Strategy-proofness in the Large∗

Eduardo M. Azevedo† and Eric Budish‡

July 16, 2018

Abstract

We propose a criterion of approximate incentive compatibility, strategy-proofness in the large (SP-L), and argue that it is a useful second-best to exact strategy-proofness (SP) for market design. Conceptually, SP-L requires that an agent who regards a mechanism’s “prices” as exogenous to her report – be they traditional prices as in an auction mechanism, or price-like statistics in an assignment or matching mechanism – has a dominant strategy to report truthfully. Mathematically, SP-L weakens SP in two ways: (i) truth-telling is required to be approximately optimal (within epsilon in a large enough market) rather than exactly optimal, and (ii) incentive compatibility is evaluated ex interim, with respect to all full-support i.i.d. probability distributions of play, rather than ex post with respect to all possible realizations of play. This places SP-L in between the traditional notion of approximate SP, which evaluates incentives to manipulate ex post and as a result is too strong to obtain our main results in support of SP-L, and the traditional notion of approximate Bayes-Nash incentive compatibility, which, like SP-L, evaluates incentives to manipulate ex interim, but which imposes common knowledge and strategic sophistication assumptions that are often viewed as unrealistic.

∗First version: October 2011. We thank the editor and four anonymous referees for comments and suggestions that improved the paper considerably. We are grateful to Nabil Al-Najjar, Susan Athey, Aaron Bodoh-Creed, Gabriel Carroll, Sylvain Chassang, Jeff Ely, Alex Frankel, Drew Fudenberg, Matt Gentzkow, Jason Hartline, John Hatfield, Richard Holden, Ehud Kalai, Emir Kamenica, Navin Kartik, Fuhito Kojima, Scott Kominers, Jacob Leshno, Jon Levin, Paul Milgrom, Stephen Morris, Roger Myerson, David Parkes, Parag Pathak, Nicola Persico, Andy Postlewaite, Canice Prendergast, Mark Satterthwaite, Ilya Segal, Eran Shnaya, Lars Stole, Rakesh Vohra, Glen Weyl, Mike Whinston, and especially Al Roth for helpful discussions that have shaped this research. We thank Victor Zhang for excellent research assistance. We are grateful to seminar audiences at Ohio State, the 2011 MFI Conference on Matching and Price Theory, UCLA, Chicago, AMMA 2011, Boston College, the 2011 NBER Conference on Market Design, Duke / UNC, Michigan, Carnegie Mellon / Pittsburgh, Montreal, Berkeley, Northwestern, Rochester, Frontiers of Market Design 2012, ACM EC 2012, Princeton, Maryland, and UPenn.

†Wharton, eazevedo@wharton.upenn.edu.

‡University of Chicago Booth School of Business, eric.budish@chicagobooth.edu.
1 Introduction

Strategy-proofness (SP), that playing the game truthfully is a dominant strategy, is perhaps the central notion of incentive compatibility in market design. SP is frequently imposed as a design requirement in theoretical analyses, across a broad range of assignment, auction, and matching problems. And, SP has played a central role in several design reforms in practice, including the redesign of school choice mechanisms in several cities, the redesign of the market that matches medical school graduates to residency positions, and efforts to create mechanisms for pairwise kidney exchange (See especially Roth (2008) and Pathak and Sönmez (2008, 2013)). There are several reasons why SP is considered so attractive. First, SP mechanisms are robust: since reporting truthfully is a dominant strategy, equilibrium does not depend on market participants’ beliefs about other participants’ preferences or information. Second, SP mechanisms are strategically simple: market participants do not have to invest time and effort collecting information about others’ preferences or about what equilibrium will be played. Third, with this simplicity comes a measure of fairness: a participant who lacks the information or sophistication to game the mechanism is not disadvantaged relative to sophisticated participants. Fourth, SP mechanisms generate information about true preferences that may be useful to policy makers.\footnote{See Wilson (1987) and Bergemann and Morris (2005) on robustness, Fudenberg and Tirole (1991), p. 270 and Roth (2008) on strategic simplicity, Friedman (1991), Pathak and Sönmez (2008) and Abdulkadiroğlu et al. (2006) on fairness, and Roth (2008) and Abdulkadiroğlu et al. (2016) on the advantage of generating preference data.}

However, SP is restrictive. In a variety of market design contexts, including matching, school choice, course allocation, and combinatorial auctions, impossibility theorems show that SP places meaningful limitations on what other attractive properties a mechanism can hope to satisfy.\footnote{In matching problems such as the National Resident Matching Program, SP mechanisms are not stable (Roth, 1982). In multi-unit assignment problems such as course allocation, the only SP and ex post efficient mechanisms are dictatorships (Papai, 2001; Ehlers and Klaus, 2003; Hatfield, 2009), which perform poorly on measures of fairness and ex-ante welfare (Budish and Cantillon, 2012). In school choice problems, which can be interpreted as a hybrid of an assignment and a matching problem (Abdulkadiroğlu and Sönmez, 2003), there is no mechanism that is both SP and ex post efficient (Abdulkadiroğlu et al., 2009). In combinatorial auction problems such as the FCC spectrum auctions (Milgrom, 2004; Cramton et al., 2006), the only SP and efficient mechanism is Vickrey-Clarke-Groves (Green and Laffont, 1977; Holmström, 1979), which has a variety of important drawbacks (Ausubel and Milgrom, 2006). Perhaps the earliest such negative result for SP mechanisms is Hurwicz (1972), which shows that SP is incompatible with implementing a Walrasian equilibrium in an exchange economy.} And, SP is an extremely strong requirement. If there is a single configuration of participants’ preferences in which a single participant has a strategic misreport that raises his utility by epsilon, a mechanism is not SP. A natural idea is to look for incentives criteria that are less demanding and less restrictive than SP, while still maintaining some of the
This paper proposes a criterion of approximate strategy-proofness called *strategy-proofness in the large* (SP-L). SP-L weakens SP in two ways. First, whereas SP requires that truthful reporting is optimal in any size economy, SP-L requires that truthful reporting is approximately optimal in a large enough market (within epsilon for large enough n). Second, whereas SP requires that truthful reporting is optimal against any realization of opponent reports, SP-L requires that truthful reporting is optimal only against any full-support, independent and identically distributed (i.i.d.) probability distribution of reports. That is, SP-L examines incentives from the interim perspective rather than ex post. Because of this interim perspective, SP-L is weaker than the traditional ex post notion of approximate strategy-proofness; this weakening is important both conceptually and for our results. At the same time, SP-L is importantly stronger than approximate Bayes-Nash incentive compatibility, because SP-L requires that truthful reporting is best against *any* full-support, i.i.d. probability distribution of opponent reports, not just the single probability distribution associated with Bayes-Nash equilibrium play. This strengthening is important because it allows SP-L to approximate, in large markets, the attractive properties such as robustness and strategic simplicity which are the reason why market designers like SP better than Bayes-Nash in the first place.

The combination of the large market and the interim perspective is powerful for the following reason: it causes each participant to regard the societal distribution of play as exogenous to his own report (more precisely, the distribution of the societal distribution of play; see Section 3.1.1 and Lemma A.1). Regarding the societal distribution of play as exogenous to one’s own play can be interpreted as a generalization of regarding prices as exogenous, i.e., of price taking. In some settings, such as multi-unit auctions or Walrasian exchange, the two concepts are economically equivalent. In other settings, such as school choice or two-sided matching, regarding the societal distribution of play as exogenous is equivalent to regarding certain price-like summary statistics of the mechanism as exogenous.

SP-L thus draws a distinction between two ways a mechanism can fail to be SP. If a mechanism is manipulable by participants who can affect prices (or price-like summary statistics), but is not manipulable by participants who regard the societal distribution of play as exogenous, the mechanism is SP-L. If a mechanism is manipulable even by participants who regard the societal distribution of play as exogenous – if even a price taker, or a taker of price-like statistics, wishes to misreport – then the mechanism, in addition to not being SP, is not SP-L.
After we present and discuss the formal definition of SP-L, the next part of the paper provides a classification of existing non-SP mechanisms into those that are SP-L and those that are not SP-L. The classification, displayed in Table 1, organizes both the prior theory literature on which non-SP mechanisms have good incentives properties in large markets and the empirical record on when non-SP matters in real-world large markets. In the SP-L column are numerous mechanisms that, while not SP, have been shown theoretically to have approximate incentives for truth telling in large markets. Examples include the Walrasian mechanism (Roberts and Postlewaite, 1976; Jackson and Manelli, 1997), double auctions (Rustichini et al., 1994; Cripps and Swinkels, 2006), multi-unit uniform-price auctions (Swinkels, 2001), the Gale-Shapley deferred acceptance algorithm (Immorlica and Mahdian, 2005; Kojima and Pathak, 2009), and probabilistic serial (Kojima and Manea, 2010). This literature has used a wide variety of definitions of approximate incentive compatibility, often with common knowledge assumptions, as well as a wide variety of analysis techniques. We use a single definition and a single analysis technique (the sufficient conditions for SP-L in Theorem 1) and find that all of these mechanisms are SP-L. Our technique also classifies as SP-L several mechanisms whose large-market incentive properties had not previously been formally studied. We emphasize as well that the traditional ex post notion of approximate SP is too strong to obtain the classification.\(^3\)

On the other hand, in the non-SP-L column are numerous mechanisms for which there is explicit empirical evidence that real-world market participants strategically misreport their preferences, to the detriment of design objectives such as efficiency or fairness. Examples include multi-unit pay-as-bid auctions (Friedman, 1960, 1991), the Boston mechanism for school choice (Abdulkadiroğlu et al., 2006, 2009), the bidding points auction for course allocation (Sönmez and Ünver, 2010; Budish, 2011), the draft mechanism for course allocation (Budish and Cantillon, 2012), and the priority-match mechanism for two-sided matching (Roth, 2002). This literature has frequently emphasized that the mechanism in question is not SP; our point is that the mechanisms for which there is documentation of important incentives problems in practice not only are not SP, but are not even SP-L. Overall, the classification exercise suggests that the relevant distinction for practice, in markets with a large number of participants, is not “SP vs. not SP”, but rather “SP-L vs. not SP-L”.

The last part of the paper identifies a precise sense in which, in large markets, SP-L is

\(^3\)For instance, the double auction and uniform-price auctions are SP-L but not approximately strategy-proof in an ex post sense; even in a large economy it is always possible to construct a knife-edge situation where a single player, by shading her demand, can have a large discontinuous influence on the market-clearing price. For this reason, papers such as Rustichini et al. (1994) and Swinkels (2001) have studied approximate or exact Bayes-Nash equilibria as opposed to a dominant strategy notion.
Table 1: SP-L and non SP-L mechanisms for some canonical market design problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Manipulable in the Large</th>
<th>SP-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Unit</td>
<td>Pay as Bid</td>
<td>Uniform Price</td>
</tr>
<tr>
<td>Auctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Unit</td>
<td>Boston Mechanism</td>
<td>Probabilistic Serial</td>
</tr>
<tr>
<td>Assignment</td>
<td>Adaptive Boston Mechanism</td>
<td>HZ Pseudomarket</td>
</tr>
<tr>
<td>Multi-Unit</td>
<td>Bidding Points Auction</td>
<td>Approximate CEEI</td>
</tr>
<tr>
<td>Assignment</td>
<td>HBS Draft</td>
<td>Generalized HZ</td>
</tr>
<tr>
<td>Matching</td>
<td>Priority Match</td>
<td>Deferred Acceptance</td>
</tr>
<tr>
<td>Other</td>
<td>Walrasian Mechanism</td>
<td>Double Auctions</td>
</tr>
</tbody>
</table>

Notes: See Supplementary Appendix D for a detailed description of each mechanism in the table as well as a proof of the mechanism’s classification as either SP-L or manipulable in the large. Abbreviations: HBS = Harvard Business School; HZ = Hylland and Zeckhauser; CEEI = competitive equilibrium from equal incomes.

approximately costless to impose relative to Bayes-Nash incentive compatibility. Formally, we consider social choice functions that take as input both agents’ preferences and their beliefs, and that can be implemented by the (limit) Bayes-Nash equilibria of a mechanism, considering agents’ beliefs that can be any full-support i.i.d. common prior over payoff types. For example, consider the Boston mechanism for school choice. Abdulkadiroğlu et al. (2011) show, given an arbitrarily set full-support i.i.d. common prior, that the Boston mechanism has a Bayes-Nash equilibrium that yields an ex-ante efficient allocation. This map from preferences and beliefs to equilibrium outcomes is a social choice function that fits our assumptions. Theorem 2 shows, given such a Bayes-Nash implementable social choice function, that there exists an SP-L mechanism that achieves approximately the same outcomes. Thus, while SP is often costly to impose relative to Bayes-Nash incentive compatibility, there is a precise sense in which SP-L is no more restrictive than Bayes-Nash incentive compatibility.

Overall, our analysis suggests that in large market settings SP-L approximates the advantages of SP design while being significantly less restrictive. Our hope is that market designers will view SP-L as a practical alternative to SP in settings with a meaningful number of participants and in which SP mechanisms perform poorly. An illustration of this approach is the SP-L course allocation mechanism recently implemented at the Wharton School, replacing a mechanism that was manipulable in the large, in an environment with
We emphasize that the idea that market size can ease incentive problems is quite old, with some of the earliest contributions being Roberts and Postlewaite (1976) and Hammond (1979), and rich and active literatures in both implementation theory and market design since these early contributions. We discuss the relevant literatures in detail in the body of the paper. Our paper makes three substantive contributions relative to this literature. First, the criterion of SP-L itself is new. There are many other criteria of approximate incentive compatibility in the literature (see footnote 12). SP-L is perhaps closest to the two criteria it lands in between: the traditional notion of approximate SP (which evaluates incentives to manipulate from the ex post perspective) and the traditional notion of approximate Bayes-Nash (which evaluates incentives to manipulate from the interim perspective, like SP-L, but with respect only to the single probability distribution associated with equilibrium play). Second, our classification of mechanisms, into those that are SP-L and those that are manipulable even in large markets, is new. We expect few market design researchers will find the classification surprising ex post; for example, Kojima and Pathak (2009) noted that the Boston mechanism fails their approximate IC criterion (roughly, that truth-telling is approximate Bayes-Nash), and Friedman (1991) informally discusses the incentives difference between pay-as-bid and uniform-price auctions. Rather, our contribution is to produce a classification of mechanisms across all of the canonical market design problems using a single criterion and analytical approach, which is both useful per se and speaks to the applicability of the criterion and analytical methods. Third, the result that SP-L is approximately costless relative to Bayes-Nash is new, and is the first such result, to our knowledge, for any form of approximate strategy-proofness relative to Bayes-Nash; though there are some more restricted settings where SP itself is costless relative to Bayes-Nash (Manelli and Vincent, 2010; Gershkov et al., 2013).

The rest of the paper is organized as follows. Section 2 defines the environment. Section 3 defines and discusses SP-L. Section 4 presents the theorem with sufficient conditions for SP-L and the classification of non-SP mechanisms. Section 5 presents the theorem that imposing SP-L is approximately costless relative to Bayes-Nash. Section 6 discusses technical

4For further details see Budish et al. (2015) and Budish and Kessler (2016). Notably, while the Wharton administration was concerned about how easy the old mechanism was to manipulate, they were not concerned about the fact that the new mechanism is SP-L but not SP. An excerpt from the student training manual highlights this point: “Doesn’t it pay to think strategically? NO! You cannot influence the clearing price (you are only one of 1600 students). So your best ‘strategy’ is to assume the clearing prices are given. And to tell Course Match [the mechanism] your true preferences so that it can buy you your best schedule, given your preferences, your budget and the given clearing prices.” (Wharton, 2013)
Section 7 discusses related literature. Section 8 concludes. Proofs and other supporting materials are in the appendix.

