Scalable Price Targeting ¹

Jean-Pierre Dubé, Chicago Booth and NBER
Sanjog Misra, Chicago Booth

October 2017

¹Dubé: Booth School of Business, University of Chicago, 5807 S Woodlawn Ave, Chicago, IL 60637 (e-mail: jdube@chicagobooth.edu), Misra: Booth School of Business, University of Chicago, 5807 S Woodlawn Ave, Chicago, IL 60637 (e-mail: sanjog.misra@chicagobooth.edu); We are grateful to Ian Siegel and Jeff Zwelling of Ziprecruiter for their support of this project. We would also like to thank the Ziprecruiter pricing team for their help and work in making the implementation of the field experiments possible. We are also extremely grateful for the extensive feedback and suggestions from Dirk Bergemann, Chris Hansen, Matt Taddy, Gautam Gowrisankaran and Ben Shiller. Finally, we benefitted from the comments and suggestions of seminar participants at the Bridge Webinar Series at McGill University, Cornell University, Columbia GSB, the 2017 Microsoft Digital Economics Conference, Penn State University, the 2017 Porter Conference at Northwestern University, Stanford GSB, the University of Chicago Booth School of Business, University of Notre Dame, UNC Chapel Hill, University of Rochester, University of Wisconsin, Yale University, the 2017 Marketing and Economics Summit, the 2016 Digital Marketing Conference at Stanford GSB and the 2017 Summer NBER meetings in Economics and Digitization. Dubé and Misra acknowledge the support of the Kilts Center for Marketing. Misra also acknowledges the support of the Neubauer Family Foundation.
Abstract

We study the welfare implications of scalable price targeting, an extreme form of third-degree price discrimination implemented with machine learning for a large, digital firm. Targeted prices are computed by solving the firm’s Bayesian Decision-Theoretic pricing problem based on a database with a high-dimensional vector of customer features that are observed prior to the price quote. To identify the causal effect of price on demand, we first run a large, randomized price experiment and use these data to train our demand model. We use l_1 regularization (lasso) to select the set of customer features that moderate the heterogeneous treatment effect of price on demand. We use a weighted likelihood Bayesian bootstrap to quantify the firm’s approximate statistical uncertainty in demand and profitability. We then conduct a second experiment that implements our proposed price targeting scheme out of sample. Theoretically, both firm and customer surplus could rise with scalable price targeting. Optimized uniform pricing improves revenues by 64.9% relative to the control pricing, whereas scalable price targeting improves revenues by 81.5%. Firm profits increase by over 10% under targeted pricing relative to optimal uniform pricing. Customer surplus declines by less than 1% with price targeting; although nearly 70% of customers are charged less than the uniform price. Smaller firms with fewer job benefits are more likely to buy in the targeted pricing cell versus the uniform pricing cell. Our weighted likelihood bootstrap estimator also predicts demand and demand uncertainty out of sample better than a post-selection inference approach. Keywords: price discrimination, targeting, scalable price targeting, welfare, lasso regression, weighted likelihood bootstrap, data-mining, field experiment
1 Introduction

The growing access to vast customer databases and analytic tools has made the practice of personalized targeted marketing more accessible to the mainstream firm. We study scalable price targeting (SPT), an extreme form of third-degree price discrimination that targets prices using large quantities of observable customer features. Theorists have long recognized the possibility that with a very granular segmentation scheme, like SPT, third-degree price discrimination could approximate first-degree, or “perfect,” price discrimination1:

“... it is evident that discrimination of the third degree approximates towards discrimination of the first degree as the number of markets into which demands can be divided approximate toward the number of units for which any demand exists.” (Pigou, 1920, Part II, chapter XVI, section 14)

Despite a long theoretical interest in price discrimination (e.g. Pigou, 1920; Varian, 1980; Stole, 2007; Bergemann, Brooks, and Morris, 2015), perfect price discrimination has historically been regarded as a purely theoretical prospect2:

“[The monopolist] cannot, except in extraordinary circumstances, introduce either the first or the second degree of discrimination, and that the third degree is of chief practical importance.” (Pigou, 1920, Part II, chapter XVI, section 6)

