, one third to one half of the credit risk is

missed. Furthermore, the dynamics of credit losses might be completely misspecified when the

frailty factors are not included in the model.

The in-sample estimation results, the out-of-sample forecasting distributions, as well as the

impulse response analysis all point in the same direction: the size and dynamics of portfolio

credit losses cannot be captured by conditioning only on macroeconomic conditions. The

losses appear to have their own additional (frailty) dynamics, which are highly persistent and

significant in both statistical and economic terms. Our observation driven mixed measurements

modeling framework provides the means for a complete analysis of credit risk. The likelihood

function is known in closed form and can be computed in a straightforward way. Hence our

framework provides an effective alternative to parameter driven models that require advanced

simulation methods for estimation and analysis.

5 Conclusion

We have introduced a new framework for observation driven mixed-measurement dynamic factor

models for time series observations from different families of distributions and mixed sampling

frequencies. Missing values arise due to unbalanced time series panels and mixed frequencies;

they can be accommodated in our framework in a straightforward way. In an empirical applica-

tion of the mixed-measurement framework we model the systematic variation in US corporate

default counts and recovery rates in the period 1982–2010. We estimate and forecast intercon-

nected macro, default and recovery risk conditions. We further demonstrate how to obtain the

predictive credit portfolio loss distribution.
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Our modeling framework is a useful device for the analysis of a large number of data points

in a complex data set. A clear advantage of our framework is that the likelihood remains ana-

lytically tractable in closed form and therefore standard likelihood procedures can be used for

parameter estimation. The model also lends itself easily to integrated forecasting exercises for

joint macro and credit risk developments. In particular, the model can be used in a straightfor-

ward way to obtain portfolio loss distributions at multiple horizons. Such distributions can be

used as an input for risk analyses. In addition, we can use the simulation framework to conduct

impulse response analysis for non-linear model specifications. The impulse response functions

can be used directly to study the feed-through mechanism from macro developments to credit

losses and thus provide interesting input for both practitioners, regulators, and policy makers.

In our empirical study we have illustrated our new mixed measurement, mixed frequency

modeling framework to analyse macro and credit risk. We emphasize however that the frame-

work can be applied more generally. For example, in the context of high-frequency financial

data, our approach can be used to model inter-trade durations, discrete tick changes in prices,

and general market conditions simultaneously for different assets that are subject to common

risk and liquidity factors. Similarly, in the context of a macroecononomic time series panel,

we can mix the usual continuous macro variables with indicator data such as the NBER busi-

ness cycle classifications. Other examples may be found in health and retirement economics,

business, marketing, and psychology.
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Table 1: Likelihoods and Information Criteria

The table contains the log-likelihood values and information criteria for alternative model specifica-
tions. Each model contains a different number of macroeconomic (m), credit or frailty risk (c), and
LGD factors (r) which are ordered as (m, c, r). The maximum log-likelihood value and the minimum
AIC and BIC are denoted in bold.

(3,0,0) (3,1,0) (3,2,0) (3,2,1)
log-Lik -40056.2 -39817.1 -39780.8 -39780.0

AIC 80242.4 79776.2 79713.6 79716.0
BIC 80991.0 80594.0 80589.0 80615.0

(4,0,0) (4,1,0) (4,2,0) (4,2,1)
log-Lik -39828.7 -39596.3 -39561.6 -39560.4

AIC 79805.3 79352.7 79293.2 79294.8
BIC 80658.0 80274.0 80273.0 80297.0
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Table 2: Parameter estimates and standard errors for the (4,2,0) model.

This table contains the estimated parameters and their standard errors for our model with (4,2,0) factor struc-
ture. The macros are ordered from i = 1, . . . , 6 as industrial production growth (IP), unemployment rate change
(UR), annual real GDP growth (GDP), credit spread (CrSPR), annual return on the S&P500 (SP500), and
annual realized volatility of the S&P500 returns using the past 252 daily trading days (σS&P ). Significance at
the 10%, 5%, and 1% level is denoted by ∗, ∗∗, and ∗∗∗, respectively.

macro1 macro2 macro3 macro4 frailty1 frailty2

A 0.221∗∗∗ 0.154∗∗∗ 0.300∗∗∗ 0.282∗∗∗ 0.033∗∗∗ 0.036∗∗∗

(0.011) (0.014) (0.016) (0.023) (0.006) (0.010)
B 0.966∗∗∗ 0.974∗∗∗ 0.924∗∗∗ 0.896∗∗∗ 0.974∗∗∗ 0.981∗∗∗

(0.012) (0.016) (0.022) (0.026) (0.012) (0.012)

Zm

macro1 macro2 macro3 macro4 frailty1 frailty2 zm Σm

IP 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.049∗∗∗

(0.004)
UR -0.467∗∗∗ 1.000 0.000 0.000 0.000 0.000 0.000 0.049∗∗∗

(0.061) (0.004)
RGDP 0.675∗∗∗ -0.266∗∗ 0.000 0.295∗∗∗ 0.000 0.000 0.000 0.261∗∗∗

(0.070) (0.120) (0.068) (0.033)
Cr.Spr. -0.275∗∗∗ 0.000 1.000 0.000 0.000 0.000 0.000 0.058∗∗∗

(0.075) (0.004)
rS&P 0.000 -0.358∗∗ -0.293∗∗∗ 1.179∗∗∗ 0.000 0.000 0.000 0.154∗∗∗

(0.157) (0.076) (0.086) (0.012)
σS&P 0.101∗ 0.245∗ 0.563∗∗∗ 1.000 0.000 0.000 0.000 0.507∗∗∗