2 Environment

We work with an abstract mechanism design environment in which mechanisms assign outcomes to agents based on the set of agents’ reports. There is a finite set of payoff types \(T \) and a finite set of outcomes (or consumption bundles) \(X_0 \). The outcome space describes the outcome possibilities for an individual agent. For example, in an auction the elements in \(X_0 \) specify both the objects an agent receives and the payment she makes. In school assignment, \(X_0 \) is the set of schools to which a student can be assigned. An agent’s payoff type determines her preferences over outcomes. For each \(t_i \in T \) there is a von Neumann-Morgenstern expected utility function \(u_{t_i} : X \rightarrow [0,1] \), where \(X = \Delta X_0 \) denotes the set of lotteries over outcomes. Preferences are private values in the sense that an agent’s utility depends exclusively on her payoff type and the outcome she receives.

We study mechanisms that are well defined for all possible market sizes, holding fixed \(X_0 \) and \(T \). For each market size \(n \in \mathbb{N} \), where \(n \) denotes the number of agents, an allocation is a vector of \(n \) outcomes, one for each agent, and there is a set \(Y_n \subseteq (X_0)^n \) of feasible allocations. For instance, in an auction, the assumption that \(X_0 \) is fixed imposes that the number of potential types of objects is finite, and the sequence \((Y_n)_{\mathbb{N}} \) describes how the supply of each type of object changes as the market grows.

Definition 1. Fix a set of outcomes \(X_0 \), a set of payoff types \(T \), and a sequence of feasibility constraints \((Y_n)_{\mathbb{N}} \). A mechanism \(\{(\Phi^n)_{\mathbb{N}}, A\} \) consists of a finite set of actions \(A \) and a sequence of allocation functions

\[
\Phi^n : A^n \rightarrow \Delta((X_0)^n), \tag{2.1}
\]

each of which satisfies feasibility: for any \(n \in \mathbb{N} \) and \(a \in A^n \), the support of \(\Phi^n(a) \) is contained in the feasible set \(Y_n \). A mechanism is direct if \(A = T \).

We assume that mechanisms are anonymous. Anonymity requires that each agent’s outcome depends only on her own action and the distribution of all actions, but not on her identity or the specific identities associated with specific opponent actions. Formally, a mechanism is anonymous if the allocation function \(\Phi^n(\cdot) \) is invariant to permutations for all \(n \in \mathbb{N} \). Anonymity is a natural feature of many large-market settings. In Supplementary
Appendix C we relax anonymity to semi-anonymity (Kalai, 2004). A mechanism is semi-anonymous if agents are divided into a finite set of groups, and an agent’s outcome depends only on her own action, her group, and the distribution of actions within each group. Semi-anonymity accommodates applications in which there are asymmetries among classes of participants, such as double auctions in which there are distinct buyers and sellers and school choice problems in which students are grouped into different priority classes, as well as some models of matching markets.

We adopt the following notation. Given a finite set S, the set of probability distributions over S is denoted ΔS, and the set of distributions with full support $\bar{\Delta} S$. Distributions over the set of payoff types will typically be denoted as $\mu \in \Delta T$, and distributions over actions by $m \in \Delta A$. Throughout the analysis we will use the supremum norm on the sets ΔT, ΔA and X. Since the number of payoff types, actions and outcomes is finite, all of these probability spaces are subsets of Euclidean space. Using this representation, we denote the distance between two outcomes $x, x' \in X$ as $\|x - x'\|$, and likewise for distributions over T and A. In particular, we use this topology in the definition of limit mechanisms below.

Given a vector of payoff types $t \in T^n$, we use the notation $\text{emp}[t]$ to denote the empirical distribution of t on T. That is, for each payoff type $\tau \in T$, $\text{emp}[t](\tau)$ is the fraction of coordinates of t that equal τ, and the vector $\text{emp}[t] = (\text{emp}[t](\tau))_{\tau \in T}$. Analogously, given a vector of actions $a \in A^n$, $\text{emp}[a]$ denotes the empirical distribution of a on A.

3 Strategy-proof in the Large

In this section we formally define strategy-proofness in the large (SP-L) and discuss its interpretation and its relationship to previous concepts.

3.1 The Large Market

We begin by defining our notion of the large market. Given a mechanism $\{ (\Phi^n)_{n}, A \}$, define, for each n, the function $\phi^n : A \times \Delta A \rightarrow X$ according to

$$\phi^n(a_i, m) = \sum_{a_{-i} \in A^{n-1}} \Phi^n_i(a_i, a_{-i}) \cdot \Pr(a_{-i} | a_{-i} \sim iid(m)), \quad (3.1)$$

where $\Phi^n_i(a_i, a_{-i})$ denotes the marginal distribution of the i^{th} coordinate of $\Phi^n(a)$, i.e., the lottery over outcomes received by agent i when she plays a_i and the other $n - 1$ agents play a_{-i}, and $\Pr(a_{-i} | a_{-i} \sim iid(m))$ denotes the probability that the action vector a_{-i} is realized
given \(n - 1 \) independent and identically distributed (i.i.d.) draws from the action distribution \(m \in \Delta A \). In words, \(\phi^n(a_i, m) \) describes what an agent who plays \(a_i \) expects to receive, ex interim, if the other \(n - 1 \) agents play i.i.d. according to action distribution \(m \).

We use the interim allocation function \(\phi^n \) to define the large-market limit.

Definition 2. The **large-market limit of mechanism** \(\{ (\Phi^n)_{N,A} \} \) is the function \(\phi^\infty : A \times \Delta A \to X \) given by

\[
\phi^\infty(a_i, m) = \lim_{n \to \infty} \phi^n(a_i, m),
\]

if this limit exists.

In words, \(\phi^\infty(a_i, m) \) equals the lottery that an agent who plays \(a_i \) receives, in the limit as the number of agents grows large, when the other agents play i.i.d. according to the probability distribution \(m \).

It is easy to construct examples of mechanisms that do not have limits. For instance, if a mechanism is a uniform-price auction when \(n \) is even and is a pay-as-bid auction when \(n \) is odd, then the mechanism does not have a limit. The main results in this paper, Theorems 1 and 2, are valid regardless of the existence of the limit. Nevertheless, the limit is useful to understand the definition of SP-L, and is useful in the analysis of specific mechanisms.

3.1.1 Interpretation of the Limit: Generalized Price Taking

The randomness in how we let the market grow large is important for the following reason: from the interim perspective, as the market grows large in our way, the distribution of the empirical distribution of play becomes exogenous to any particular agent’s own play. We state this claim formally in the Appendix as Lemma A.1. Intuitively, if a fair coin is tossed \(n \) times the distribution of the number of heads is stochastic, and the influence of the \(i^{th} \) coin toss on this distribution vanishes to zero as \(n \to \infty \); whereas if the market grew large in a deterministic fashion one player’s decision between heads or tails could be pivotal as to whether the number of heads is greater than or less than 50%.

We interpret treating the societal distribution of play as exogenous to one’s own report as a generalized version of price taking. Suppose that a mechanism has prices that are a function of the empirical distribution of play. For example, in the uniform-price auction or Walrasian mechanism, price is determined based on where reported demand equals reported

5The randomness in how we take the large-market limit is in contrast with early approaches to large-
market analysis, such as Debreu and Scarf’s (1963) replicator economy and Aumann’s (1966) continuum economy. It is more closely related to the random economy method used in Immorlica and Mahdian’s (2005) and Kojima and Pathak’s (2009) studies of large matching markets.
supply. In our large market, because the distribution of the empirical distribution of play is exogenous to each agent, the distribution of prices is exogenous to each agent. Now suppose that a mechanism does not have prices, but has price-like statistics that are functions of the empirical distribution of play and sufficient statistics for the outcomes received by agents who played each action. For example, in Bogomolnaia and Moulin’s (2001) assignment mechanism, the empirical distribution of reports determines statistics called “run-out times”, which describe at what time in their algorithm each object exhausts its capacity. In our large market, each agent regards the distribution of these price-like statistics as exogenous to their own report.

3.2 Definition of SP-L

A mechanism is strategy-proof (SP) if it is optimal for each agent to report truthfully, in any size market, given any realization of opponent reports.

Definition 3. The direct mechanism \(\{(\Phi^n)_{\mathcal{N}}, T\} \) is strategy-proof (SP) if, for all \(n \), all \(t_i, t'_i \in T \), and all \(t_{-i} \in T^{n-1} \)

\[
 u_{t_i} [\Phi^n_i(t_i, t_{-i})] \geq u_{t'_i} [\Phi^n_i(t'_i, t_{-i})].
\]

We say that a mechanism is strategy-proof in the large (SP-L) if, for any full-support i.i.d. distribution of opponent reports, reporting truthfully is approximately interim optimal in large markets. For mechanisms that have a limit, this is equivalent to, for any full-support i.i.d. distribution of opponent reports, reporting truthfully being optimal in the limit.

Definition 4. The direct mechanism \(\{(\Phi^n)_{\mathcal{N}}, T\} \) is strategy-proof in the large (SP-L) if, for any \(m \in \bar{\Delta}T \) and \(\epsilon > 0 \) there exists \(n_0 \) such that, for all \(n \geq n_0 \) and all \(t_i, t'_i \in T \),

\[
 u_{t_i} [\phi^n(t_i, m)] \geq u_{t'_i} [\phi^n(t'_i, m)] - \epsilon.
\]

If the mechanism has a limit, this is equivalent to, for any \(m \in \bar{\Delta}T \) and all \(t_i, t'_i \in T \),

\[
 u_{t_i} [\phi^\infty(t_i, m)] \geq u_{t'_i} [\phi^\infty(t'_i, m)].
\]

(3.2)

Otherwise, the mechanism is manipulable in the large.
3.3 Discussion

3.3.1 Relationship to SP

SP-L weakens SP in two ways. First, while SP requires that truthful reporting is optimal in any size market, SP-L requires that truthful reporting is only approximately optimal in a large enough market. Second, SP evaluates what report is best based on the (ex post) realization of reports, whereas SP-L evaluates based on the (ex interim) probability distribution of reports. A mechanism can be SP-L even if it has the property that, given \(\epsilon > 0 \), in any size market \(n \) one can find a payoff type \(t_i \) and realization of opponent reports \(t_{-i} \) for which \(t_i \) has a misreport worth more than \(\epsilon \) (e.g., the uniform price auction). What SP-L rules out is that there is a full-support i.i.d. probability distribution of opponent reports with this property. Implicitly, SP-L takes a view on what information participants have in a large market when they decide how to play – they may have a (possibly incorrect) sense of the distribution of opponent preferences, but they do not know the exact realization of opponent preferences.

3.3.2 Relationship to other Approximate IC criteria

SP-L lies in between the standard notion of asymptotic strategy-proofness and the standard notion of approximate Bayes-Nash incentive compatibility.

SP-L is weaker than the standard notion of asymptotic SP — which requires that reporting truthfully is approximately optimal, in a large enough market, for any realization of opponent reports\(^6\) — because SP-L evaluates incentives to misreport ex interim and not ex post. This distinction is important for the results below. Theorems 1 and 2 are both false for the ex post notion of asymptotic SP. In the classification of mechanisms, nearly all of the mechanisms that are classified as SP-L would fail this stronger criterion, with the lone exception being the probabilistic serial mechanism.

At the same time, SP-L is stronger than approximate Bayes-Nash incentive compatibility. In its direct-revelation mechanism form — e.g., the direct-revelation mechanism version of the pay-as-bid auction or Boston mechanism — Bayes-Nash incentive compatibility requires that the distribution of types is common knowledge among both participants and

\[u_{t_i}[\Phi^n(t_i, t_{-i})] \geq u_{t_i}[\Phi^n(t'_i, t_{-i})] - \epsilon. \]

A similar definition is in Hatfield, Kojima and Kominers (2015).

\(^6\)For example, Liu and Pycia (2011) define a mechanism as asymptotically strategy-proof if, given \(\epsilon > 0 \), there exists \(n_0 \) such that for all \(n \geq n_0 \), types \(t_i, t'_i \), and a vector of \(n - 1 \) types \(t_{-i} \),

\[u_{t_i}[\Phi^n(t_i, t_{-i})] \geq u_{t_i}[\Phi^n(t'_i, t_{-i})] - \epsilon. \]

A similar definition is in Hatfield, Kojima and Kominers (2015).
the mechanism designer, and that reporting truthfully is approximately a best response given this single common-knowledge distribution. In its indirect mechanism form — e.g., the versions of the pay-as-bid auction or Boston mechanism used in practice — Bayes-Nash incentive compatibility requires that the distribution of types is common knowledge among participants, and that participants can make the potentially complex strategic calculations required by equilibrium as a function of the distribution (e.g., how much to shade one’s bid, or whether to take a risk for a popular school). In contrast, SP-L does not impose any common knowledge assumptions on either participants or the mechanism designer, and is strategically simple in that participants approximately optimize by reporting their type truthfully. Our Theorem 2 shows that this strengthening relative to Bayes-Nash is, in a precise sense, approximately costless in large markets, and our classification exercise in Section 4 suggests that this strengthening yields a compelling classification of non-SP mechanisms.

3.3.3 Clarifying Example: Multi-Unit Auctions

Appendix B provides a detailed example, multi-unit auctions, to illustrate several of the key definitions of this section. The two most common multi-unit auction formats are uniform-price auctions and pay-as-bid auctions. While neither mechanism is SP (Ausubel and Cramton, 2002), Milton Friedman famously argued in favor of the uniform-price auction on incentives grounds (Friedman, 1960, 1991). The example shows that the uniform-price auction is SP-L whereas the pay-as-bid auction is manipulable in the large. The example also illustrates the large-market limit, the role of the full-support requirement, and the contrast between SP-L and the traditional notion of approximate strategy-proofness based on ex post realizations of others’ play rather than interim distributions of others’ play. Notably, while the uniform-price auction is SP-L, it fails to satisfy the traditional ex post notion of approximate strategy-proofness.

4 Classification of Non-SP Mechanisms

This section classifies a number of non-SP mechanisms into SP-L and manipulable in the large (Table 1 in the Introduction), and discusses how the classification organizes the evidence on manipulability in large markets. Specifically, all of the known mechanisms for which there is a detailed theoretical case that the mechanism has approximate incentives for truth-telling in large markets are SP-L (Section 4.2), and all of the known mechanisms for which there is empirical evidence that non-strategy-proofness causes serious problems even in large markets
are manipulable in the large (Section 4.3). In particular, the classification of mechanisms based on whether or not they are SP-L predicts whether misreporting is a serious problem in practice better than the classification of mechanisms based on whether or not they are SP. These results suggest that, in large markets, SP-L versus not SP-L is a more relevant dividing line than SP versus not SP.