Academics only recognized the mass potential for more individualized, personalized pricing in practice during the early days of the commercial internet (Shapiro and Varian, 1999; Smith, Bailey, and Brynjolfsson., 2000). It was not until 2015 that the prospect of SPT practices prompted a report by the Counsel of Economic Advisors (CEA) devoted entirely to differential pricing with big data (CEA, 2015). Recognizing how “...big data and electronic commerce have reduced the costs of targeting and first-degree price discrimination” (CEA, 2015, page 12), the report mostly drew dire conclusions about the potential harm to customers:

“[Differential pricing] transfers value from consumers to shareholders, which generally leads to an increase in inequality and can therefore be inefficient from a utilitarian standpoint” (CEA, 2015, page 6).

A similar concern for customer harm has been echoed in the recent mainstream business media3.

1 Statistical uncertainty typically limits the segmentation to an imperfect form of targetability. The approximation is also typically closer under unit demand since SPT typically cannot target a different price to each infra-marginal unit purchased by a customer.

2 In practice, most targeted pricing structures use coarse segmentation strategies that vary prices across broad groups of customers. Examples include seniors discounts at the movies and geographic or “zone” pricing by retailers across communities in a metropolitan area.

The growing pressure for public policies with the potential to curb or limit data-based pricing has heightened the need for more scientific inquiry into the empirical implications of price discrimination with big data. The extent to which SPT is used in practice is unknown and, to the best of our knowledge, the literature has not yet produced field evidence that SPT generates incremental profits in practice. With regards to consumers, (Bergemann, Brooks, and Morris, 2015) characterize the set of potential welfare outcomes associated with third-degree price discrimination, many of which increase consumer surplus (see also Cowan, 2012). Whether consumer surplus increases or not is an empirical question and depends on the information used to create price segments. A potential concern is that over-regulation of data-based price targeting could in fact harm consumers.

We conduct an empirical case study of SPT to analyze its implications for firm profits and customer well-being. We first develop a practical and scalable approach to implement targeted pricing for a firm with access to a large cross-section of customer purchase data and detailed, customer-specific variables. On the demand side, our approach is structural in the sense that we impose parametric structure on our model to ensure the necessary smoothness in prices for implementing price optimization by the firm. We assume that the heterogeneity in customers’ price sensitivities can be characterized by a sparse subset of an observed, high-dimensional vector of observable customer characteristics. The firm’s empirical goal consists of making statistical inferences about demand from heterogeneous customers, as opposed to making inferences about specific underlying parameters associated with customer characteristics. Thus, we cast our demand analysis as a heterogeneous treatment effects problem using price as a continuous treatment variable.

On the supply side, we use a Bayesian Decision-Theoretic formulation of the firm’s pricing problem (Wald, 1950; Savage, 1954), defining the posterior expected profits as the reward function to account for statistical uncertainty. We use a weighted likelihood bootstrap (WLB) of a l_1-regularized logistic regression to approximate the firm’s statistical uncertainty about demand across customers with different observable profiles. The WLB provides us with approximate draws from the appropriate posterior density of the parameters of interest (Taddy, Gardner, Chen, and Draper, 2016). We use these draws to quantify the uncertainty around the firm’s demand and profits under different pricing decisions.

Our empirical application, based on a collaboration with Ziprecruiter.com, a large, online recruiting firm, implements our proposed approach via a sequence of randomized controlled price experiments for new customers. We use the experimental data to design, implement and evaluate a real-time, scalable business-to-business pricing algorithm that optimizes the price charged for each prospective new customer that reaches the paywall on Ziprecruiter’s website. The analysis proceeds in three phases.

To estimate the heterogeneous treatment effects of price on demand, our first phase consisted of a randomized controlled price experiment. During September 2015, the experiment randomly assigned each new customer arriving at the website’s paywall to one of ten price buckets ranging from $19 to $399, including a control condition of $99 which was the firm’s regular base price at that time. Descriptive analysis of the data revealed (i) evidence for a downward-sloping demand relationship, (ii) that status quo pricing of $99 was on the inelastic region of demand, and (iii) evidence supporting an opportunity
to raise prices profitably. Our model-free analysis of demand provides prima facie empirical evidence of the downward-sloping demand relationship in the field. In this regard, we add to a small and growing literature using firm-sanctioned field experiments to obtain plausible estimate of the treatment effect of marketing variables on demand (e.g., Levitt and List, 2009; Einav and Levin, 2010) 4. The fact that Ziprecruiter has authorized us to disclose its identity and the details of the underlying experiment also supports the growing importance of transparency and disclosure when using firm-sponsored experiments for scientific research (Einav and Levin, 2014).

