The chapter can be found in American (1976, Chap. 2) and (Cameo 1996, Chap. 3). The chapter begins by introducing the concept of portfolio returns and the notion of a efficient and efficient frontiers of the random variable of the returns of a portfolio. The chapter then delves into the calculation of the expected utility of the investor and the construction of the utility function. The chapter concludes with the discussion of the nature of portfolio returns and the construction of the efficient frontier, which is the set of all possible portfolios that cannot be improved upon by any other portfolio with the same or lower risk.
The market model, theory, and estimation
changes with γ, but otherwise the conditional distributions are the same.

The right-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is a function of γ. The left-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is also a function of γ. These two functions may be different for different values of γ. Since the distribution function F is not a function of γ, the right-hand side of Equation (2) is not a function of γ. The functional form of the distribution function F is not affected by the functional form of the distribution function G.

Figure 2. The Right-Hand Side of Equation (2) is a Function of γ and the Function F is Not a Function of γ. The Functional Form of the Distribution Function F is Not Affected by the Functional Form of the Distribution Function G.

The right-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is a function of γ. The left-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is also a function of γ. These two functions may be different for different values of γ. Since the distribution function F is not a function of γ, the right-hand side of Equation (2) is not a function of γ. The functional form of the distribution function F is not affected by the functional form of the distribution function G.

The right-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is a function of γ. The left-hand side of Equation (2) is the conditional expectation of $I^{\omega}(\omega)_{2}$, which is also a function of γ. These two functions may be different for different values of γ. Since the distribution function F is not a function of γ, the right-hand side of Equation (2) is not a function of γ. The functional form of the distribution function F is not affected by the functional form of the distribution function G.
B. Some Formal Distinctions

The distribution of \(h \) is independent of the mean of \(Y \) if and only if the joint distribution of \(h \) and \(Y \) is normal with mean \(\mu_Y \). This is because the joint distribution is normal with mean \(\mu_Y \) if and only if the conditional distribution of \(h \) given \(Y \) is normal with mean \(\mu_Y \).

Equation (10) is a consequence of the normality of \(Y \) and \(\mu_Y \) can be expressed as

\[
\mu_Y = \mu_Y + \theta
\]

Equation (11) is a consequence of the normality of \(Y \) and \(\mu_Y \).

The conditional distribution of \(h \) given \(Y \) is normal with mean \(\mu_Y \) if and only if the conditional distribution of \(Y \) given \(h \) is normal with mean \(\mu_Y \).

For all values of \(h \), the conditional distributions are normal with means

\[
\mu_Y = \mu_Y + \theta
\]

Figure 3.2

Conditional Distribution for \(h \) Given \(Y \)
I. Derive equation (4.1) from equation (4.1.1).

Given that the proportion of people who are unemployed is the same for both states 0 and 1, we can derive the proportion of people who are unemployed in both states as follows:

\[
\frac{(y|0, \theta)}{(y|1, \theta)} = \frac{(y|0, \theta) + (y|1, \theta) \cdot \frac{1}{2}}{(y|0, \theta) + (y|1, \theta) \cdot \frac{1}{2}} = \frac{1}{2}.
\]

Therefore, the proportion of people who are unemployed is the same for both states. Since the proportion of people who are unemployed in state 0 is greater than in state 1, the proportion of people who are unemployed in state 1 must be less than in state 0.

Equation (4.1.1) states that:

\[
\frac{(y|0, \theta)}{(y|1, \theta)} = \frac{1}{2}.
\]

II. Derive equation (4.1.2) from equation (4.1.1).

The proportion of people who are employed in state 0 is the same as in state 1, which implies that the proportion of people who are employed in state 0 is equal to the proportion of people who are employed in state 1.

Equation (4.1.2) states that:

\[
\frac{(y|0, \theta)}{(y|1, \theta)} = \frac{1}{2}.
\]

III. Derive equation (4.1.3) from equation (4.1.2).

The proportion of people who are employed in state 0 is equal to the proportion of people who are employed in state 1, which implies that the proportion of people who are employed in state 0 is equal to the proportion of people who are employed in state 1.

Equation (4.1.3) states that:

\[
\frac{(y|0, \theta)}{(y|1, \theta)} = \frac{1}{2}.
\]

IV. Derive equation (4.1.4) from equation (4.1.3).

The proportion of people who are employed in state 0 is equal to the proportion of people who are employed in state 1, which implies that the proportion of people who are employed in state 0 is equal to the proportion of people who are employed in state 1.