Before proceeding, we make three brief observations regarding the classification. First, both the SP-L and the manipulable in the large columns of Table 1 include mechanisms that explicitly use prices (e.g., multi-unit auctions), as well as mechanisms that do not use prices (e.g., matching mechanisms). For the mechanisms that do use prices, the SP-L ones are exactly those where an agent who takes prices as given wishes to report truthfully, such as the uniform-price auction. Second, the table is consistent with both Milton Friedman’s (1960; 1991) argument in favor of uniform-price auctions over pay-as-bid auctions, and Alvin Roth’s (1990; 1991; 2002) argument in favor of deferred acceptance over priority-match algorithms. Notably, while both Friedman’s criticism of pay-as-bid auctions and Roth’s criticism of priority-match algorithms were made on incentives grounds, the mechanisms they suggested in their place are not SP but are SP-L. Third, with the exception of probabilistic serial, none of the SP-L mechanisms satisfy the stronger, ex post, notion of approximate strategy-proofness that has been used in previous literature (cf. footnote 6 for the formal definition). That is, the classification would not conform to the existing evidence, nor to Friedman’s and Roth’s arguments, without the ex interim perspective in the definition of SP-L.

4.1 Obtaining the Classification

To show that a mechanism is not SP-L it suffices to identify an example of a distribution of play under which agents may gain by misreporting, even in the limit. For SP-L mechanisms, this section gives two easy-to-check sufficient conditions for a mechanism to be SP-L, which directly yield the classification for all of the SP-L mechanisms in Table 1. Formal definitions of each mechanism and detailed derivations are in Supplementary Appendix D.

The first sufficient condition is envy-freeness, a fairness criterion which requires that no

Footnote 7: Two of these mechanisms do not fit the framework used in the body of the paper. Deferred acceptance is a semi-anonymous mechanism, and the Walrasian mechanism has an infinite set of bundles. For details of how we accommodate these generalizations, see Supplementary Appendix D. Moreover, to define some of these mechanisms we make a selection from a correspondence. For example, in the Hylland and Zeckhauser (1979) pseudomarket mechanism, individuals report preferences for objects, and a competitive equilibrium is calculated. There exist preference profiles for which there are multiple equilibria. In the appendix, we formally define the HZ mechanism as a mechanism that picks an arbitrary selection from this correspondence. We state similar formal definitions for the approximate CEEI and Generalized HZ mechanisms (see Supplementary Appendix D).
player \(i\) prefers the assignment of another player \(j\), for any realization of the reported payoff types \(t\).

Definition 5. A direct mechanism \(\{(\Phi^n)_{N, T}\}\) is envy-free (EF) if, for all \(i, j, n, t:\)

\[
 u_{t_i}(\Phi^n_i(t)) \geq u_{t_i}(\Phi^n_j(t)).
\]

Theorem 1 below shows that EF implies SP-L. The connection between envy-freeness and incentive compatibility in large markets was first observed by Hammond (1979), who shows, in a continuum exchange economy, that EF implies SP. For related contributions see Champsaur and Laroque (1981) and Jackson and Kremer (2007).

The mathematical intuition for why EF implies SP-L is as follows. In anonymous mechanisms, the gain to player \(i\) from misreporting as player \(j\) can be decomposed as the sum of the gain from receiving \(j\)'s bundle, holding fixed the aggregate distribution of reports, plus the gain from affecting the aggregate distribution of reports (expression (A.2) in Appendix A). Envy-freeness directly implies that the first component in this decomposition is non-positive. Lemma A.1 then shows that the second component becomes negligible in large markets. More precisely, even though there may exist realizations of the other players’ reports where player \(i\)'s gain from affecting the aggregate distribution is large (e.g., if by misreporting he affects the clearing price in the uniform-price auction), his effect on the interim distribution of the empirical distribution of reports vanishes with market size, at a rate of essentially \(\sqrt{n}\). This yields both that EF implies SP-L and the convergence rate for EF mechanisms as stated in Theorem 1.\(^8\)

Most of the mechanisms in the SP-L column of Table 1 are EF, with the only exceptions being approximate CEEI and deferred acceptance.\(^9\) To classify these mechanisms, we introduce a weakening of EF that we call envy-free but for tie breaking (EF-TB). A mechanism is envy-free but for tie breaking if, after reports are submitted, the mechanism runs a tie-breaking lottery, and allocations depend on reports and on the lottery. After the

\(^8\)The assumption of a finite number of types is important for the proof of Theorem 1. With a finite number of types and full support, the number of participants reporting a type \(t_j\) is random from the perspective of a participant who knows her own report and believes that the other reports are i.i.d. Moreover, the participant cannot have a large effect on the distribution of this number as the market grows large. However, with an infinite set of types and an atomless distribution, the expected number of other participants reporting exactly \(t_j\) will be zero with probability one even in arbitrarily large finite markets, so a single participant can have an economically meaningful impact on the number of reports of \(t_j\). An interesting direction of future research is to consider infinite sets of types, but where there is a topological notion of types that are close to one another, and results like Theorem 1 can be established.

\(^9\)Both approximate CEEI and deferred acceptance include as a special case the random serial dictatorship mechanism, which Bogomolnaia and Moulin (2001) show is not envy-free.
lottery is realized, no participant envies another participant with a worse lottery number. The simplest example is the random serial dictatorship mechanism for allocating objects without using money. Random serial dictatorship orders participants according to a lottery, and participants then take turns picking their favorite object out of the objects that are still available. This mechanism has envy ex post, because a participant may prefer the allocation of another participant who got a better lottery number. Bogomolnaia and Moulin (2001) have shown that the mechanism can also have envy before the lottery is drawn. However, after the lottery is drawn, no participant envies another participant with a worse lottery number, which means that this mechanism is envy-free but for tie breaking. Formally, the definition is as follows.\footnote{This definition is for anonymous mechanisms. The definition for semi-anonymous mechanisms, which is needed for deferred acceptance, is contained in Supplementary Appendix C. The semi-anonymous version of the definition can also be used for school choice problems in which there are multiple groups of students with different priority classes (e.g., sibling priority or walk-zone priority.).}

Definition 6. A direct mechanism \(\{ (\Phi^n)_{n,T} \} \) is **envy-free but for tie breaking (EF-TB)** if for each \(n \) there exists a function \(x^n : (T \times [0,1])^N \to \Delta(X^n) \), symmetric over its coordinates, such that

\[
\Phi^n(t) = \int_{l \in [0,1]^n} x^n(t,l) dl
\]

and, for all \(i, j, n, t, \) and \(l \), if \(l_i \geq l_j \) then

\[
u(t_i^x(t,l), l) \geq u(t_i^x(t,l), x^n(t,l)).\]

The following theorem shows that either condition guarantees that a mechanism is SP-L.

Theorem 1. If a mechanism is EF-TB (and in particular if it is EF), then it is SP-L. The maximum possible gain from misreporting converges to 0 at a rate of \(n^{-\frac{1}{2}+\epsilon} \) for EF mechanisms, and \(n^{-\frac{1}{4}+\epsilon} \) for EF-TB mechanisms. Formally, if a mechanism is EF (EF-TB), then given \(\mu \in \Delta T \) and \(\epsilon > 0 \) there exists \(C > 0 \) such that, for all \(t_i, t_i' \) and \(n \), the gain from deviating,

\[
u(t_i^x(t_i', \mu) - u(t_i^x(t_i, \mu), \phi^n(t_i, \mu)),
\]

is bounded above by

\[
C \cdot n^{-\frac{1}{2}+\epsilon} \quad (C \cdot n^{-\frac{1}{4}+\epsilon}).
\]

The theorem shows that either condition can be used to classify new or existing mechanisms as SP-L. It also gives reasonable rates of convergence for the maximum possible gain from manipulating a mechanism.
The first claim of Theorem 1 can also be stated in the language of implementation theory, which we will introduce formally in Section 5. In this language the result is (informally): Any social choice function F that depends only on payoff types and is EF or EF-TB is SP-L implementable.

The proof of the theorem for the EF-TB case builds upon the argument for the EF case, by showing that EF-TB mechanisms have small amounts of envy before lotteries are drawn (Lemma A.2). This is accomplished with three basic ideas. First, how much player i envies player j prior to the lottery draw equals the average envy by all type t_i players towards type t_j players, as a consequence of anonymity. Second, it is possible to bound this average envy, after a given lottery draw l, by how evenly distributed the lottery numbers in the vector l are. Intuitively, if players of types t_i and t_j receive evenly distributed lottery numbers, average envy has to be small. The final step is an application of a probabilistic bound known as the Dvoretzky–Kiefer–Wolfowitz inequality, which guarantees that lottery numbers are typically very evenly distributed.

4.2 Relationship to the Theoretical Literature on Large Markets

The SP-L column of Table 1 organizes a large literature demonstrating the approximate incentive compatibility of specific mechanisms in large markets. Our results show that a number of mechanisms for which the literature established approximate incentive compatibility results are SP-L. This includes Walrasian mechanisms (Roberts and Postlewaite, 1976, Hammond, 1979 and Jackson and Manelli, 1997), double auctions (Rustichini et al., 1994 and Cripps and Swinkels, 2006), uniform-price auctions (Swinkels, 2001), deferred acceptance mechanisms (Immorlica and Mahdian, 2005 and Kojima and Pathak, 2009), and the probabilistic serial mechanism (Kojima and Manea, 2010). We also obtain new results on the Hylland and Zeckhauser (1979) pseudomarket mechanism, approximate CEEI (Budish, 2011), and the generalized Hylland-Zeckhauser mechanism (Budish et al., 2013), each of whose large-market incentive properties had not previously been formally studied.

The single concept of SP-L and Theorem 1 classifies all of these mechanisms. In contrast, the prior literature has employed different notions of approximate incentive compatibility and different analysis techniques, often with common knowledge assumptions, tailored for

11Our assumption of a finite number of types is a limitation in certain matching models. As the market grows, we can only have a finite number of preference orderings over partners. This contrasts with some other large-market matching models, such as Kojima and Pathak (2009), Kojima et al. (2013), and Ashlagi et al. (2014). An interesting question for future research (see also fn. 8) is whether our analysis can be generalized to accommodate infinite sets of types with a topological notion of types that are close to one another, as in the large-market matching model of Lee (2017).
each mechanism. Of course, analyses that are tailored to specific mechanisms can yield a more nuanced understanding of the exact forces pushing players away from truthful behavior in finite markets, as in the first-order condition analysis of Rustichini et al. (1994) or the rejection chain analysis of Kojima and Pathak (2009).

4.3 Relationship to Empirical Literature on Manipulability

For each of the manipulable in the large mechanisms in Table 1, there is explicit empirical evidence that participants strategically misreport their preferences in practice. Furthermore, misreporting harms design objectives such as efficiency or fairness. In this section we briefly review this evidence.

Consider first multi-unit auctions for government securities. Empirical analyses have found considerable bid shading in discriminatory auctions (Hortaçsu and McAdams, 2010), but negligible bid shading in uniform-price auctions, even with as few as 13 bidders (Kastl, 2011; Hortaçsu et al. (2015)). Friedman (1991) argued that the need to play strategically in pay-as-bid auctions reduces entry of less sophisticated bidders, giving dealers a sheltered market that facilitates collusion. In uniform-price auctions, by contrast, “You do not have to be a specialist” to participate, since all bidders pay the market-clearing price. Consistent with Friedman’s view, Jegadeesh (1993) shows that pay-as-bid auctions depressed revenues to the US Treasury during the Salomon Squeeze in 1991, and Malvey and Archibald (1998) find that the US Treasury’s adoption of uniform-price auctions in the mid-1990s broadened participation. Cross-country evidence is also consistent with Friedman’s argument, as Bren-
ner et al. (2009) find a positive relationship between a country’s using uniform-price auctions and indices of ease of doing business and economic freedom, whereas pay-as-bid auctions are positively related with indices of corruption and of bank-sector concentration.

Next, consider the Boston mechanism for school choice. Abdulkadiroğlu et al. (2006) find evidence of a mix of both sophisticated strategic misreporting and unsophisticated naive truth-telling; see also recent empirical work by Agarwal and Somaini (2014), Hwang (2014), De Haan et al. (2015) and Kapor et al. (2017). Sophisticated parents strategically misreport their preferences by ranking a relatively unpopular school high on their submitted preference list. Unsophisticated parents, on the other hand, frequently play a dominated strategy in which they waste the highest positions on their rank-ordered list on popular schools that are unattainable for them. In extreme cases, participants who play a dominated strategy end up not receiving any of the schools they ask for.

Next, consider the mechanisms used in practice for the multi-unit assignment problem of course allocation. In the bidding points auction, Krishna and Ünver (2008) use both field and laboratory evidence to show that students strategically misreport their preferences, and that this harms welfare. Budish (2011) provides additional evidence that some students get very poor outcomes under this mechanism; in particular students sometimes get zero of the courses they bid for. In the Harvard Business School draft mechanism, Budish and Cantillon (2012) use data consisting of students’ stated preferences and their underlying true preferences to show that students strategically misreport their preferences. They show that misreporting harms welfare relative both to a counterfactual in which students report truthfully, and relative to a counterfactual in which students misreport, but optimally. They also provide direct evidence that some students fail to play best responses, which supports the view that Bayes-Nash equilibria are less robust in practice than dominant-strategy equilibria.

For labor market clearinghouses, Roth (1990, 1991, 2002) surveys a wide variety of evidence that shows that variations on priority matching mechanisms perform poorly in practice, while variations on Gale and Shapley’s deferred acceptance algorithm perform well. Roth emphasizes that the former are unstable under truthful play whereas the latter are stable under truthful play. By contrast, we emphasize that the former are not SP-L whereas the latter are SP-L.
5 SP-L is Approximately Costless in Large Markets Relative to Bayes-Nash

This section shows that, in large markets, SP-L is in a precise sense approximately costless to impose relative to Bayes-Nash incentive compatibility. Formally, we give conditions under which, if it is possible to implement a social choice function with a Bayes-Nash incentive compatible mechanism, then it is possible to approximately implement this social choice function with an SP-L mechanism. The exception is that there can be a large cost of using SP-L if the intended social choice function is discontinuous in agents’ beliefs.

5.1 Social Choice Functions and Type Spaces

To formally state the result we need to introduce the notions of social choice functions and type spaces. These concepts will allow us to describe the social outcomes produced by mechanisms such as pay-as-bid auctions or the Boston mechanism, which are not SP-L but which have Bayes-Nash equilibria that depend on agents’ beliefs. Our definition of type spaces is similar to that in the robust mechanism design literature (Bergemann and Morris, 2005).

A type space \(\Omega = ((\Omega_{n,i})_{n \in \mathbb{N}, i=1,\ldots,n}, \hat{t}, \hat{\pi}) \) consists of a measurable set of types \(\Omega_{n,i} \), for every market size \(n \) and agent \(i \), and measurable maps \(\hat{t} \) and \(\hat{\pi} \). These maps associate, with each type \(\omega_i \) in a given set \(\Omega_{n,i} \), a payoff type \(\hat{t}(\omega_i) \) in \(T \), and beliefs \(\hat{\pi}(\omega_i) \) over the joint distribution of opponent types \((\omega_1, \ldots, \omega_{i-1}, \omega_{i+1}, \ldots, \omega_n) \) in \(\times_{j \neq i} \Omega_{n,j} \). The type space \(\Omega_n \) for market size \(n \) is the product of the individual type spaces \(\Omega_{n,i} \). Thus, a type encodes a participant’s information about her preferences and about other participants’ preferences and beliefs. For our purposes, it is sufficient to restrict attention to type spaces that are symmetric across players, so that \(\Omega_{n,i} \) is the same set for all \(i \), and with an onto function \(\hat{t} \) so that all payoff types are possible.