In Phase II, we used the experimental data to estimate (i.e. “train”) a demand model using the WLB estimator to calibrate the price-response as a function of job and customer characteristics. Our model estimates reveal a considerable degree of heterogeneity in willingness-to-pay. The in-sample targeted prices that maximized the posterior expected profit from each customer ranged from as low as $142 to as high as $499; but all the prices exceeded the status quo price of $99 5. Based on our optimization, we predicted posterior expected profit gains of 56% and 80% for our uniform and targeted pricing structures, respectively, relative to Ziprecruiter’s status quo price of $99. Moreover, we predicted that our targeting scheme would capture over 40% of the potential profitability from the theoretical benchmark of perfect price discrimination.

In Phase III, we implemented a second field experiment with a new sample of prospective new customers to test the recommended pricing structures against its status quo of $99 per month. Typically, researchers explore the potential counter-factual gains using simulations based on their model estimates. Our second experiment provides a novel opportunity to test the performance of our microeconomic-based counterfactuals out of sample (see also Misra and Nair 2011; Ostrovsky and Schwarz 2016 6). The predicted uncertainty in conversion and profits were very close to the empirical distribution of “realized” conversion and profits, providing an out-of-sample assessment of our WLB method. We also found a close agreement between our predicted and realized implications for surplus. Relative to the status quo of $99, we observed profit gains of 68% and 84% for uniform and targeted pricing, respectively. Surprisingly, Ziprecruiter’s $99 price was considerably below the profit-maximizing uniform price. This under-pricing is still dramatic even when we consider the impact on future profits and customer retention several months after the experiment. The implementation of SPT increases Ziprecruiter’s profits by more than 10% relative to a uniform optimal price, indicating a strong economic incentive for the implementation of differential pricing.

On the demand side, we also used Phase III to analyze the impact of SPT on customer surplus. In the targeting cell of our experiment, 67% of the customers are targeted a lower price than the optimal uniform price. Even though we predict that total customer surplus falls by a small amount (less than 1%), the majority of customers benefit from SPT. Interestingly, the strong customers who are targeted higher

4 See also Cohen, Hahn, Hall, Levitt, and Metcalfe (2016) for a quasi price experiment based on Uber surge.
5 Ziprecruiter capped the targeted prices at $499.
6 Misra and Nair (2011) test the performance of a more efficient incentives-based compensation scheme for sales agents in a large firm, and Ostrovsky and Schwarz 2016 test the performance of optimally-derived reserve prices for Yahoo!’s sponsored search auctions
than the optimal uniform price nevertheless exhibit a higher conversion rate on average than weak customers. As public policy advocates debate the “fairness” aspects of differential pricing, it is important to note that many customers would be excluded from service under a uniform pricing policy. Moreover, the typical strong customer tends to be a larger company with 20 employees (relative to 10 employees for weak customers), suggesting that our targeting scheme redistributes surplus from larger to smaller customers. Public policy might also benefit from a focus on the redistributive aspects of differential pricing between customers.

Our findings contribute to the empirical literature on third-degree price discrimination (see the survey by Verboven 2008). By running a price experiment, we avoid the typical price endogeneity concerns associated with demand estimation. In the domain of digital marketing, Bauner (2015) and Einav, Farronato, Levin, and Sundaresan (2017) argue that the co-existence of auctions and posted price formats on eBay may be price discriminating between customer segments. Einav, Farronato, Levin, and Sundaresan (2017) conclude that “richer econometric models of e-commerce that incorporate different forms of heterogeneity ... and might help rationalize different types of price discrimination would be a worthwhile goal for future research.” Surprisingly, in a large-scale randomized price experiment for an online gaming company that uses almost uniform pricing, Levitt, List, Neckermann, and Nelson (2016) find almost no effect on revenues from various alternative second-degree “non-linear” price discrimination policies. However, they document substantial heterogeneity across consumers which suggests potential gains from the type of third-degree “targeted pricing” studied herein.