Equation (4.1.4) states that:

\[
\frac{(y|0, \theta)}{(y|1, \theta)} = \frac{1}{2}.
\]
\[0 = (\mathbf{i}^T \mathbf{u})^T \mathbf{x} \mathbf{x}^T \mathbf{u} \mathbf{i} = (\mathbf{i}^T \mathbf{u})^T \mathbf{x} \mathbf{x}^T \mathbf{u} = \mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} \]

Then, from (3) we have

\[I = \frac{(\mathbf{i}^T \mathbf{u})^T \mathbf{u}}{\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u}} \]

From (2) and (1)

ANSWER

the \(I \) is 0.

that is, then the weighted average of the \(I \) is 0, and the weighted average of

\[I = \mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} \]

Show that, according to the definitions of \(I \) and \(I(\mathbf{u}) \),

\[\text{PROBLEMS II C} \]

C. In Section IIJ, and the second model, the risk of the portfolio, the

C. Some Additional Properties of the Model

1. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

2. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

3. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

4. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

5. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

6. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

7. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

8. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

9. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

10. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

11. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

12. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

13. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

14. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

15. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the

16. \(\mathbf{u}^T \mathbf{x} \mathbf{x}^T \mathbf{u} = 0 \), which implies that the risk of the portfolio, the
The Market Model: Theory and Estimation

Problem 1C

1. Interpret these results:

\[\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})^2}{s_x} \right) = \sum_{i=1}^{n} \left(\frac{(y_i - \bar{y})^2}{s_y} \right) = n \sigma_y^2 \]

Let \(\bar{x} \) be the weight of security in portfolio \(P \). Show that

\[\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})^2}{s_x} \right) = \sum_{i=1}^{n} \left(\frac{(y_i - \bar{y})^2}{s_y} \right) = n \sigma_y^2 \]

2. From \(\delta_{xy} \) we have

\[\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \right) = \delta_{xy} \]

Which implies that

\[\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \right) = \delta_{xy} \]

Calculation Problem: We can determine the

\[\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \right) = \delta_{xy} \]

Initial state: The market model relationship between \(x \) and \(y \) is given by equation (3).

\[(12) \quad \delta_{xy} = \frac{(1+x)\beta_y - (1+y)\beta_x}{(1+x)\gamma + (1+y)\gamma} = \beta \]

Where

\[(20) \quad \beta_{xy} = \frac{\beta_y^2}{\sigma_y^2} + \beta_x^2 = \sigma_y^2 \]

We have

\[\begin{align*}
\delta_{xy} &= \frac{(1+y)\beta_y - (1+x)\beta_x}{(1+y)\gamma + (1+x)\gamma} \\
&= \frac{(1+y)\beta_y}{(1+y)\gamma + (1+x)\gamma} \\
&= \frac{(1+y)(1+y)\beta_y}{(1+y)\gamma + (1+x)\gamma} \\
&= \frac{(1+y)\beta_x}{(1+y)\gamma + (1+x)\gamma} \\
&= \frac{(1+y)\beta_x}{(1+y)\gamma + (1+x)\gamma} \\
&= \Delta
\end{align*} \]

Finally, if the joint distribution of the security returns is $H_1 \cdots H_n$, and H_1, \ldots, H_n are independent, then we have some confidence about the security i to j if the return on the portfolio P is independent of the joint distribution of the security returns $H_1 \cdots H_n$. When $H_1 \cdots H_n$ is written as in (96), we can see that the market model matrix δ_{xy} can be calculated without the intercept β_i. Therefore, the distribution $H_1 \cdots H_n$ is independent of the estimated β_i in equation (96).
III. THE ESTIMATORS

In discussing the market model, we assume that the parameters of the model (β, α) are known and that the distribution of the returns is normal. The estimation of the model parameters is based on the assumption that the returns are normally distributed. The estimation of the parameters is typically done using the method of least squares.

The market model is

\[r_t = \alpha + \beta r_m + e_t \]

where \(r_t \) is the return on the security, \(r_m \) is the return on the market portfolio, and \(e_t \) is the error term.

In practice, the parameters are estimated using historical data on the returns of the security and the market. The estimated parameters are then used to predict future returns.

The market model implies that the return on a security is linearly related to the return on the market portfolio. If the market model is correctly specified, the coefficient \(\beta \) should be positive and statistically significant. A high value of \(\beta \) indicates that the security is sensitive to market movements. A low value of \(\beta \) indicates that the security is not very responsive to market movements.