Given a type space \(\Omega \), a social choice function is a sequence \(F = (F^n)_{n \in \mathbb{N}} \) of functions

\[
F^n : \Omega_n \longrightarrow \Delta(X_0)^n.
\]

Note, importantly, that we allow social choice functions to depend on both preferences and beliefs, not only on preferences. The reason is that the outcomes of many commonly used mechanisms vary with both preferences and beliefs. For example, outcomes of the pay-as-bid auction or the Boston mechanism depend on what participants believe about other
participants’ preferences and information; holding an agent’s preferences fixed, their beliefs affect how much they will shade their bid, or whether they will take a risk and rank a popular school first. To discuss the social choice functions implemented by these mechanisms, we need to include beliefs in the definition of a social choice function. Our definition differs from that in Bergemann and Morris (2005), where social choice functions only depend on payoff types. Our definition is similar to that in the literature on implementation with incomplete information (as in Postlewaite and Schmeidler, 1986 or Jackson, 1991), where social choice functions may depend on payoff-irrelevant information.\footnote{Restricting attention to social choice functions that only depend on payoff types is reasonable if the social choice function is interpreted as a map from preference profiles to socially optimal alternatives, as in the interpretation in Maskin (1999) p. 24, which goes back to Arrow (1951). Following Bergemann and Morris (2005), the robust mechanism design literature often restricts attention to social choice functions that only depend on payoff types. However, we use social choice functions to describe the allocations produced by equilibria of Bayesian mechanisms, which in many applications depend on beliefs. For that reason, we follow the literature on implementation with incomplete information, which typically allows for social choice functions to depend on payoff-irrelevant information. For example, Jackson (1991) p. 463 defines a social choice function as a function from a set of states to allocations. In particular, the social choice function may produce different outcomes in states where agents have the same preferences, but different information about the preferences of other agents. Maskin and Sjöström’s (2002) (pp. 276-277) discussion of the Bayesian implementation literature uses a similar definition. Likewise, Postlewaite and Schmeidler’s (1986) social welfare correspondences and Palfrey and Srivastava’s (1989) social choice sets may depend on payoff-irrelevant information.} We say that a social choice function \textbf{depends only on payoff types} if, for all \(n\), and all \(\omega\) and \(\omega'\) in \(\Omega_{n,i}\) such that \(\hat{t}(\omega_i) = \hat{t}(\omega'_i)\) for all \(i\), we have \(F^n(\omega) = F^n(\omega')\).

Much applied work in mechanism design considers Bayesian equilibria where agents have a common, i.i.d. prior \(\mu\) about payoff types, and know their own type.\footnote{This type space is a particular case of what Chung and Ely (2007) and Bergemann and Morris (2005) call naive type spaces.} To describe the outcomes of such equilibria for a range of priors \(\mu\), we need a type space that includes the union of these simple type spaces for a range of values of \(\mu\).

We now define such a type space, which we denote as \(\Omega^*\). Formally, for all \(n\), let

\[
\Omega^*_{n,i} = \{ (t_i, \mu) : t_i \in T, \mu \in \bar{\Delta} T \}.
\]

For any \(\omega_i = (t_i, \mu) \in \Omega^*_{n,i}\), let \(\hat{t}(\omega_i) = t_i\). The beliefs of type \(\omega_i\) are

\[
\hat{\pi}(\omega_i)(\omega_{-i}) = 0
\]

if, for any \(j \neq i\), the first element of \(\omega_j\) is not \(\mu\), and the beliefs are

\[
\hat{\pi}(\omega_i)(\omega_{-i}) = \Pi_{j \neq i} \mu(\hat{t}(\omega_j))
\]
otherwise. We will refer to the type space $\Omega^* = \{(\Omega^*_{n,i})_{n \in \mathbb{N}, i = 1, \ldots, n}, \hat{t}, \hat{\pi}\}$, as the union of all common prior, i.i.d., full-support type spaces.

If a social choice function F is defined on Ω^*, denote by $f^n(t_i, \mu)$ the bundle that a type (μ, t_i) agent expects to receive in a market of size n. Formally,

$$f^n(t_i, \mu) = \sum_{t_{-i} \in T^{n-1}} \Pr\{t_{-i} | t_{-i} \sim iid(\mu)\} \cdot F^n_i((t_1, \mu), \ldots, (t_n, \mu)).$$

5.2 Limit Bayes-Nash and SP-L Implementability

This subsection defines the implementability notions that we need to state the theorem, and a regularity condition on social choice functions.

We begin by defining implementability in limit Bayes-Nash equilibria. It will be useful to extend the function Φ^n linearly to distributions over vectors of actions. Given a distribution $\bar{m} \in \Delta(A^n)$ over vectors of actions, let

$$\Phi^n(\bar{m}) = \sum_{a \in A^n} \bar{m}(a) \cdot \Phi^n(a).$$

Likewise, given an action a_i and a distribution $\bar{m} \in \Delta(A^{n-1})$ over $n-1$ actions, let

$$\Phi^n_i(a_i, \bar{m}) = \sum_{a_{-i} \in A^{n-1}} \bar{m}(a_{-i}) \cdot \Phi^n_i(a_i, a_{-i}).$$

Given a mechanism $\{(\Phi^n_n, A)\}$ and type space Ω, a strategy σ is defined as a map from $\Omega_{n,i}$ to ΔA. Given a strategy σ, market size n and a vector of belief types $\omega \in \Omega_n$, let $\sigma(\omega) \in \Delta(A^n)$ denote the associated distribution over vectors of actions.

Definition 7. Given a mechanism $\{(\Phi^n_n, A)\}$ and type space Ω, the strategy σ^* is a **limit Bayes-Nash equilibrium** if each participant’s strategy becomes arbitrarily close to optimal as the market grows large. Formally, for all $\epsilon > 0$ there exists n_0 such that, for all $n \geq n_0$, $\omega_i \in \Omega_{n,i}$, a_i in the support of $\sigma^*(\omega_i)$, and $a_i' \in A$:

$$\int_{\omega_{-i}} u_{t_i}[\Phi^n_i(a_i', \sigma^*(\omega_{-i}))] - u_{t_i}[\Phi^n_i(a_i, \sigma^*(\omega_{-i}))] d\hat{\pi}(\omega_i)(\omega_{-i}) \leq \epsilon.$$

A social choice function F is **limit Bayes-Nash implementable** if there exists a mechanism $\{(\Phi^n_n, A)\}$ with a limit Bayes-Nash equilibrium σ^* such that

$$F^n(\omega) = \Phi^n(\sigma^*(\omega))$$
for all \(\omega \) in the type space \(\Omega \) for which \(F \) is defined.

The theorem also requires the following regularity condition.

Definition 8. A social choice function \((F^n)_{n \in \mathbb{N}}\) defined over \(\Omega^* \) is **continuous** at a prior \(\mu_0 \) if, given \(\epsilon > 0 \), there exists \(n_0 \) and a neighborhood \(\mathcal{N} \) of \(\mu_0 \) such that the following holds. Consider any \(n \geq n_0 \), and any two vectors of types \(\omega \) and \(\omega' \), with \(\omega_i = (t_i, \mu) \) and \(\omega'_i = (t_i, \mu') \) for all \(i \), where \(\mu, \mu' \), and \(\text{emp}[t] \) belong to \(\mathcal{N} \). Then, for any such \(n \), \(\omega \), and \(\omega' \),

\[
\|F^n(\omega) - F^n(\omega')\| < \epsilon.
\]

The social choice function is **continuous** if it is continuous at every full support prior.

That is, a social choice function defined over \(\Omega^* \) is continuous if, in large enough markets, social outcomes vary continuously with beliefs. In the working paper version of this article we established a version of Theorem 2 that used a weaker condition, called quasi-continuity. See Section 6.1 for further discussion.

A direct revelation mechanism \((\Phi^n_{n \in \mathbb{N}}, T)\) **approximately implements** a social choice function \(F = (F^n)_{n \in \mathbb{N}} \) defined over \(\Omega^* \) if, for every \(\epsilon > 0 \) and prior \(\mu \) in \(\Delta T \), there exists \(n_0 \) such that, for all \(n \geq n_0 \) and \(t_i \in T \),

\[
\|f^n(t_i, \mu) - \phi^n(t_i, \mu)\| < \epsilon.
\]

We say that \(F \) is **approximately SP-L implementable** if there exists an SP-L mechanism that approximately implements \(F \).

5.3 Construction Theorem

We now state the main result of this section.

Theorem 2. Consider a social choice function \(F = (F^n)_{n \in \mathbb{N}} \) defined over \(\Omega^* \), the union of all common prior, i.i.d., full support type spaces. If \(F \) is continuous and limit Bayes-Nash implementable, then \(F \) is approximately SP-L implementable.

Proof Sketch. The proof of Theorem 2 is by construction. We provide a detailed sketch as follows, with full details contained in Appendix A.

\((F_n)_{n \in \mathbb{N}}\) is limit Bayes-Nash implementable. Therefore, there exists a mechanism \((\Phi^n_{n \in \mathbb{N}}, A)\)
with a limit Bayes-Nash equilibrium σ^* such that

$$F^n(\omega) = \Phi^n(\sigma^*(\omega))$$

for all $n \geq 0$ and vectors of types ω in Ω_n^*. Construct the direct mechanism $((\Psi^n_{n \in N}, T)$ as follows. Given a vector of payoff types t, let $\text{emp}[t] \in \Delta T$ be the empirical distribution of payoff types in t. Given a market size n, let

$$\Psi^n(t) = \Phi^n(\sigma^*((t_1, \text{emp}[t]), \ldots, (t_n, \text{emp}[t]))).$$

(5.2)

In words, Ψ^n plays action $\sigma^*((t_i, \text{emp}[t]))$ for agent i who reports t_i, where $\text{emp}[t]$ is the empirical distribution of reported payoff types. The constructed mechanism Ψ^n can be interpreted as a proxy mechanism. Ψ^n plays the original mechanism Φ^n on each agent’s behalf, using the limit Bayes-Nash equilibrium strategy σ^*, and assuming that players believe that payoff types are i.i.d according to the empirical distribution of payoff types $\text{emp}[t]$.

We need to establish two facts. First, the constructed mechanism yields approximately the same outcome as the social choice function. This follows from continuity and from the law of large numbers. Specifically, assume that participant i reports t_i, and that other participants’ reports are i.i.d. according to a distribution μ in ΔT. The law of large numbers implies that $\text{emp}[t]$ converges to m in probability as the market grows large. Continuity then implies that the expected bundle received by agent i is close to $f^n(t_i, \mu)$.

Second, we need to show that the constructed mechanism is SP-L. Suppose that agent i’s payoff type is t_i but that she reports t'_i, and that other participants report i.i.d. according to a distribution μ in ΔT. We have already established that agent i receives a bundle that is close to $f^n(t'_i, \mu)$. Because the social choice function is limit Bayes-Nash implementable, agent i’s utility for $f^n(t'_i, \mu)$ cannot be much higher than her utility for $f^n(t_i, \mu)$. As the market grows, these approximations improve, and the maximum possible gain from misreporting converges to 0. This shows that the constructed mechanism is SP-L.

5.4 Discussion of Theorem 2

5.4.1 Relationship to the Revelation Principle

The construction used in the proof of Theorem 2 is related to the traditional Bayes-Nash direct revelation mechanism construction (Myerson, 1979). In a traditional Bayes-Nash direct revelation mechanism, the mechanism designer and participants have a common knowledge
prior about payoff types, say μ_0. The mechanism announces a Bayes-Nash equilibrium strategy $\sigma^*(\cdot, \mu_0)$, and plays $\sigma^*(t_i, \mu_0)$ on behalf of an agent who reports t_i. Truthful reporting is a Bayes-Nash equilibrium.

In contrast, our constructed mechanism does not depend on a prior. Instead, the mechanism infers a prior from the empirical distribution of agents’ play (cf. Segal (2003); Baliga and Vohra (2003)). If agents indeed play truthfully, this inference is correct in the limit. But if the agents misreport, so that the empirical $\hat{\mu}$ is very different from the prior μ_0, our mechanism adjusts each agent’s play to be the Bayes-Nash equilibrium play in a world where the prior was in fact $\hat{\mu}$. As a result, an agent who reports her preferences truthfully remains happy to have done so even if the other agents misreport, unlike in a traditional Bayes-Nash direct revelation mechanism, so the constructed mechanism is SP-L rather than Bayes-Nash. Moreover, the constructed mechanism is prior free and consistent with the Wilson doctrine, unlike a traditional Bayes-Nash direct revelation mechanism. The mechanism designer need not know the prior to run the mechanism, and the participants need not know the prior to play optimally.

5.4.2 Relationship to other Equivalence Results for Bayes-Nash and SP

Theorem 2 can be understood in relation to recent papers by Manelli and Vincent (2010) and Gershkov et al. (2013), which find striking exact equivalences between Bayes-Nash and dominant-strategy incentive compatibility in finite markets.

In Myerson’s (1981) celebrated analysis of optimal auction design, the seller’s maximal revenue can be achieved either in a Bayes-Nash mechanism (a first-price sealed bid auction) or in a dominant-strategy mechanism (a Vickrey auction). That is, there is no loss to the seller from moving from Bayes-Nash incentive compatibility to SP. Manelli and Vincent (2010) show that an equivalence between Bayes-Nash and SP obtains, in Myerson’s environment, for the expected, ex interim allocations in any Bayes-Nash incentive compatible mechanism. Gershkov et al. (2013) extend the Manelli and Vincent (2010) result to a broader class of mechanism design environments, including auctions, public goods, bilateral trade, and screening, provided that, as in Myerson, types are one-dimensional and agents have quasi-linear utility.

Gershkov et al. (2013) then show, however, that their exact equivalence result no longer obtains once assumptions like one-dimensional types and quasi-linear utility are relaxed. These limitations are important when thinking about practical market design problems, because multi-dimensional types and non quasi-linear preferences are prevalent. For instance,
in all of the mechanisms listed in Table 1, agents’ types are multi-dimensional, e.g., types are rank-order lists or demand functions. Our Theorem 2 recovers a form of approximate equivalence between Bayes-Nash and dominant-strategy incentive compatibility, for a richer class of environments without assumptions such as one-dimensional types and quasi-linear utility.\(^\text{16}\)

5.4.3 The Debate on the Boston Mechanism

Theorem 2 contributes to a debate in the market design literature concerning the Boston mechanism for student assignment. (See Appendix E for a formal description of the Boston mechanism and the formal application of Theorem 2 to the mechanism).

The earliest papers on the Boston mechanism, Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu et al. (2006), criticized the mechanism on the grounds that it is not SP, and proposed that the strategy-proof Gale-Shapley deferred acceptance algorithm be used instead.\(^\text{17}\) These papers had a major policy impact as they led to the Gale-Shapley algorithm’s eventual adoption for use in practice (cf. Roth (2008)).

A second generation of papers on the Boston mechanism, Abdulkadiroğlu et al. (2011); Miralles (2009); Featherstone and Niederle (2011), made a more positive case for the mechanism. They argued that while the Boston mechanism is not SP, it has Bayes-Nash equilibria that yield greater student welfare than do the dominant strategy equilibria of the Gale-Shapley procedure. Perhaps, these papers argue, the earlier papers were too quick to dismiss the Boston mechanism. These papers are a reminder that SP often comes with a cost.

However, these second-generation papers rely on students being able to reach the attractive Bayes-Nash equilibria. This raises several questions: is common knowledge a reasonable assumption? Will students be able to calculate the desired equilibrium? Will students be able to coordinate in the event of multiple equilibria? Will unsophisticated students be badly harmed?