(0.096) (0.176) (0.084) (0.042)

Zc

Rit = macro1 macro2 macro3 macro4 frailty1 frailty2

IG -0.064∗ 0.000 0.217∗∗∗ -0.110∗ 1.520∗∗∗ -0.727∗∗

(0.051) (0.053) (0.064) (0.283) (0.270)
BB 0.000 0.204∗∗∗ 0.158∗∗∗ -0.077∗ 1.000 0.000

(0.057) (0.038) (0.041)
B -0.154∗∗∗ 0.130∗∗ 0.150∗∗∗ -0.121∗∗∗ 0.914∗∗∗ 0.000

(0.036) (0.056) (0.031) (0.038) (0.137)
CCC -0.283∗∗∗ 0.000 0.076∗ 0.000 1.486∗∗∗ 1.000

(0.052) (0.048) (0.418)

zc

Rit = ≤IG ≤BB ≤B ≤CCC
IG 6.299∗∗∗ 8.288∗∗∗ 9.626∗∗∗ 10.293∗∗∗

(0.155) (0.174) (0.224) (0.275)
BB -5.197∗∗∗ 4.630∗∗∗ 7.056∗∗∗ 7.453∗∗∗

(0.086) (0.082) (0.123) (0.140)
B -7.636∗∗∗ -5.455∗∗∗ 4.648∗∗∗ 5.974∗∗∗

(0.132) (0.080) (0.075) (0.085)
CCC -9.071∗∗∗ -8.154∗∗∗ -5.341∗∗∗ 3.751∗∗∗

(0.403) (0.295) (0.200) (0.191)

macro1 macro2 macro3 macro4 frailty1 frailty2 zr βr
Zr 0.000 0.000 0.274∗∗∗ -0.077∗ 0.938∗∗ 0.913∗∗∗ 0.226∗ 2.572∗∗∗

(0.045) (0.057) (0.315) (0.199) (0.151) (0.094)
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Figure 1: Estimates of macro and frailty factors in the (4,2,0) model

This figure contains the estimated factors ft for a specification with 4 macro and 2 frailty factors.
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Figure 2: Time-varying transition probabilities for the (4,2,0) model
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Figure 3: Autocorrelation functions of the data and prediction errors for the (4,2,0) model

This figure presents the autocorrelations functions of the data (left column) and the one-step ahead prediction
errors (right column) for the macroeconomic series in the (4,2,0) model.
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Figure 4: One-step ahead predicted versus realized upgrades and downgrades in the (4,2,0) model

This figure presents diagnostics for the credit-rating transitions produced from the (4,2,0) model. Upper left
are the actual downgrades (vertical axis) versus the one-step ahead predicted downgrades (horizontal axis).
Upper right are the actual upgrades (vertical axis) versus the one-step ahead predicted upgrades (horizontal
axis). Lower left are the standardized prediction residuals for the downgrades. Lower right are the standardized
prediction residuals for the upgrades.
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Figure 5: Loss-Given-Default (LGD) dynamics

The left panels contain the cross sectional beta distributions applicable in June 2006 and January 2009 for
a model with three macro factors (4,0,0) and a model with three macro and two frailty factors (4,2,0). The
upper-right panel contains the time series plot of the means of the LGD distributions and its fit to the observed
LGD data. The lower-right panel gives the transition probability from BB to Default for the (4,0,0) and (4,2,0)
models.
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Figure 6: Comparison of simulated loss distributions for the (4,2,0) model

For our model with four macro and two frailty factors, the panels present the cumulative losses at different
horizons. The difference betwen the two curves is the starting values for the factors, namely recession and
expansion.
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Figure 7: Comparison of simulated loss distributions for the (4,2,0) and (4,0,0) model

For our model with four macro and two frailty factors (4,2,0), respectively only four macro factors (4,0,0),
the panels present the cumulative losses at different horizons. The left-hand four panels show the results if the
factors ft are started at zero. The right-hand four panels show the results if the factors are started in a recession
period.
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Figure 8: Non-linear impulse response functions for the (4,2,0) model: macros

For our model with three macro and two frailty factors, one of the factors ft is given a unit size negative shock.
All of the remaining stochastics of the model are simulated 48 months forward. The impulse response functions
plot the difference between the average of the simulated quantity for a unit size shock to one of the factors and
the average of the same quantity where the same factor receives a random model shock. The panels show the
results for the 6 macros: rows 1 to 6 for industrial production growth, the change in the unemployment rate,
real GDP growth, the credit spread, the S&P500 return, and its volatility, versus columns 1 to 6 for shocking
the macro factors 1 to 4 and the 2 frailty factors. Factors are started at their mean values fT = 0.
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Figure 9: Non-linear impulse response functions for the (4,2,0) model: portfolio losses

For our model with three macro and two frailty factors, one of the factors ft is given a unit size shock. All of
the remaining stochastics of the model are simulated 48 months forward. The impulse response functions plot
the difference between the average of the simulated quantity for a unit size shock to one of the factors and the
average of the same quantity where the same factor receives a random model shock. The panels show the result
for the mean portfolio credit loss (top row) and its 90th percentile (bottom row). The portfolio holds 1144 firms
rated IG, 265 firms rated BB, 615 firms rated B, and 311 firms rated CCC. Columns 1 to 6 are for a shock to
the macro factors 1 to 4 and the 2 frailty factors, respectively. Factors are started at their values fitted at the
end of our sample.
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