The estimation of the parameters of the market model is typically done using the method of least squares. The estimated parameters are then used to predict future returns and to assess the risk and return characteristics of the security.
the estimation procedure when our model is not assumed to be linear or when we do not have normal disturbances. For example, the estimation procedure described in this section is a special case of the estimation procedure described in Section 1.3.2, where the disturbances are assumed to be normal.

In this case, we can show that the minimum variance unbiased estimator is also the Maximum Likelihood Estimator. This is because the assumption that the disturbances are normal leads to the likelihood function being a quadratic function of the parameters, and the maximum likelihood estimator is the value of the parameters that maximizes this function. In this case, the Maximum Likelihood Estimator is also the Minimum Variance Unbiased Estimator. This is because the assumption that the disturbances are normal leads to the variance of the estimator being a quadratic function of the parameters, and the Minimum Variance Unbiased Estimator is the value of the parameters that minimizes this variance.

In the context of the market model, the additional requirements of the model are:

- We assume that the returns on the assets are normally distributed.
- We assume that the market is efficient, meaning that the expected returns on the assets are equal to the risk-free rate.

These conditions allow us to use the properties of the normal distribution to derive the Maximum Likelihood Estimator, which is also the Minimum Variance Unbiased Estimator. However, these conditions are not always satisfied in practice, and in these cases, we may need to use alternative estimation procedures.

The estimation procedure described in this section is a special case of the estimation procedure described in Section 1.3.2, where the disturbances are assumed to be normal.

In this case, we can show that the minimum variance unbiased estimator is also the Maximum Likelihood Estimator. This is because the assumption that the disturbances are normal leads to the likelihood function being a quadratic function of the parameters, and the maximum likelihood estimator is the value of the parameters that maximizes this function. In this case, the Maximum Likelihood Estimator is also the Minimum Variance Unbiased Estimator. This is because the assumption that the disturbances are normal leads to the variance of the estimator being a quadratic function of the parameters, and the Minimum Variance Unbiased Estimator is the value of the parameters that minimizes this variance.

In the context of the market model, the additional requirements of the model are:

- We assume that the returns on the assets are normally distributed.
- We assume that the market is efficient, meaning that the expected returns on the assets are equal to the risk-free rate.

These conditions allow us to use the properties of the normal distribution to derive the Maximum Likelihood Estimator, which is also the Minimum Variance Unbiased Estimator. However, these conditions are not always satisfied in practice, and in these cases, we may need to use alternative estimation procedures.

The estimation procedure described in this section is a special case of the estimation procedure described in Section 1.3.2, where the disturbances are assumed to be normal.

In this case, we can show that the minimum variance unbiased estimator is also the Maximum Likelihood Estimator. This is because the assumption that the disturbances are normal leads to the likelihood function being a quadratic function of the parameters, and the maximum likelihood estimator is the value of the parameters that maximizes this function. In this case, the Maximum Likelihood Estimator is also the Minimum Variance Unbiased Estimator. This is because the assumption that the disturbances are normal leads to the variance of the estimator being a quadratic function of the parameters, and the Minimum Variance Unbiased Estimator is the value of the parameters that minimizes this variance.

In the context of the market model, the additional requirements of the model are:

- We assume that the returns on the assets are normally distributed.
- We assume that the market is efficient, meaning that the expected returns on the assets are equal to the risk-free rate.

These conditions allow us to use the properties of the normal distribution to derive the Maximum Likelihood Estimator, which is also the Minimum Variance Unbiased Estimator. However, these conditions are not always satisfied in practice, and in these cases, we may need to use alternative estimation procedures.
In the market model equation (1a) it is always true that
where r_{t} is a random variable, μ_{t} is the expected value of the
return at time t, and σ_{t} is the standard deviation of the
return at time t. The market model is a linear regression model
where the dependent variable is the return at time t, and the
independent variables are the market index returns, r_{m}, at
time t.

(32)

$$r_{t} = \alpha_{t} + \beta_{t} r_{m, t} + e_{t}$$

Equation (32), also known as the market model, expresses the
return at time t, r_{t}, as the sum of a constant term, α_{t}, the
market index return, $r_{m, t}$, and a random error term, e_{t}.

(33)

$$E(r_{t}) = \alpha_{t} + \beta_{t} E(r_{m, t})$$

Likewise, from equation (33) we know that

$$E(r_{t}) = \alpha_{t} + \beta_{t} E(r_{m, t})$$

where $E(r_{t})$ is the expected value of the return at time t, α_{t} is
the intercept, and β_{t} is the slope coefficient.