Theorem 2 shows that, in a large market, it is possible to obtain the attractive welfare properties of the Bayes-Nash equilibria identified by these second-generation papers on the Boston mechanism, but using a mechanism that is SP-L. The proof also shows how to

\(^{16}\)While our environment does not impose one-dimensional types or quasi-linearity, it is not strictly speaking a generalization of the Manelli and Vincent (2010) and Gershkov et al. (2013) environments, because we require finite type and outcome spaces.

\(^{17}\)In two-sided matching, the Gale-Shapley algorithm is strategy-proof for the proposing side of the market and SP-L for the non-proposing side of the market. In school choice only the student side of the market is strategic, with schools being non-strategic players whose preferences are determined by public policy.
construct such a mechanism.18

\section{Extensions and Discussion}

\subsection{Extensions}

\textbf{Semi-Anonymity} Our analysis focuses on mechanisms that are anonymous. In Supplementary Appendix C we generalize key definitions and results to the case of semi-anonymous mechanisms, as defined in Kalai (2004). A mechanism is semi-anonymous if each agent belongs to one of a finite number of groups, and her outcome is a symmetric function of her own action, her group, and the distribution of actions within each group. This generalization is useful for two reasons. First, it allows our analysis to cover more mechanisms. For instance, double auctions are semi-anonymous if buyers and sellers belong to distinct groups; two-sided matching markets are semi-anonymous under the assumption that the number of possible types of match partners is finite (cf. footnote 11); and school choice mechanisms are semi-anonymous if there are multiple priority classes (e.g., sibling priority). Second, it allows results and concepts stated for i.i.d. distributions to be extended to more general distributions.

\textbf{Relaxing Continuity} Theorem 2 assumes continuity of the given social choice function. While this assumption has an intuitive appeal, it is a substantial assumption. Some well-known mechanisms violate it. For example, in pay-as-bid and uniform-price auctions, even though a small change in the prior typically has only a small effect on agents’ bids, this small change in bids can have a large (i.e., discontinuous) effect on the number of units some bidder wins or the market-clearing price.

In the working paper version of this article (Azevedo and Budish, 2016), we show that a weaker version of Theorem 2 obtains under a condition that we call quasi-continuity. Quasi-continuity allows for the desired social choice function to have discontinuities, with respect to both the prior and the empirical distribution of reports, but requires that the discontinuities

18To be clear, our results do not imply which is preferable between the SP-L mechanism constructed per Theorem 2 and the SP deferred acceptance mechanism. Our point is rather that if one believes that the analyses of Abdulkadiroğlu et al. (2011) and others imply that the Boston mechanism should be used in practice over deferred acceptance, then one should consider whether the SP-L implementation of these attractive equilibria is better still. Some recent empirical evidence (Agarwal and Somaini, 2014; Casalmiglia et al., 2014; Hwang, 2014) suggests that the magnitude of the welfare gains at stake, i.e., the difference in welfare between the Bayes-Nash equilibria of the Boston mechanism and the dominant strategy equilibria of deferred acceptance, may be small. If the gains are small, then the simpler deferred acceptance mechanism is likely more desirable than the SP-L implementation of the Boston mechanism’s Bayes-Nash equilibria.
are in a certain sense knife-edge. Roughly, any discontinuity is surrounded by regions in which outcomes are continuous. Under this condition, the conclusion of the theorem is as follows. If the social choice function is continuous at a given prior μ_0, then, as before, there exists an SP-L mechanism that gives agents the same outcomes in the large-market limit. If the social choice function is not continuous at μ_0, then there exists an SP-L mechanism that gives agents a convex combination of the outcomes they would obtain under the desired social choice function, for a set of priors in an arbitrarily small neighborhood of μ_0.

A question that remains open for future research is to fully characterize the conditions under which there is no gap between Bayes-Nash and SP-L in large markets. The working paper lists counterexamples that fail quasi-continuity, and in which the construction does not approximate the desired social choice function, even for the weaker form of approximation described above. However, the counterexamples are far from typical applications. Moreover, the fact that the construction leaves a gap between Bayes-Nash and SP-L proves that our method of proof does not work, but does not prove that there is a gap.

Given these open questions, we do not see Theorem 2 as providing definitive proof that there is never an advantage to using Bayes-Nash over SP-L in large markets. Rather, we see the results as suggesting that, for the purposes of practical market design, a researcher may be justified searching in the space of SP-L mechanisms rather than broadening her search to include Bayes-Nash. For there to be a meaningful gain to using Bayes-Nash over SP-L in large markets, the Bayes-Nash social choice function must fail quasi-continuity, which means that its outcomes are extremely sensitive to agents’ beliefs and reports. In addition, the researcher must believe the usual conditions required for Bayes-Nash equilibrium, such as common knowledge and strategic sophistication, which seems unrealistic in the context of a highly discontinuous mechanism.

Aggregate Uncertainty SP-L requires that agents find it approximately optimal to report truthfully for any full-support i.i.d. distribution of opponent play. We motivated this assumption by arguing that it is more realistic to assume that agents have beliefs about the distribution of opponents’ play, rather than about the precise realization of opponents’ play, as in SP, or in the traditional notion of approximate SP. Still, this is a lot of information. A natural question is to what extent SP-L is robust to participants having even less information. More specifically, what happens in the realistic case where participants have aggregate uncertainty?

We can formalize this question as follows. Consider a participant whose aggregate uncertainty about the distribution of others’ play can be modeled by a finite set of states of the
world, and beliefs about opponent play that are i.i.d. conditional on the state. Formally, she believes that with probability \(p_k \) her opponents play i.i.d. with probability distribution \(m_k \in \Delta T \), out of a finite set of possible full-support distributions \(m_1, \ldots, m_K \). Observe that her belief about her opponents’ overall distribution of play is not i.i.d., but is i.i.d. conditional on the resolution of aggregate uncertainty as indexed by \(k \). If a mechanism is SP-L, will a participant who faces aggregate uncertainty wish to report optimally in a large market?

It is straightforward to see that the answer to this question is affirmative. SP-L requires that reporting truthfully is approximately optimal, in a large enough market, for any full support i.i.d. distribution of play. This implies that reporting truthfully is approximately optimal, in a large enough market, for any finite mixture of full support i.i.d. distributions of play.

Since a mechanism being SP-L implies that a mechanism is incentive compatible in a large market under aggregate uncertainty, the conclusions of Theorems 1 and 2 generalize to accommodate aggregate uncertainty, and all of the mechanisms in the SP-L column of Table 1 are incentive compatible in large markets under aggregate uncertainty. The key thing to emphasize is that, while SP-L evaluates the incentives to misreport from the perspective of an agent who perceives others’ play as full-support i.i.d., it requires that the agent finds truthful reporting to be approximately optimal for any such distribution. Thus, while it may seem that SP-L only gives incentives for truth-telling if a participant has these very specific i.i.d. beliefs, in fact if a mechanism is SP-L truthful reporting is approximately optimal for any convex combination of i.i.d. full-support priors.

6.2 Discussion: Voting, Public Goods and Strict SP-L

Our motivation and analysis has focused on canonical problems in market design. A natural question is whether SP-L is a useful concept in mechanism design problems outside of market design, such as voting and public goods provision. We suggest that the answer is no, and that thinking about the difference between such problems and market design problems suggests a modest strengthening of SP-L that may be useful.

The key difference between voting and public goods problems, on the one hand, and the market design problems we have emphasized, is that in voting and public goods provision every agent gets the same outcome.\(^{19}\) Technically, this can be accommodated in our frame-
work by letting X_0 denote the set of social alternatives and defining the set Y_n of feasible allocations in a market of size n to be the set $(x,x,\ldots,x)_{x \in X_0}$, i.e., the set of allocations in which all n agents get the same outcome. This environment allows for a wide range of voting mechanisms. For example, agents report their preferences and the mechanism chooses the alternative that is the majority winner, or the Borda count winner, and so on. In this environment, any anonymous mechanism is SP-L. This follows from the observation that any mechanism is trivially envy-free, because all agents get the same outcome, and Theorem 1. However, such mechanisms are SP-L for the trivial reason that in the large market limit each agent has zero impact on their outcome. By contrast, in market design problems, while each agent has zero effect on aggregate statistics such as prices, each agent has a large effect on what they themselves receive given the aggregates.

To clarify the distinction between the market design problems of interest in the present paper and problems such as voting and public goods provision in which all agents get the same outcome, we introduce the following mild strengthening of SP-L:

Definition 9. The direct mechanism $\{(\Phi^n)_{n}, T\}$ is **strictly strategy-proof in the large (strictly SP-L)** if it is SP-L, and, in addition, for any $t_i \in T$ there exists a $t'_i \in T$ and $m \in \Delta T$ such that:

$$\lim \inf_{n \to \infty} u_{t_i}[\phi^n(t_i,m)] - u_{t_i}[\phi^n(t'_i,m)] > 0.$$

If the mechanism has a limit, this additional requirement is equivalent to, for any $t_i \in T$, there exists a $t'_i \in T$ and $m \in \Delta T$ such that

$$u_{t_i}[\phi^\infty(t_i,m)] > u_{t_i}[\phi^\infty(t'_i,m)].$$

In words, strict SP-L requires that truthful reporting is at least approximately as good as all other reports (as in Definition 4), and, in addition, is strictly preferred to at least some other report for at least some distribution. This is a modest additional requirement and it is easy to see that all of the SP-L mechanisms in Table 1 satisfy it. At the same time, voting
and public goods mechanisms, in which all agents get the same outcome, are easily seen to fail this condition.\footnote{Carroll (2013) introduces an interesting approach to studying approximate incentive compatibility for voting rules. His criterion, like SP-L, evaluates incentives to misreport from the interim perspective with respect to i.i.d. distributions of others’ play. But, since in voting all mechanisms are trivially SP-L, he studies the rate at which incentives to misreport vanish as the market grows large. Also of interest are d’Aspremont and Peleg (1988) and Majumdar and Sen (2004), who study ordinal Bayesian incentive compatibility (OBIC). OBIC strengthens BIC by requiring that reporting one’s ordinal preferences truthfully is optimal for any cardinal representation of an agent’s true ordinal preferences, but at the same time OBIC is weaker than SP because it evaluates incentives to misreport with respect to a common-knowledge prior about the distribution of others’ reports. While mathematically unrelated to SP-L, OBIC is in a similar spirit in that it identifies a compelling criterion between BIC and SP.}

Theorems 1 and 2 are stated and proved for SP-L, not strict SP-L, but fortunately they can be applied as is to reach conclusions for strict SP-L under a mild additional condition.

Definition 10. The direct mechanism \(\{ (\Phi^n)_{|T}, T \} \) satisfies the **my play matters** condition if, for any \(t_i \in T \), there exists a \(t'_i \in T \) and \(m \in \tilde{\Delta}T \) such that the limit at distribution of play \(m \) exists and

\[
u_{t_i}[\phi^\infty(t_i, m)] \neq \nu_{t_i}[\phi^\infty(t'_i, m)].
\]

In words, the my play matters condition requires that reporting truthfully affects one’s utility as compared to at least some potential misreport and distribution. The following is immediate:

Remark 1. If a mechanism is SP-L and satisfies the my play matters condition, it is strictly SP-L.

Remark 1 allows results for SP-L to be translated into results for strict SP-L by checking the my play matters condition.

7 Related Literature

Our paper is related to three broad lines of literature: the literature on how large markets ease incentive constraints for specific mechanisms; the literature on implementation theory; and the literature on the role of strategy-proofness in market design. We discuss each in turn.

Large Markets

Our paper is most closely related to the large theory literature that has studied how market size can ease incentive constraints for specific mechanisms. We discussed this literature in detail in Section 4.2. It is important to highlight that the aim of our
paper is different from, and complementary to, this literature. Whereas papers such as Roberts and Postlewaite (1976) provide a defense of a specific pre-existing mechanism based on its approximate incentives properties in large markets, our paper aims to justify SP-L as a general desideratum for market design. In particular, our paper can be seen as providing justification for focusing on SP-L when designing new mechanisms. Another point of difference versus this literature is that our criterion itself is new. See fn. 12 for details of the approximate incentives criteria used in this prior literature.

Implementation Theory Our paper is related to the implementation theory literature, both in goals and in specific ideas. The goal of implementation theory is to determine what social choice rules can be implemented by some mechanism, under different solution concepts, and to find applicable necessary and/or sufficient conditions for implementation (Maskin and Sjöström, 2002). Our paper proposes an incentive compatibility concept, SP-L. Theorem 1 gives applicable sufficient conditions for a mechanism to be SP-L. Theorem 2 shows that the set of social choice functions that can be implemented is not much more restrictive than under Bayes-Nash equilibria. More specifically, our paper is related to the literature on partial implementation, which considers whether a social choice rule is implemented by at least one equilibrium of a mechanism, as in Hurwicz (1972) and Bergemann and Morris (2005). This is in contrast to full implementation, which considers whether a social choice rule is implemented by every equilibrium of a mechanism.\(^{21}\)

The closest specific connection is to the robust implementation literature. Robust implementation considers mechanisms where truthful reporting is robust to a broad set of beliefs that the participants may have. For example, Bergemann and Morris (2005) consider direct mechanisms where it is ex interim optimal to report truthfully for arbitrary beliefs. They give conditions under which this notion of implementability is equivalent to ex post implementability, which is equivalent to dominant strategy implementability in the private values case. SP-L requires truthful reporting to be optimal under a meaningfully broader set of beliefs than in Bayesian implementation, but narrower than the set of beliefs allowed in robust mechanism design. Thus, the goal of SP-L is to retain some of the benefits of robustness, while being less restrictive than robust and dominant strategies implementation.

\(^{21}\)The issue of guaranteeing implementation under every equilibrium is central in the implementation theory literature. In fact, Jackson (2001) p. 660 classifies the study of full implementation as “implementation theory”, and the study of partial implementation and incentive compatibility as “mechanism design”.
Strategy-proofness in Market Design Our paper is related to three strands of literature on the role of strategy-proofness in market design. First, there is an empirical literature that studies how participants behave in real-world non-SP market designs. We discussed this literature in detail in Section 4.3. This literature supports the SP-L concept, because all of the examples in which there is evidence of harm from misreporting involve mechanisms that not only are not SP, but are not even SP-L.

Second, several recent papers in the market design literature have argued that strategy-proofness can be viewed as a design objective and not just as a constraint. Papers on this theme include Abdulkadiroğlu et al. (2006), Abdulkadiroğlu et al. (2009), Pathak and Sönmez (2008), Roth (2008), Milgrom (2011) Section IV, Pathak and Sönmez (2013) and Li (2015). The overall argument for SP market design traces to Wilson (1987). Our paper contributes to this literature by showing that our notion of SP-L approximates the appeal of SP, while at the same time being considerably less restrictive. Also, the distinction we draw between mechanisms that are SP-L and mechanisms that are manipulable even in large markets highlights that many mechanisms in practice are manipulable in a preventable way.