Our work also contributes to the broad empirical literature on targeting across customers (e.g., Ansari and Mela, 2003; Simester, Sun, and Tsitsiklis, 2006; Dong, Manchanda, and Chintagunta, 2009; Kumar, Sriram, Luo, and Chintagunta, 2011). A small subset of this literature has analyzed personalized pricing with different prices charged to each customer (e.g. Rossi, McCulloch, and Allenby 1996; Chintagunta, Dubé, and Goh 2005; Zhang, Netzer, and Ansari 2014; Waldfogel 2015; Shiller 2015). Our work is closest to Shiller (2015) who also uses machine learning to estimate heterogeneous demand. Most of this research uses a retrospective analysis of detailed customer purchase histories to determine personalized prices. These studies report large predicted profit improvements for firms. However, the implications for targeted pricing are typically studied through model simulations based on demand estimates. In contrast, we run field experiments, not only to estimate demand, but also to provide a field validation of the impact on firm profits and customer well-being out of sample. The extant work’s findings and methods also have limited applicability beyond markets for fast-moving consumer goods due to the limited availability of customer purchase panels in most markets. In contrast, we devise a more broadly practical targeting scheme based on observable customer features.

Surprisingly, more practical approaches that, like SPT, target based on observable customer features (as opposed to shopping histories) have been found to be of limited value. For example, Rossi, McCulloch, and Allenby (1996) conclude that “…it appears that demographic information is only of limited value” for the targeting of prices of branded consumer goods. Similarly, Shiller and Waldfogel (2011) claim that “Despite the large revenue enhancing effects of individually customized uniform prices, forms
of third degree price discrimination that might more feasibly be implemented produce only negligible revenue improvements.” In the internet domain, Shiller (2015) finds “…demographics alone to tailor prices raises profits by 0.8% [at Netflix].” In sum, the extant literature has thus far found limited evidence that firms would benefit from SPT. An exception is List (2004), who finds that sportscard dealers use minority membership as a proxy differences in consumer willingness-to-pay, though he does not explore the profit implications. In contrast with most past work on SPT, we find that targeting on observable customer characteristics (without observing customer behavior) leads to substantial profit increases.

Finally, our work is also related to the recent literature conducting inference when machine learning algorithms are used to analyze heterogeneous treatment effects (e.g., Wager and Athey, 2015; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2016; Athey and Imbens, 2016a). The extant literature has developed procedures for inference in the context of discrete (typically binary) treatment effects. In contrast, our SPT structure requires conducting inference over the heterogeneous effects of price, a continuous treatment, on customer demands.

The remainder of the paper is organized as follows. In section 2, we set up the prototypical decision-theoretic formulation of monopoly price targeting based on demand estimation. In section 3, we derive our empirical approach for estimating the demand parameters and quantifying uncertainty. We summarize our empirical case study of targeted pricing at Ziprecruiter.com in section 4. We conclude in section 5.

2 A Model of Decision-Theoretic Monopoly Price Targeting

In this section, we outline the key elements of a data-based approach to monopoly targeted pricing. We cast the firm’s pricing decision as a Bayesian statistical decision theory problem (e.g., Wald 1950; Savage 1954; Berger 1985 and also see Hirano 2008 for a short overview along with Green and Frank 1966 and Bradlow, Lenk, Allenby, and Rossi 2004 for a discussion of Bayesian decision theory for marketing problems). The firm trades off the opportunity costs from sub-optimal pricing and the statistical uncertainty associated with sales and profits at different prices. We treat the firm’s uncertainty as statistical knowledge about customers and demand. Bayes theorem provides the most appropriate manner for the firm to use available data to update its beliefs about customers and make informed pricing decisions. Failure to incorporate this uncertainty into pricing decisions could lead to bias, as we discuss below. We also discuss herein the potential short-comings of a simpler approach that “plugs in” point estimates of the uncertain quantities instead of using the full posterior distribution of beliefs. For an early application of Bayesian decision theory to pricing strategy see Green (1963). For a more formal econometric treatment of Bayesian decision-theoretic pricing that integrates consumer demand estimation, see Rossi, McCulloch, and Allenby (1996); Dubé, Fang, Fong, and Luo (2017)\(^7\).