(34)

$$\sigma_{t}^{2} = \beta_{t}^{2} \sigma_{m, t}^{2} + \sigma_{e, t}^{2}$$

where σ_{t}^{2} is the variance of the return at time t, $\sigma_{m, t}^{2}$ is
the variance of the market index return, and $\sigma_{e, t}^{2}$ is the variance of
the error term.

C. Some Additional Properties of the Estimates

1. The estimated regression coefficients, β_{t}, are unbiased estimators of the true
coefficients. This is because the least squares estimates are obtained by
minimizing the sum of the squared residuals, which are distributed as
normal if the errors are normal.

2. The estimated regression coefficients, β_{t}, are consistent estimators of the true
coefficients. This is because the estimates become more accurate as the sample size
increases.

3. The estimated regression coefficients, β_{t}, are asymptotically normally distributed.
This is a consequence of the Central Limit Theorem, which states that the
sample mean of a large number of independent and identically distributed
random variables will be approximately normally distributed.

4. The estimated regression coefficients, β_{t}, are unbiased estimates of the true
coefficients. This is because the estimates are obtained by
minimizing the sum of the squared residuals, which are distributed as
normal if the errors are normal.

5. The estimated regression coefficients, β_{t}, are consistent estimators of the true
coefficients. This is because the estimates become more accurate as the sample size
increases.

6. The estimated regression coefficients, β_{t}, are asymptotically normally distributed.
This is a consequence of the Central Limit Theorem, which states that the
sample mean of a large number of independent and identically distributed
random variables will be approximately normally distributed.
\[
\frac{\frac{1}{2} \sum_{i=1}^{2} \lambda_i (\mu_{Y_i} - \mu_{Y}) \sum_{i=1}^{2} \lambda_i y_i}{\sum_{i=1}^{2} \lambda_i (\mu_{Y_i} - \mu_{Y})^2} = \frac{\lambda y}{\sum_{i=1}^{2} \lambda_i y_i}
\]

From (33)

\[
\frac{\lambda y}{\sum_{i=1}^{2} \lambda_i y_i}
\]

The simple correlation coefficient, \(\rho\), between \(Y_i\) and \(Y\) is the square of the correlation coefficient between \(Y_i\) and \(Y\), so the square of \((\lambda y_i)\) equals the proportion of the variation in \(Y\) that is attributable to \(Y_i\). This proportion is the same for \(\lambda y_i\) and \(\lambda y\).

From (36)

\[
0 = \sum_{i=1}^{2} \lambda_i (\mu_{Y_i} - \mu_{Y})^2
\]

From (27)

\[
\lambda y
\]

From (28)

\[
\lambda y
\]

\[
\lambda y
\]

From (32)

\[
\lambda y
\]

From (29)

\[
\lambda y
\]

From (33) then easy to show that (33)

\[
\lambda y
\]

The correlation between \(Y_i\) and \(Y\) is (33) which holds for this model, whose properties are the same as those of the equal to the linear model. This model has these additional properties.

(33) holds, then (32) must also hold.

\[
\lambda y
\]

and later,

\[
\lambda y
\]

From (29) over (32) holds for the same

From (33) holds, then (32) holds for the same model, whose properties are the same as those of the equal to the linear model. This model has these additional properties.
The Market Model, Theorem and Estimation

85

Foundations of Finance
which of the form of the market model distribution. The uncorrelated

The conditional variance of \bar{X} is given by

\[\sum \left(\frac{w_x - \bar{w}_x}{\bar{w}_x} \right)^2 \cdot \mathbb{E} \left(\frac{w_x - \bar{w}_x}{\bar{w}_x} \right)^2 = \mathbb{E} \left(\frac{w_x - \bar{w}_x}{\bar{w}_x} \right)^2 \]

with equations (32) and (33) it is easy to establish the correlation exist-

The standard errors of the coefficient estimates

The next step is to assess the distribution properties of \bar{X} and \bar{Y}.

The distributions of the standard errors

It follows that the \sum values of all there is in the summation of

deart all market returns in the sample, and \bar{X} are zero, and \bar{X}, and

of the market model is \bar{X} and \bar{Y} are uncorrelated, in which

\[\bar{X} = \bar{Y} \]
A few comments are in order concerning the class of distributions of \(w_y \) and \(w_i \). For example, when the distribution of \(w_i \) is discrete, the distribution of \(w_y \) is also discrete. The distribution of \(w_i \) is defined as the distribution of the random variable \(w_i \), where \(w_i \) is a random variable defined on a probability space. The distribution of \(w_y \) is defined as the distribution of the random variable \(w_y \), where \(w_y \) is a random variable defined on a probability space.