Last, our paper is closely conceptually related to Parkes et al. (2001), Day and Milgrom (2008), Erdil and Klemperer (2010), and especially Pathak and Sönmez (2013). Each of these papers – motivated, like us, by the restrictiveness of SP – proposes a method to compare the manipulability of non-SP mechanisms based on the magnitude of their violation of SP. Parkes et al. (2001), Day and Milgrom (2008) and Erdil and Klemperer (2010) focus on the setting of combinatorial auctions. They propose cardinal measures of a combinatorial auction’s manipulability based, respectively, on Euclidean distance from Vickrey prices, the worst-case incentive to misreport, and marginal incentives to misreport. Each of these papers then seeks to design a combinatorial auction that minimizes manipulability subject to other design objectives. Pathak and Sönmez (2013), most similarly to us, use a general mechanism design environment that encompasses a wide range of market design problems. They propose the following partial order over non-SP mechanisms: mechanism \(\psi \) is said to be more manipulable than mechanism \(\varphi \) if, for any problem instance where \(\varphi \) is manipulable by at least one agent, so too is \(\psi \). This concept helps to explain several recent policy decisions in which school authorities in Chicago and England switched from one non-SP mechanism to another. This concept also yields an alternative formalization of Milton Friedman’s argument for uniform-price auctions over pay-as-bid auctions: whereas we show that uniform-price auctions are SP-L and pay-as-bid auctions are not, Pathak and Sönmez (2013) show that the pay-as-bid auction is more manipulable than the uniform-price auction ac-
According to their partial order. We view our approach as complementary to these alternative approaches. Two important advantages of our approach are that it yields the classification of non-SP mechanisms as displayed in Table 1, and yields an explicit second-best criterion for designing new mechanisms, namely that they be SP-L.

8 Conclusion

A potential interpretation of our results is that they suggest that SP-L be viewed as a necessary condition for good design in large anonymous and semi-anonymous settings. Our criterion provides a common language for criticism of mechanisms ranging from Friedman’s (1960) criticism of pay-as-bid auctions, to Roth’s (1990; 1991) criticism of priority-matching mechanisms, to Abdulkadiroğlu and Sönmez’s (2003) criticism of the Boston mechanism for school choice. The issue is not simply that these mechanisms are manipulable, but that they are manipulable even in large markets; even the kinds of agents we think of as “price takers” will want to misreport their preferences. The evidence we review in Section 4 suggests that manipulability in the large is a costly problem in practice, whereas the record for SP-L mechanisms, though incomplete, is positive. Our result in Section 5 then indicates that manipulability in the large can be avoided at approximately zero cost. Together, these results suggest that using a mechanism that is manipulable in the large is a preventable design mistake.

Whether SP-L can also be viewed as sufficient depends upon the extent to which the large-market abstraction is compelling in the problem of interest. Unfortunately, even with convergence rates such as those stated in Theorem 1, there rarely is a simple bright-line answer to the question of “how large is large”. But – just as economists in other fields instinctively understand that there are some contexts where it is necessary to explicitly model strategic interactions, and other contexts where it may be reasonable to assume price-taking behavior – we hope that market designers will pause to consider whether it is necessary to restrict attention to SP mechanisms, or whether SP-L may be sufficient for the problem at hand.

22 Even in theoretical analyses of the convergence properties of specific mechanisms, rarely is the analysis sufficient to answer the question of, e.g., “is 1000 participants large?” Convergence is often slow or includes a large constant term. A notable exception is double auctions. For instance, Rustichini et al. (1994) are able to show, in a double auction with unit demand and uniformly distributed values, that 6 buyers and sellers is large enough to approximate efficiency to within one percent. Of course, in any specific context, the analyst’s case that the market is large can be strengthened with empirical or computational evidence; see, for instance, Roth and Peranson (1999).
References

We can reorder the terms on the RHS of (A.1) as

\[u_{t_i}[\phi_i^n(t'_i, \mu)] = \sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t'_i, \mu, n\} \cdot u_{t_i}[\Phi_i^n(t'_i|\hat{\mu})]. \]

The interim gain from misreporting as type t'_i instead of type t_i equals

\[u_{t_i}[\phi_i^n(t'_i, \mu)] - u_{t_i}[\phi_i^n(t_i, \mu)] = \sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t'_i, \mu, n\} \cdot u_{t_i}[\Phi_i^n(t'_i|\hat{\mu})] - \sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot u_{t_i}[\Phi_i^n(t_i|\hat{\mu})]. \]

(A.1)

We can reorder the terms on the RHS of (A.1) as

\[
\sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot (u_{t_i}[\Phi_i^n(t'_i|\hat{\mu})] - u_{t_i}[\Phi_i^n(t_i|\hat{\mu})])
\]

Envy = Gain from reporting t'_i holding fixed $\hat{\mu}$

\[
+ \sum_{\hat{\mu} \in \Delta T} (\Pr\{\hat{\mu}|t'_i, \mu, n\} - \Pr\{\hat{\mu}|t_i, \mu, n\}) \cdot u_{t_i}[\Phi_i^n(t'_i|\hat{\mu})].
\]

(A.2)

That is, the gain from misreporting can be decomposed into two terms. The first term

\[u_{t_i}[\phi_i^n(t'_i, \mu)] - u_{t_i}[\phi_i^n(t_i, \mu)]\]

\[= \sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t'_i, \mu, n\} \cdot u_{t_i}[\Phi_i^n(t'_i|\hat{\mu})] - \sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot u_{t_i}[\Phi_i^n(t_i|\hat{\mu})].\]

(A.1)
is the expected gain, over all possible empirical distributions $\hat{\mu}$, of reporting t'_i instead of t_i, holding fixed the empirical distribution of types. This quantity equals how much type t_i players envy type t'_i players, in expectation. The second term is the sum, over all possible empirical distributions $\hat{\mu}$, of how much changing the report from t_i to t'_i increases the likelihood of $\hat{\mu}$, times the utility of receiving the bundle given to a type t'_i agent. That is, how much player i gains by manipulating the expected empirical distribution of reports $\hat{\mu}$. Our goal is to show that, if a mechanism is EF or EF-TB, then both of these terms are bounded above in large markets.

The proof is based on two lemmas. The first lemma bounds the effect that a single player can have on the probability distribution of the realized empirical distribution of types. This will allow us to bound the second term in expression (A.2).

Lemma A.1. Define, given types t_i and t'_i, distribution of types $\mu \in \Delta T$, and market size n, the function

$$
\Delta P(t_i, t'_i, \mu, n) = \sum_{\hat{\mu} \in \Delta T} \left| \Pr\{\hat{\mu}|t'_i, \mu, n\} - \Pr\{\hat{\mu}|t_i, \mu, n\} \right|.
$$

(A.3)

Then, for any $\mu \in \hat{\Delta}T$, and $\epsilon > 0$, there exists a constant $C_{\Delta P} > 0$ such that, for any t_i, t'_i and n we have

$$
\Delta P(t_i, t'_i, \mu, n) \leq C_{\Delta P} \cdot n^{1/2+\epsilon}.
$$

The second lemma will help us bound the first term in expression (A.2). Note that this term is always weakly negative for EF mechanisms, by definition, but that it can be positive for EF-TB mechanisms. The lemma provides a bound on the maximum amount of envy in an EF-TB mechanism, based on the minimum number of agents of a given type.

Lemma A.2. Fix an EF-TB mechanism $\{(\Phi_T^n)_n, T\}$. Define, given types t_i and t'_i, empirical distribution of types $\hat{\mu} \in \Delta T$, and market size n, the function

$$
E(t_i, t'_i, \hat{\mu}, n) = u_{t_i} [\Phi^n_t(t'_i|\hat{\mu})] - u_{t_i} [\Phi^n_t(t_i|\hat{\mu})],
$$

which measures the envy of t_i for t'_i. Then, for any $\epsilon > 0$, there exists C_E such that, for all $t_i, t'_i \in T$, n, and $\hat{\mu} \in \Delta T$ such that $\hat{\mu}$ corresponds to the empirical distribution of types for some vector in T^n, we have

$$
E(t_i, t'_i, \hat{\mu}, n) \leq C_E \cdot \min_{\tau \in T} \{\hat{\mu}(\tau) \cdot n\}^{-1/4+\epsilon}.
$$

(A.4)
The proofs of Lemmas A.1 and A.2 are given below. We now use the two lemmas to prove Theorem 1

Proof of Theorem 1, Case 1: EF mechanisms. Applying the notation of Lemmas A.1 and A.2 to the terms in equation (A.2), and recalling that utility is bounded above by 1, we obtain the bound

\[u_t^i[\phi^n_i(t'_i, \mu)] - u_t^i[\phi^n_i(t_i, \mu)] \leq \sum_{\hat{\mu} \in T} \Pr\{ \hat{\mu} | t_i, \mu, n \} \cdot E(t_i, t'_i, \hat{\mu}, n) + \Delta P(t_i, t'_i, \mu, n) \]

(A.5)

If a mechanism is EF and \(\hat{\mu}(t'_i) > 0 \), i.e., the empirical \(\hat{\mu} \) has at least one report of \(t'_i \), then the first term in the RHS of inequality (A.5) is nonpositive. Taking any \(\epsilon > 0 \), and using Lemma A.1 to bound the \(\Delta P \) term in the RHS of inequality (A.5) we have that there exists \(C_{\Delta P} > 0 \) such that

\[u_t^i[\phi^n_i(t'_i, \mu)] - u_t^i[\phi^n_i(t_i, \mu)] \leq \Pr\{ \hat{\mu}(t'_i) = 0 | t_i, \mu, n \} + C_{\Delta P} \cdot n^{-1/2+\epsilon}. \]

(A.6)

Since the probability that \(\hat{\mu}(t'_i) = 0 \) goes to 0 exponentially with \(n \), we have the desired result.

Proof of Theorem 1, Case 2: EF-TB mechanisms. We begin by bounding the envy term in inequality (A.5), which is weakly negative for EF mechanisms but can be strictly positive in EF-TB mechanisms. We can, for any \(\delta \geq 0 \), decompose the envy term as

\[\sum_{\hat{\mu} \in T} \Pr\{ \hat{\mu} | t_i, \mu, n \} \cdot E(t_i, t'_i, \hat{\mu}, n) = \sum_{\hat{\mu} : \min_{\tau} \hat{\mu}(\tau) \geq \mu(\tau) - \delta} \Pr\{ \hat{\mu} | t_i, \mu, n \} \cdot E(t_i, t'_i, \hat{\mu}, n) + \sum_{\hat{\mu} : \min_{\tau} \hat{\mu}(\tau) < \mu(\tau) - \delta} \Pr\{ \hat{\mu} | t_i, \mu, n \} \cdot E(t_i, t'_i, \hat{\mu}, n). \]

(A.7)

By Lemma A.2, for any \(\epsilon > 0 \) there exists a constant \(C_E \) such that

\[\sum_{\hat{\mu} : \min_{\tau} \hat{\mu}(\tau) \geq \mu(\tau) - \delta} \Pr\{ \hat{\mu} | t_i, \mu, n \} \cdot E(t_i, t'_i, \hat{\mu}, n) \leq C_E \cdot \min_{\tau \in T} \{(\mu(\tau) - \delta)n\}^{-1/4+\epsilon}. \]

(A.8)

To bound the second term in the RHS of A.7, begin by noting that \(\hat{\mu}(\tau) \cdot n \) equals the number of agents who draw type \(\tau \). This number is the outcome of \(n - 1 \) i.i.d. draws of
agents different than i, plus 1 if $t_i = \tau$. Using Hoeffding’s inequality, for any τ, we can bound the probability that the realized value of $\hat{\mu}(\tau) \cdot n$ is much smaller than $\mu(\tau) \cdot n$. We have that, for any $\delta > 0$, there exists a constant $C_{\delta,\mu} > 0$ such that

$$\Pr\{\hat{\mu}(\tau) \cdot n < (\mu(\tau) - \delta) \cdot n|t_i, \mu, n\} \leq C_{\delta,\mu} \cdot \exp\{-2\delta^2 n\}. \quad (A.9)$$

Take now $\delta = \min_{\tau \in T} \mu(\tau)/2$. Applying the bounds (A.8) and (A.9) to inequality (A.7), we have that

$$\sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot E(t_i, t_i', \hat{\mu}, n) \leq C_E \cdot \min_{\tau \in T}\{(\mu(\tau) - \delta)n\}^{-1/4+\epsilon}$$

$$+ |T| \cdot C_{\delta,\mu} \cdot \exp\{-2\delta^2 n\}.$$

Multiplying n out of the first term in the RHS then yields

$$\sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot E(t_i, t_i', \hat{\mu}, n) \leq C_E \cdot \min_{\tau \in T}\{(\mu(\tau) - \delta)n\}^{-1/4+\epsilon} \cdot n^{-1/4+\epsilon}$$

$$+ |T| \cdot C_{\delta,\mu} \cdot \exp\{-2\delta^2 n\}.$$

Therefore, there exists a constant C' such that for all n, t_i', and t_i,

$$\sum_{\hat{\mu} \in \Delta T} \Pr\{\hat{\mu}|t_i, \mu, n\} \cdot E(t_i, t_i', \hat{\mu}, n) \leq C' \cdot n^{-1/4+\epsilon}.$$

Return now to inequality (A.5). Using the bound we just derived and Lemma A.1, we have that there exists a constant $C_{\Delta P}$ such that

$$u_{t_i}[\phi^n_i(t'_i, \mu)] - u_{t_i}[\phi^n_i(t_i, \mu)] \leq C' \cdot n^{-1/4+\epsilon}$$

$$+ C_{\Delta P} \cdot n^{-1/2+\epsilon}.$$

Therefore, there exists a constant C'' such that

$$u_{t_i}[\phi^n_i(t'_i, \mu)] - u_{t_i}[\phi^n_i(t_i, \mu)] \leq C'' \cdot n^{-1/4+\epsilon},$$

24Hoeffding’s inequality states that, given n i.i.d. binomial random variables with probability of success p, and $z > 0$, the probability of having fewer than $(p - z)n$ successes is bounded above by $\exp\{-2z^2 n\}$. Note that, in the bound below, t_i is fixed, while the $n - 1$ coordinates of t_{-i} are drawn i.i.d. according to μ. For that reason, the Hoeffding bound must be modified to include a constant that depends on δ and μ, which we denote $C_{\delta,\mu}$. The reason why a constant suffices is that, conditional on δ and μ, the bound taking into account the $n - 1$ draws converges to 0 at the same rate as the bound considering n draws.
as desired.

\[\Box \]

A.1.1 Proof of the Lemmas

We now prove the lemmas. Throughout the proofs, we consider the case \(\epsilon < 1/4 \), which implies the results for \(\epsilon \geq 1/4 \).

Proof of Lemma A.1. To show that a single player cannot appreciably affect the distribution of \(\hat{\mu} \), we start by calculating the effect of changing \(i \)'s report on the probability of an individual value of \(\hat{\mu} \) being drawn. Consider any \(\hat{\mu} \) that is the empirical distribution of some vector of types with \(n \) agents.