We start by describing the demand setup and defining the sources of statistical uncertainty regarding

\(^7\)See Hitsch (2006) for an application of Bayesian decision-theoretic sequential experimentation.
customers and their demand. The demand model represents the firm’s prior beliefs about the customer. On the supply side, we then define the firm’s information set about the customer. By combining the firm’s prior beliefs (the demand model) and its information (the customer data), we then define several decision-theoretic (or “data-based”) optimal pricing problems for the firm.

2.1 Demand

On the demand side, we start with a relatively agnostic, multi-product derivation of demand to illustrate the generalizability of our approach across a wide class of empirical demand settings. Consider a population of \(i = 1, \ldots, H \) customers. Each customer \(i \) chooses a consumption bundle \(q = (q_1, \ldots, q_J) \in \mathbb{R}_+^J \) to maximize her utility as follows:

\[
\bar{q} (p_i; \Psi_i, \varepsilon_i) = \arg\max_q \left\{ U (q; \Psi_i, \varepsilon_i) \right\} \quad \text{subject to} \quad p_i' q \leq I
\]

where \(U (q; \Psi_i, \varepsilon_i) \) is continuously differentiable, strictly quasi-concave and increasing in \(q \), \(I \) is a budget, \(p_i = (p_{i1}, \ldots, p_{iJ}) \in \mathbb{R}_+^J \) is the vector of prices charged to customer \(i \), \(\Psi_i \) represents customer \(i \)'s potentially observable “type” (or preferences) and \(\varepsilon_i \sim i.i.d. \). \(F_\varepsilon (\varepsilon) \) is an i.i.d. random vector of unobserved, random disturbances that are independent of \(\Psi_i \).

2.2 Firm Beliefs and Pricing

Suppose a firm knows the form of demand, \(1 \), and has prior beliefs about \(\Psi_i \) described by the density \(f_{\Psi} (\Psi_i) \). Let \(D \) denote the customer database collected by the firm. We assume the firm uses Bayes Rule to construct the data-based posterior belief about the customer’s type:

\[
f_{\Psi} (\Psi_i | D) = \frac{\ell (D | \Psi_i) f_{\Psi} (\Psi_i)}{\int \ell (D | \Psi_i) f_{\Psi} (\Psi_i) d\Psi_i}
\]

where \(\ell (D | \Psi_i) \) is the log-likelihood induced by the demand model, \(1 \) and the uncertainty in the random disturbances, \(\varepsilon_i \). Let \(F_{\Psi} (\Psi_i | D) \) denote the corresponding CDF of the posterior beliefs. Note that we assume the firm does not update its beliefs \(F_\varepsilon (\varepsilon) \) about the random disturbances, \(\varepsilon_i \).

Given the posterior \(F_{\Psi} (\Psi_i | D) \), the firm makes decision-theoretic, data-based pricing decisions. We assume the firm is risk neutral and faces unit costs \(c = (c_1, \ldots, c_J) \) for each of its products. For each customer \(i \), the firm anticipates the following posterior expected profits from charging prices \(p_i \):

\[
\pi (p_i | D) = (p_i - c)' \int \int \bar{q} (p; \Psi_i, \varepsilon) dF_\varepsilon (\varepsilon) dF_{\Psi} (\Psi_i | D).
\]

The firm’s optimal targeted prices for customer \(i \), \(p_i^* \), must therefore satisfy the following first-order
necessary conditions:

\[p_i^* = c - \left[\int \int \nabla \bar{q} (p_i^*; \Psi, \varepsilon) dF_\varepsilon (\varepsilon) dF_\Psi (\Psi_i|D) \right]^{-1} \int \int \bar{q} (p_i^*; \Psi, \varepsilon) dF_\varepsilon (\varepsilon) dF_\Psi (\Psi_i|D). \tag{4} \]

Using the terminology from the literature on price discrimination (e.g. Tirole, 1988; Pigou, 1920), we are technically implementing a form of \textit{third-degree price discrimination}. In our model, the firm can never learn \(\varepsilon_i \) even with repeated observations on the same customer (i.e. panel data). Therefore it will never be possible for the firm to extract all of the customer surplus even when all the uncertainty in \(\Psi_i \) is resolved. Unlike most practical implementations of third-degree price discrimination, however, our proposed approach will potentially allow for customer-specific, or “personalized” pricing (e.g. Shapiro and Varian, 1999; Shiller, 2015). In practice the pricing is not exactly personalized since customers with the same posterior expected \(\Psi_i \) would be charged the same price even if they differ along unobserved dimensions.