The conditional distribution of \(y \) given \(x \) is defined as the distribution of \(y \) when \(x \) is known. The conditional distribution of \(y \) given \(x_1, \ldots, x_k \) is defined as the distribution of \(y \) when \(x_1, \ldots, x_k \) are known. The distribution of \(y \) is defined as the distribution of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional expectation of \(y \) given \(x \) is defined as the expected value of \(y \) when \(x \) is known. The conditional expectation of \(y \) given \(x_1, \ldots, x_k \) is defined as the expected value of \(y \) when \(x_1, \ldots, x_k \) are known. The expected value of \(y \) is defined as the expected value of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional variance of \(y \) given \(x \) is defined as the variance of \(y \) when \(x \) is known. The conditional variance of \(y \) given \(x_1, \ldots, x_k \) is defined as the variance of \(y \) when \(x_1, \ldots, x_k \) are known. The variance of \(y \) is defined as the variance of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional correlation of \(y \) and \(x \) is defined as the correlation coefficient of \(y \) and \(x \) when \(x \) is known. The conditional correlation of \(y \) and \(x_1, \ldots, x_k \) is defined as the correlation coefficient of \(y \) and \(x_1, \ldots, x_k \) when \(x_1, \ldots, x_k \) are known. The correlation coefficient of \(y \) and \(x \) is defined as the correlation coefficient of the random variables \(y \) and \(x \) when \(y \) and \(x \) are random variables defined on a probability space.

The conditional distribution of \(y \) given \(x \) is defined as the distribution of \(y \) when \(x \) is known. The conditional distribution of \(y \) given \(x_1, \ldots, x_k \) is defined as the distribution of \(y \) when \(x_1, \ldots, x_k \) are known. The distribution of \(y \) is defined as the distribution of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional expectation of \(y \) given \(x \) is defined as the expected value of \(y \) when \(x \) is known. The conditional expectation of \(y \) given \(x_1, \ldots, x_k \) is defined as the expected value of \(y \) when \(x_1, \ldots, x_k \) are known. The expected value of \(y \) is defined as the expected value of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional variance of \(y \) given \(x \) is defined as the variance of \(y \) when \(x \) is known. The conditional variance of \(y \) given \(x_1, \ldots, x_k \) is defined as the variance of \(y \) when \(x_1, \ldots, x_k \) are known. The variance of \(y \) is defined as the variance of the random variable \(y \) when \(y \) is a random variable defined on a probability space.

The conditional correlation of \(y \) and \(x \) is defined as the correlation coefficient of \(y \) and \(x \) when \(x \) is known. The conditional correlation of \(y \) and \(x_1, \ldots, x_k \) is defined as the correlation coefficient of \(y \) and \(x_1, \ldots, x_k \) when \(x_1, \ldots, x_k \) are known. The correlation coefficient of \(y \) and \(x \) is defined as the correlation coefficient of the random variables \(y \) and \(x \) when \(y \) and \(x \) are random variables defined on a probability space.
The Market Model: Theory and Estimation

Theorem:

The distribution of the estimated regression coefficient is normal with mean equal to the true coefficient of the independent variable and variance equal to the variance of the error term divided by the variance of the observations. The standard error of the estimate is the square root of the variance of the error term. The t-statistic is used to test the null hypothesis that the true coefficient is zero. If the t-statistic is statistically significant, it indicates that the independent variable has a significant impact on the dependent variable.
To make these statements more concrete, let's return to the example of the market model. The expected return on a security is related to the market return by the equation:

\[r_i = r_f +
\]
The Material Model: Theory and Estimation

Foundations of Finance
Although the personal influences of the banks are currently evident for the

summarization of the initial $3A$.

The personal distribution of the banks in the government is clearly

simple. The procedures to transfer the personal distribution on

the personal is where we place the personal distribution with the

expansion from the personal. The personal process in the personal

that can be drawn in the personal. The personal that is placed on the

proportion of the personal is known. The personal that is placed on the

proportion of the personal is known. The personal that is placed on the

proportion of the personal is known. The personal that is placed on the

proportion of the personal is known. The personal that is placed on the

proportion of the personal is known.