Enumerate the elements of \(T \) as
\[
T = \{ \tau_1, \tau_2, \ldots, \tau_{|T|} \}.
\]

Since \(\hat{\mu} \) follows a multinomial distribution, for any \(t_i \in T \), the probability \(\Pr\{ \hat{\mu} | t_i, \mu, n \} \) equals
\[
\left(\frac{n - 1}{n \hat{\mu}(\tau_1), \ldots, n \hat{\mu}(t_i) - 1, \ldots, n \hat{\mu}(\tau_{|T|})} \right) \cdot \mu(\tau_1)^{n \hat{\mu}(\tau_1)} \cdots \mu(t_i)^{n \hat{\mu}(t_i) - 1} \cdots \mu(\tau_{|T|})^{n \hat{\mu}(\tau_{|T|})},
\]
where the term in parentheses is a multinomial coefficient. Note that the \(n \hat{\mu}(\tau) \) terms in this expression are integers, since this is the number of agents with a given type in a realization \(\hat{\mu} \) of the distribution of types. Moreover, \(t_i \) only enters the formula in one factorial term in the denominator, and a power term in the numerator. With this observation, we have that

\[
\Pr\{ \hat{\mu} | t'_i, \mu, n \} / \Pr\{ \hat{\mu} | t_i, \mu, n \} = \frac{\hat{\mu}(t'_i)}{\mu(t'_i)} / \frac{\hat{\mu}(t_i)}{\mu(t_i)}. \tag{A.10}
\]

For the rest of the proof, we will consider separately values of \(\hat{\mu} \) which are close to \(\mu \), and those that are very different from \(\mu \). We will show that player \(i \) can only have a small effect on the probability of the former, while the latter occur with very small probability.

We derive bounds as functions of a variable \(\delta \). Initially, we derive bounds valid for any \(\delta > 0 \), and, later in the proof, we consider the case where \(\delta \) is a particular function of \(n \). Define, for any \(\delta > 0 \), the set \(M_\delta \) of empirical distributions \(\hat{\mu} \) that are sufficiently close to the true distribution \(\mu \) as
\[
M_\delta = \{ \hat{\mu} \in \Delta T : |\hat{\mu}(t_i) - \mu(t_i)| < \delta \text{ and } |\hat{\mu}(t'_i) - \mu(t'_i)| < \delta \}.\]
Note that, when \(\hat{\mu}(t_i) = \mu(t_i) \) and \(\hat{\mu}(t'_i) = \mu(t'_i) \), the ratio on the right of equation (A.10) equals 1 and is continuously differentiable in \(\hat{\mu}(t_i) \) and \(\hat{\mu}(t'_i) \). Consequently, there exists a constant \(C > 0 \), and \(\bar{\delta} > 0 \) such that, for all \(\delta \leq \bar{\delta} \), if \(\hat{\mu} \in M_\delta \) then

\[
\left| \frac{\hat{\mu}(t'_i)}{\mu(t'_i)} - \frac{\hat{\mu}(t_i)}{\mu(t_i)} \right| < C\delta. \tag{A.11}
\]

Moreover, we can bound the probability that the empirical distribution of types \(\hat{\mu} \) is not in \(M_{\delta + \frac{1}{n}} \). By Hoeffding’s inequality,\(^{25}\) for any \(\delta > 0 \) and \(n \),

\[
\Pr\{ \hat{\mu} \notin M_{\delta + \frac{1}{n}} | t_i, \mu, n \} \leq 4 \cdot \exp(-2(n-1)\delta^2), \tag{A.12}
\]

We are now ready to bound \(\Delta P \). We can decompose the sum in equation (A.3) into the terms where \(\hat{\mu} \) is within or outside \(M_{\delta + \frac{1}{n}} \). We then have

\[
\Delta P = \sum_{\hat{\mu} \in M_{\delta + \frac{1}{n}}} | \Pr\{ \hat{\mu}|t'_i, \mu, n \} - \Pr\{ \hat{\mu}|t_i, \mu, n \} | + \sum_{\hat{\mu} \notin M_{\delta + \frac{1}{n}}} | \Pr\{ \hat{\mu}|t'_i, \mu, n \} - \Pr\{ \hat{\mu}|t_i, \mu, n \} |.
\]

\(^{25}\)Hoeffding’s inequality yields

\[
\Pr\{|\hat{\mu}(t_i) - \frac{n-1}{n}\mu(t_i) - \frac{1}{n}| > \delta | t_i, \mu, n \} < 2\exp(-2(n-1)\delta^2).
\]

Moreover,

\[
|\hat{\mu}(t_i) - \mu(t_i)| = |\hat{\mu}(t_i) - \frac{n-1}{n}\mu(t_i) - \frac{1}{n} + \frac{1}{n}(1 - \mu(t_i))| \\
\leq |\hat{\mu}(t_i) - \frac{n-1}{n}\mu(t_i) - \frac{1}{n}| + \frac{1}{n}|1 - \mu(t_i)|.
\]

Hence,

\[
\Pr\{|\hat{\mu}(t_i) - \mu(t_i)| > \delta + \frac{1}{n} | t_i, \mu, n \} < 2\exp(-2(n-1)\delta^2).
\]

By a similar argument,

\[
\Pr\{|\hat{\mu}(t'_i) - \mu(t'_i)| > \delta + \frac{1}{n} | t_i, \mu, n \} < 2\exp(-2(n-1)\delta^2).
\]

Adding these two bounds implies the bound (A.12) when player \(i \) plays \(t_i \), and the case where player \(i \) plays \(t'_i \) is analogous.
Rearranging the first term, and using the triangle inequality in the second term we have

\[\Delta P \leq \sum_{\hat{\mu} \in M_{\delta + \frac{1}{n}}} |\Pr\{\hat{\mu}|t'_i, \mu, n\} / \Pr\{\hat{\mu}|t_i, \mu, n\} - 1| \cdot \Pr\{\hat{\mu}|t_i, \mu, n\} + \sum_{\hat{\mu} \notin M_{\delta + \frac{1}{n}}} (\Pr\{\hat{\mu}|t'_i, \mu, n\} + \Pr\{\hat{\mu}|t_i, \mu, n\}). \]

If we substitute equation (A.10) in the first term we obtain

\[\Delta P \leq \sum_{\hat{\mu} \in M_{\delta + \frac{1}{n}}} \left| \frac{\hat{\mu}(t'_i)}{\mu(t'_i)} / \frac{\hat{\mu}(t_i)}{\mu(t_i)} - 1 \right| \cdot \Pr\{\hat{\mu}|t_i, \mu, n\} + \sum_{\hat{\mu} \notin M_{\delta + \frac{1}{n}}} (\Pr\{\hat{\mu}|t'_i, \mu, n\} + \Pr\{\hat{\mu}|t_i, \mu, n\}). \]

We can bound the first sum using the fact that the ratio being summed is small for \(\hat{\mu} \in M_{\delta + \frac{1}{n}} \), and bound the second sum since the total probability that \(\hat{\mu} \notin M_{\delta + \frac{1}{n}} \) is small. Formally, using equations (A.11) and (A.12) we have that, for all \(n \) and \(\delta \) with \(\delta + \frac{1}{n} \leq \bar{\delta} \),

\[\Delta P \leq C(\delta + \frac{1}{n}) + 8 \cdot \exp(-2(n - 1)\delta^2). \]

To complete the proof we will substitute \(\delta \) by an appropriate function of \(n \). Note that the first term is increasing in \(\delta \), while the second term is decreasing in \(\delta \). In particular, for the second term to converge to 0, asymptotically \(\delta \) has to be greater than \(n^{-1/2} \). If we take \(\delta = n^{-1/2+\epsilon} \), we obtain the bound

\[\Delta P \leq C(n^{-1/2+\epsilon} + n^{-1}) + 8 \cdot \exp(-2n^{2\epsilon} \frac{n - 1}{n}), \] \(\text{(A.13)} \)

for all \(n \) large enough such that \(\delta + \frac{1}{n} = n^{-1/2+\epsilon} + n^{-1} \leq \bar{\delta} \). Therefore, we can take a constant \(C' \) such that

\[\Delta P \leq C' \cdot (n^{-1/2+\epsilon} + \exp(-2n^{2\epsilon} \frac{n - 1}{n})) \] \(\text{(A.14)} \)

for all \(n \).

Asymptotically, the first term in the RHS of (A.14) dominates the second term.\footnote{To see this, note that the logarithm of \(n^{-1/2+\epsilon} \) is \(-1/2+\epsilon \log n\), while the logarithm of \(\exp(-2n^{2\epsilon} \frac{n - 1}{n}) \) equals \(-2n^{2\epsilon} \frac{n - 1}{n}\). Since \(n^{2\epsilon} \frac{n - 1}{n} \) is asymptotically much larger than \(\log n \), we have that the second term in equation (A.13) is asymptotically much smaller than the first.} Therefore,
Figure A.1: A scatter plot of the lottery numbers $l'_{i'}$ of different agents i' on the horizontal axis, and the utility $u_{i_i}[x_{i_i}(t, l)]$ of type t_i agents from the bundles i' receives in the vertical axis. Balls represent agents with $t_{i'} = t_i$, and triangles agents with $t_{i'} = t_j$. The values are consistent with EF-TB, as the utilities of type t_i agents are always above the utilities from bundles of any agent with lower lottery number.

Therefore, we can find a constant $C_{\Delta P}$ such that

$$\Delta P \leq C_{\Delta P} \cdot n^{-1/2+\epsilon},$$

completing the proof.

We now prove Lemma A.2. The result would follow immediately if we restricted attention to mechanisms that are EF. The difficulty in establishing the result is that mechanisms that are EF-TB but not EF can have large amounts of envy ex-post, i.e., $u_{i_i}[\Phi_{i_i}^n(t)] - u_{i_i}[\Phi_{i_i}^n(t)]$ can be large. To see why this can be the case, fix two players i and j and consider Figure A.1. The figure plots, for several players i' whose types are either $t_{i'} = t_i$ or $t_{i'} = t_j$, lottery numbers $l_{i'}$ in the horizontal axis and the utility of a type t_i for the bundle i' receives in the vertical axis. Players with $t_{i'} = t_i$ are plotted as balls, and players with $t_{i'} = t_j$ as triangles. Note that the figure is consistent with EF-TB. In particular, if $l_j \leq l_i$, then player i prefers his own bundle to player j's bundle. However, if player j received a higher lottery number, $l_j > l_i$, it is perfectly consistent with EF-TB that player i prefers player j's bundle. That is, a player corresponding to a ball may envy a player corresponding to a triangle in the picture, as long as the triangle player has a higher lottery number. In fact, player i can envy player j by a large amount, so EF-TB mechanisms can have a lot of envy ex-post.

Figure A.1 also suggests a way to prove the lemma, despite this difficulty. The proof
exploits two basic insights. First, note that the curve formed by the balls – the utility player i derives from the bundles assigned to the type t_i players – is always above the curve formed by the triangles – the utility player i derives from the bundles assigned to the type t_j players. Hence, for type t_i agents to, on average, have a large amount of ex-post envy of type t_j agents, the lottery outcome must be very uneven, favoring type t_j players over type t_i players. We can bound this average ex-post envy as a function of how well distributed lottery numbers are (see Claim A.1). Second, due to symmetry, how much player i envies player j ex-ante (i.e., before the lottery) equals how much player i prefers the bundles received by type t_j players over the bundles received by type t_i players, averaging over all type t_i and t_j players, and all possible lottery draws. Since lottery draws are likely to be very evenly distributed in a large market, it follows that player i’s envy with respect to player j, before the lottery draw, is small (see Claim A.2). We now formalize these ideas.

Proof of Lemma A.2. The proof of the lemma has three steps. The first step bounds how much players of a given type envy players of another type, on average, conditional on a vector of reports t and lottery draw l, as a function of how evenly distributed the lottery numbers are. The second step bounds envy between two players, conditional on a vector of reports t, but before the lottery is drawn. Finally, the third step uses these bounds to prove the result.

Step 1. Bounding average envy after a lottery draw.

We begin by defining a measure of how evenly distributed a vector of lottery numbers is. Fix a market size n, vector of types $t \in T^n$, vector of lottery draws l and players i and j. Partition the set of players in groups according to where their lottery number falls among K uniformly-spaced intervals $L_1 = [0, 1/K)$, $L_2 = [1/K, 2/K)$, \cdots, $L_K = [(K-1)/K, 1]$. Denote the set of all type $t_{i'}$ players by

$$I(i'|t) = \{i'': t_{i''} = t_{i'}\},$$

and denote the set of type $t_{i'}$ players with lottery numbers in L_k by

$$I_k(i'|t,l) = \{i'' \in I(i'|t) : l_{i''} \in L_k\}.$$

When there is no risk of confusion, these sets will be denoted by $I(i')$ and $I_k(i')$, respectively. The number of elements in a set of players $I(i')$ is denoted by $|I(i')|$.

Given the lottery draw l, we choose the number of partitions $K(l, t, i, j)$ such that the type t_i and type t_j players’ lottery numbers are not too unevenly distributed over the L_k sets.
Specifically, let $K(l, t, i, j)$ be the largest integer K such that, for $i' = i, j$, and $k = 1, \cdots, K$, we have
\[
\left| \frac{|I_k(i'|t, l)|}{|I(i'|t)|} - \frac{1}{K} \right| < \frac{1}{K^2}.
\] (A.15)

Such an integer necessarily exists, as $K = 1$ satisfies this condition. Intuitively, the larger is $K(l, t, i, j)$, the more evenly distributed the lottery numbers l are. When there is no risk of confusion, we write $K(l)$ or K for $K(l, t, i, j)$.

The following claim bounds the average envy of type t_i players towards type t_j players, after a lottery draw, as a function of $K(l, t, i, j)$.

Claim A.1. Fix a market size n, vector of types $t \in T^n$, lottery draws $l \in [0, 1]^n$, and players i and j. Then the average envy of type t_i players towards type t_j players is bounded by
\[
\sum_{j' \in I(j)} u_{t_i}[x^n_{j'}(t, l)] \frac{|I(j)|}{|I(i)|} - \sum_{i' \in I(i)} u_{t_i}[x^n_{i'}(t, l)] \frac{|I(i)|}{|I(i)|} \leq \frac{3}{K(l, t, i, j)}.
\] (A.16)

Proof. Denote the minimum utility received by a player with type t_i and lottery number in L_k as
\[
v_k(l) = \min\{u_{t_i}[x^n_{i'}(t, l)] : i' \in I_k(i)\}.
\]

Define $v_{K(l)+1}(l) = 1$. Although $v_k(l)$ and $K(l)$ depend on l, we will omit this dependence when there is no risk of confusion. Note that, by the EF-TB condition, for all $j' \in I_k(j)$,
\[
u_{t_i}[x^n_{j'}(t, l)] \leq v_{k+1}.
\] (A.17)

Moreover, for all $i' \in I_{k+1}(i)$,
\[
v_{k+1} \leq u_{t_i}[x^n_{i'}(t, l)].
\] (A.18)

We now bound the average utility a type t_i agent derives from the bundles received by all players with type t_j as follows.
\[
\sum_{j' \in I(j)} u_{t_i}[x^n_{j'}(t, l)] \frac{|I(j)|}{|I(j)|} \leq \sum_{k=1}^K \frac{|I_k(j)|}{|I(j)|} \cdot v_{k+1}.
\] (A.19)
The second line follows from breaking the sum over the K sets $I_k(j)$, and the third line follows from inequality (A.17). We now use the fact that K was chosen such that both $|I_k(i)|/|I(i)|$ and $|I_k(j)|/|I(j)|$ are approximately equal to $1/K$. Using condition (A.15) we can bound the expression above as

$$
\sum_{k=1}^{K} \frac{|I_k(j)|}{|I(j)|} \cdot v_{k+1} = \sum_{k=2}^{K} \frac{|I_k(i)|}{|I(i)|} \cdot v_k + \sum_{k=2}^{K} \left[\frac{|I_{k-1}(j)|}{|I(j)|} - \frac{|I_k(i)|}{|I(i)|} \right] \cdot v_k + \frac{|I_K(j)|}{|I(j)|} \cdot v_{K+1} \\
\leq \sum_{k=2}^{K} \frac{|I_k(i)|}{|I(i)|} \cdot v_k + (K - 1) \frac{2}{K^2} + \left(\frac{1}{K} + \frac{1}{K^2} \right) \\
\leq \sum_{k=2}^{K} \frac{|I_k(i)|}{|I(i)|} \cdot v_k + \frac{3}{K}.
$$

The equation in the first line follows from rearranging the sum. The second line follows from $v_k \leq 1$, and from the fact that the fractions $I_k(i)/|I(i)|$ and $I_k(j)/|I(j)|$ are in the interval $[1/K - 1/K^2, 1/K + 1/K^2]$ as per inequality (A.15). The inequality in the third line follows from summing the second and third terms of the RHS of the second line.