Suppose the firm uses a uniform pricing strategy across all its \(H \) customers. The posterior expected profit-maximizing uniform prices, \(p^* \), must satisfy the following first-order necessary conditions:

\[p^* = c - \left[\sum_i H \int \int \nabla \bar{q} (p_i^*; \Psi, \varepsilon) dF_\varepsilon (\varepsilon) dF_\Psi (\Psi_i|D) \right]^{-1} \sum_i H \int \int \bar{q} (p_i^*; \Psi, \varepsilon) dF_\varepsilon (\varepsilon) dF_\Psi (\Psi_i|D). \tag{5} \]

The integration of the profit function over the firm’s posterior distribution of beliefs adds computational complexity. Consider a simpler “plug-in” approach that instead maximizes the profits evaluated at point estimates of \(\Psi \). For instance, consider the plug-in estimate of profits evaluated at the point estimates \(\hat{\Psi}_i = E (\Psi_i|D) \):

\[\pi (p_i|\hat{\Psi}_i) = (p_i - c)' \bar{q} (p_i; \hat{\Psi}_i, \varepsilon). \tag{6} \]

with corresponding optimal targeted prices \(\tilde{p}_i \), where

\[\tilde{p}_i = c - [\nabla \bar{q} (\tilde{p}_i; \Psi, \varepsilon)]^{-1} \bar{q} (\tilde{p}_i; \Psi_i, \varepsilon). \tag{7} \]

The price recommendation in equation 7 is computationally simpler to determine than those in 4 because the former avoids the integration of the profit function over the entire posterior distribution. However, by Jensen’s inequality, we also know that in general the plug-in approach is biased:

\[\pi (p_i|\hat{\Psi}_i) \neq \pi (p_i|D). \]

This bias could mislead the manager’s assessment of uncertainty, leading to potentially sub-optimal pricing rules if \(\tilde{p}_i \neq p_i^* \). In our empirical case study below, we will analyze the extent of bias associated with the plug-in approach.
2.3 Welfare

By revealed preference, monopoly SPT weakly increases the firm’s profits. The optimal targeted prices in 4 could always accommodate charging every customer the uniform price in 5: \(p^*_i = p^* \), \(\forall i \). The impact of targeted prices on consumer surplus is less straightforward. The extant literature has relied on local conditions regarding the curvature of demand and other regularity conditions to determine whether a third-degree price discrimination will increase social surplus (e.g., Varian, 1989) and consumer surplus (e.g., Cowan, 2012). More recently, Bergemann, Brooks, and Morris (2015, page 921) show that, theoretically, third-degree price discrimination “can achieve every combination of consumer surplus and consumer surplus such that: (i) consumer surplus is nonnegative, (ii) producer surplus is at least as high as profits under the uniform monopoly price, and (iii) total surplus does not exceed the surplus generated by efficient trade.” Therefore, the impact of the personalized prices characterized by 4 on consumer surplus is ultimately an empirical question about the segments constructed with the database \(D \).

Consider the following numerical examples to illustrate how consumer surplus could increase under SPT. We assume throughout that marginal cost is 0. Suppose each consumer \(i \) has binary demand for a good (buy vs not buy):

\[
\text{Prob}(\text{buy}|p) = \frac{\exp(\alpha_i - \beta_i p)}{1 + \exp(\alpha_i - \beta_i p)}, i=1,\ldots,N.
\]

First, consider the case where there are \(N = 2 \) customers and the firm has resolved all the uncertainty in the demand parameters so that its posterior is degenerate at \(\alpha = (-0.9, 0.3)' \) and \(\beta = (-0.01, -0.011)' \). The uniform price is $120.03 and the personalized prices are ($113.12, $122.72). The shift from uniform to targeted pricing increases consumer surplus by $0.038.