We now bound the RHS of this expression using the fact that type t_i agents in the interval $I_k(i)$ receive utility of at least v_k. Using inequality (A.18) we have

$$
\sum_{k=2}^{K} \frac{|I_k(i)|}{|I(i)|} \cdot v_k + \frac{3}{K} \\
\leq \sum_{k=2}^{K} \sum_{l \in I_k(i)} \frac{|I_k(i)|}{|I(i)|} \cdot \frac{u_{t_i}[x^n_v(t,l)]}{|I_k(i)|} + \frac{3}{K} \\
\leq \sum_{k=1}^{K} \sum_{l \in I_k(i)} \frac{|I_k(i)|}{|I(i)|} \cdot \frac{u_{t_i}[x^n_v(t,l)]}{|I_k(i)|} + \frac{3}{K}.
$$

The first inequality follows from v_k being lower than the utility of any player in $I_k(i)$, and the second inequality follows because the latter sum equals the first plus the $k = 1$ term. Since we started from inequality (A.19), the bound (A.16) follows, completing the proof.

\[\square\]

Step 2: Bounding envy before the lottery draw.

We now bound the envy between two players i and j given a profile of types t, before the lottery is drawn.

\textbf{Claim A.2.} Given $\epsilon > 0$, there exists a constant $C_E > 0$ such that, for any $t \in T^n$ and
$i, j \leq n$, player i’s envy with respect to player j is bounded by

$$u_{t_i} [\Phi^n_j (t)] - u_{t_i} [\Phi^n_i (t)] \leq C_E \cdot \min_{i' = i, j} \{|I(i|t)|\}^{-1/4+\epsilon} \quad \text{(A.20)}$$

Proof. Given a vector of types t and a player i', using anonymity, we can write the expected bundle $\Phi^n_i (t)$ received by player i' as the expected bundle received by all players with the same type, over all realizations of l:

$$\Phi^n_i (t) = \int_{l \in [0,1]^n} \sum_{i'' \in I(i')} \frac{x^n(t, l)}{|I(i')|} \, dl. \quad \text{(A.21)}$$

Hence, player i’s envy of player j can be written as:

$$u_{t_i} [\Phi^n_j (t)] - u_{t_i} [\Phi^n_i (t)] = \int_{l \in [0,1]^n} \sum_{j' \in I(j)} u_{t_i} [x^n_j(t, l)] \left| \frac{I(j|t)}{|I(i|t)|} \right| - \sum_{i' \in I(i)} u_{t_i} [x^n_i(t, l)] \left| \frac{I(i|t)}{|I(i|t)|} \right| \, dl.$$

Claim A.1 then implies that envy is bounded by

$$u_{t_i} [\Phi^n_j (t)] - u_{t_i} [\Phi^n_i (t)] \leq \int_{l \in [0,1]^n} \frac{3}{K(l, t, i, j)} \, dl. \quad \text{(A.22)}$$

We need to show that, on average over all lottery realizations, $K(l)$ is large enough such that the integral above is small. Given a lottery draw l denote by $\hat{F}_{i'}(x|l)$ the fraction of agents in $I(i')$ with lottery number no greater than x. Formally,

$$\hat{F}_{i'}(x|l) = \left| \left\{i'' \in I(i') : l_{i''} \leq x \right\} \right| / |I(i')|.$$

That is, $\hat{F}_{i'}$ is the empirical distribution function of the lottery draws of type $t_{i'}$ agents. Since the lottery numbers are i.i.d., we know that the $\hat{F}_{i'}(x|l)$ functions are very likely to be close to the actual distribution of lottery draws $F(x) = x$. By the Dvoretzky–Kiefer–Wolfowitz inequality, for any $\delta > 0$,

$$\Pr\{ \sup_x |\hat{F}_{i'}(x|l) - x| > \delta \} \leq 2 \exp(-2|I(i')|\delta^2). \quad \text{(A.23)}$$

Fixing a partition size K, the conditions in (A.15) for the number of agents in each interval to be close to $1/K$ can be written as

$$\left| \left[\int_{l \in [0,1]} \hat{F}_{i'} \left(\frac{k}{K} |l| \right) - \hat{F}_{i'} \left(\frac{k - 1}{K} |l| \right) \right] - \frac{1}{K} \right| \leq \frac{1}{K^2},$$
for \(k = 1, \ldots, K \) and \(i' = i, j \). Applying the inequality (A.23), using \(\delta = 1/2K^2 \), we have that the probability that each such condition is violated is bounded by

\[
\Pr\{ \left| \frac{I_k(i')}{|I(i')|} - \frac{1}{K} \right| > \frac{1}{K^2} \} \leq 2 \cdot \exp(-|I(i')|/2K^4).
\]

Consider now an arbitrary integer \(\bar{K} > 0 \). Note that the probability that \(K(l) \geq \bar{K} \) is at least as large as the probability that \(K = \bar{K} \) satisfies all of the conditions (A.15), since \(K(l) \) by construction is the largest integer that satisfies these conditions. Therefore,

\[
\Pr\{ K(l) < \bar{K} \} \leq 2\bar{K}\exp(-\min_{i'=i,j}\{|I(i')|\}/2\bar{K}^4).
\]

Using this, we can bound the integral in the right side of equation (A.22). Note that the integrand \(3/K(l) \) is decreasing in \(K(l) \), and attains its maximum value of 3 when \(K(l) = 1 \). Therefore, the integral in equation (A.22) can be bounded by

\[
\int_{l \in [0,1]} \frac{3}{K(l, t, i, j)} \, dl \leq \frac{3}{\bar{K}} + 3 \Pr\{ K(l) < \bar{K} \} \leq \frac{3}{\bar{K}} + 12\bar{K}\exp(-\min_{i'=i,j}\{|I(i')|\}/2\bar{K}^4),
\]

Note that the first term on the RHS is decreasing in \(\bar{K} \), while the second term is increasing in \(\bar{K} \). Taking \(\bar{K} = \lfloor \min_{i'=i,j}\{|I(i')|\}^{1/4-\epsilon} \rfloor \), we have that this last expression is bounded by

\[
3/\min_{i'=i,j}\{|I(i')|\}^{1/4-\epsilon} + 12\min_{i'=i,j}\{|I(i')|\}^{1/4-\epsilon} \exp\{ -\min_{i'=i,j}\{|I(i')|\}^{4\epsilon}/2 \}.
\]

Note that, as \(\min_{i'=i,j}\{|I(i')|\} \) grows, the second term is asymptotically negligible compared to the first term.\(^{27}\) Therefore, there exists a constant \(C_E \) such that equation (A.20)

\(^{27}\)This can be shown formally by taking logs of both terms. The log of the first term equals approximately

\[
\log 3 - (\frac{1}{4} - \epsilon) \log \min_{i'=i,j}\{|I(i')|\},
\]

while the log of the second term equals

\[
\log 12 + (\frac{1}{4} - \epsilon) \log \min_{i'=i,j}\{|I(i')|\} - \min_{i'=i,j}\{|I(i')|\}^{4\epsilon}/2.
\]

As \(\min_{i'=i,j}\{|I(i')|\} \) grows, the difference between the second term and the first term goes to \(-\infty\), because
holds, proving the claim.

\[\square \]

Step 3: Completing the proof.

The lemma now follows from Claim A.2. Take \(\epsilon > 0 \), and consider a constant \(C_E \) as in the statement of Claim A.2. Consider \(t_i, t'_i, \hat{\mu}, \) and \(n \) as in the statement of the lemma. Recall that, since \(\hat{\mu} \in \Delta T \), we have \(\hat{\mu}(\tau) > 0 \) for all \(\tau \in T \). Additionally, since \(\hat{\mu} \) equals the empirical distribution of some vector of types, there exists \(t_{-i} \) and \(j \) such that \(\hat{\mu} = \text{emp}[t] \) and \(t_j = t'_i \). Therefore, we have

\[
E(t_i, t'_i, \hat{\mu}, n) = u_{ti}[\Phi_i^n(t'_i|\hat{\mu})] - u_{ti}[\Phi_i^n(t_i|\hat{\mu})] = u_{ti}[\Phi_j^n(t)] - u_{ti}[\Phi_i^n(t)] \leq C_E \cdot \min_{\tau \in T} \{ \hat{\mu}(\tau) \cdot n \}^{-1/4+\epsilon} = C_E \cdot \min_{\tau \in T} \{ \hat{\mu}(\tau) \cdot n \}^{-1/4+\epsilon}.
\]

The first equation is the definition of \(E(t_i, t'_i, \hat{\mu}, n) \). The equation in the second line follows from the way we defined \(t \). The inequality in the third line follows from Claim A.2. The final inequality follows because \(\min_{\tau' = i,j} |I(i|t')| \) is weakly greater than \(\min_{\tau \in T} \{ \hat{\mu}(\tau) \cdot n \} \).

\[\square \]

A.1.2 Infinite Set of Bundles

We close this Section by highlighting that the assumption of a finite set of bundles \(X_0 \) is not necessary for Theorem 1.

Remark 1. For the proof of Theorem 1 and Lemmas A.1 and A.2, we do not have to assume \(X_0 \) finite. The proofs follow verbatim with the following assumptions. \(X_0 \) is a measurable subset of Euclidean space. Agents’ utility functions over \(X_0 \) are measurable and have range \([−∞, 1]\). The utility of reporting truthfully is at least 0. That is, for all \(n \) and \(t \in T^n \),

\[
u t_i[\Phi_i^n(t)] \geq 0.
\]

The theorem holds with otherwise arbitrary \(X_0 \) satisfying these assumptions. The added generality is important for classifying the Walrasian mechanism in Appendix D.1.4.

\[
\min_{\tau' = i,j} |I(i'|t)|^{4\epsilon} \text{ grows much more quickly than } \log \min_{\tau' = i,j} |I(i'|t)|.
\]
A.2 Proof of Theorem 2

Because \((F^n)_{n \in \mathbb{N}}\) is limit Bayes-Nash implementable, there exists a mechanism \(((\Phi^n)_{n \in \mathbb{N}}, A)\) with a limit Bayes Nash equilibrium \(\sigma^*\) such that

\[F^n(\omega) = \Phi^n(\sigma^*(\omega)) \]

for all \(n\) and vectors of \(n\) types \(\omega\) in \(\Omega^*_n\). Define the direct mechanism \(((\Psi^n)_{n \in \mathbb{N}}, T)\) by

\[\Psi^n(t) = \Phi^n(\sigma^*((t_1, \text{emp}[t]), \ldots, (t_n, \text{emp}[t]))). \]

Denote by \(\psi^n(t_i, \mu)\) the bundle a participant who reports \(t_i\) expects to receive from \(\Psi^n\) if the other participants report i.i.d. according to \(\mu\).

Part 1: \(((\Psi^n)_{n \in \mathbb{N}}, T)\) approximately implements \((F^n)_{n \in \mathbb{N}}\).

We must prove that, given \(t_i\) in \(T\), \(\mu\) in \(\bar{\Delta}T\), and \(\epsilon > 0\), there exists \(n_0\) such that, for all \(n \geq n_0\)

\[\|f^n(t_i, \mu) - \psi^n(t_i, \mu)\| < \epsilon. \] (A.24)

By the definition of \(f^n(t_i, \mu)\) we have

\[f^n(t_i, \mu) = \sum_{t_{-i} \in T_{n-1}^n} \Pr\{t_{-i}|t_{-i} \sim \text{iid}(\mu)\} \cdot F^n_i((t_1, \mu), \ldots, (t_n, \mu)). \]

Likewise, by the definition of \(\psi^n(t_i, \mu)\) we have

\[\psi^n(t_i, \mu) = \sum_{t_{-i} \in T_{n-1}^n} \Pr\{t_{-i}|t_{-i} \sim \text{iid}(\mu)\} \cdot \Phi^n(\sigma^*((t_1, \text{emp}[t]), \ldots, (t_n, \text{emp}[t]))). \]

Therefore, by the triangle inequality,

\[\|f^n(t_i, \mu) - \psi^n(t_i, \mu)\| \leq \sum_{t_{-i} \in T_{n-1}^n} \Pr\{t_{-i}|t_{-i} \sim \text{iid}(\mu)\} \cdot \Delta(t_{-i}), \] (A.25)

where

\[\Delta(t_{-i}) = \|F^n_i((t_1, \mu), \ldots, (t_n, \mu)) - F^n_i((t_1, \text{emp}[t]), \ldots, (t_n, \text{emp}[t]))\|. \]

Moreover, because the social choice function \((F^n)_{n \in \mathbb{N}}\) is continuous, there exists a neigh-
by the law of large numbers, we can take \(n_0 \) to be large enough so that the probability that \(\text{emp}[t] \not\in \mathcal{N} \) is lower than \(\epsilon/2 \).

We can decompose the difference in inequality (A.25) as

\[
\| f^n(t_i, \mu) - \psi^n(t_i, \mu) \| \leq \sum_{t_{-i}: \text{emp}[t] \in \mathcal{N}} \text{Pr}\{t_{-i}|t_{-i} \sim \text{iid}(\mu)\} \cdot \Delta(t_{-i}) + \sum_{t_{-i}: \text{emp}[t] \not\in \mathcal{N}} \text{Pr}\{t_{-i}|t_{-i} \sim \text{iid}(\mu)\} \cdot \Delta(t_{-i}).
\]

Each of the terms on the right hand side is bounded above by \(\epsilon/2 \), which establishes inequality (A.24).

Part 2: \(((\Phi^n)_{n \in \mathbb{N}}, T)\) is SP-L.

We must show that, for any \(t_i \) and \(t'_i \) in \(T \), \(\mu \) in \(\bar{\Delta}T \), and \(\epsilon > 0 \), there exists \(n_0 \) such that, for all \(n \geq n_0 \),

\[
\text{ut}_i[\psi^n(t'_i, \mu)] - \text{ut}_i[\psi^n(t_i, \mu)] \leq \epsilon. \tag{A.26}
\]

From the triangle inequality we have that

\[
\text{ut}_i[\psi^n(t'_i, \mu)] - \text{ut}_i[\psi^n(t_i, \mu)] \leq \text{ut}_i[f^n(t'_i, \mu)] - \text{ut}_i[f^n(t_i, \mu)] + \| f^n(t'_i, \mu) - \psi^n(t'_i, \mu) \| + \| f^n(t_i, \mu) - \psi^n(t_i, \mu) \|.
\]

By the definition of \(f^n \) and the fact that \(\sigma^* \) is a limit Bayes-Nash equilibrium, there exists \(n_0 \) such that, for \(n \geq n_0 \), the first term in the right-hand side is bounded above by \(\epsilon/3 \). Moreover, by step 1 of this proof, we can take \(n_0 \) such that the second and third terms are bounded above by \(\epsilon/3 \). This implies inequality (A.26).