Now suppose the firm faces posterior uncertainty in the demand parameters above. Let the uncertainty consist of additive Gaussian noise such that the firm’s posterior beliefs are \(N \left(\begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix}, \begin{bmatrix} 1.e - 4 & 0 \\ 0 & 1.e - 6 \end{bmatrix} \right) \) (to ensure that most of the posterior mass over \(\beta \) is negative we set the standard error to about \(\frac{1}{10^{4}} \) of the value of the mean). Now, the uniform price is $119.11 and the personalized prices are ($112.62, $124.20). Once again, the shift from uniform to targeted pricing increases consumer surplus, this time by $0.034. Both these numerical examples indicate how segmentation structures can generate an increase in consumer surplus under targeted pricing.

3 Empirical Approach

The execution of the firm’s data-based pricing strategies in equations 4 and 5 depends on the ability to construct an estimate of the posterior distribution \(F(\Psi_i|D) \). The extant literature on price targeting has developed non-linear panel data methods to estimate \(F(\Psi_i|D) \) using repeated purchase observations for each customer panelist (e.g. Rossi, McCulloch, and Allenby 1996; Chintagunta, Dubé, and Goh 2005). In practice, many firms may not have access to panel databases. In many business-to-business and e-
commerce settings, for instance, firms are more likely to have access to data for a broad cross-section of customers, but not with repeated observations. We consider a scenario with cross-sectional customer information that includes a detailed set of observable customer characteristics. Our approach consists of using these characteristics to approximate Ψ_i.

3.1 Approximating Individual Types

Suppose we observe data

$$D = \{(q_i, x_i, p_i)\}_{i=1}^{N}$$

for a sample of N customers, where $q_i \in \mathbb{R}_+^J$ is a vector of purchase quantities, $p_i \in \mathbb{R}_+^J$ are the prices and $x_i \in \mathcal{X} \subseteq \mathbb{R}^K$ is a vector of customer characteristics. We assume that x_i is high-dimensional and fully characterizes the preferences, Ψ_i. We consider the projection of the individual tastes, Ψ_i, onto x_i:

$$\Psi_i = \Psi(x_i; \Theta_0)$$

where Θ_0 is a vector of parameters. Note that for our pricing problem in section 2.2, above, we are not interested in the interpretation of the arguments of the function $\Psi(x_i; \Theta)$. So we could be agnostic with our specification. For instance, we could represent the function $\Psi(x_i; \Theta)$ as a series expansion:

$$\Psi(x_i; \Theta_0) = \sum_{s=1}^{\infty} \theta_{0s} \psi_s(x_i)$$

where $\{\psi_n(x_i)\}_{n \geq 0}$ is a set of orthonormal basis functions and $\Theta_{n0} = (\theta_1, \ldots, \theta_n)$ are the parameters for an expansion of degree n. We are implicitly assuming that some sparse subset of the vector x_i is informative about Ψ_i and that we possess some methods to identify this sparse subset.

We focus on applications where, potentially, $K \gg N$ and Θ_{n0} is relatively sparse. Even though our approach consists of a form of third-degree price discrimination, in practice, it can capture very rich patterns of heterogeneity. We assume the firm has a very high-dimensional direct signal about demand, x. For instance, if the dimension of x_i is $K = 30$, our approach would allow for as many as $2^K = 1,073,741,824$ distinct customer types and, hence, targeted prices.

3.2 Approximating $F(\Psi_i|D)$: The Weighted Likelihood Bootstrapped Lasso

With $K \gg N$, maximum likelihood is infeasible unless one has a theory to guide the choice of coefficients to include or exclude. Even for large K and $K \ll N$, maximum likelihood could potentially produce biased estimates due to over-fitting. The literature on regularized regression provides numerous algorithms for parameter selection with a high-dimensional parameter vector, Θ (e.g. Hastie, Tibshirani, and Fried-

8Ideal panel data would allow the firm estimate types using fixed effects estimators but there would remain the issue of pricing to new customers which is our focus here.
man (2009)). Most of this literature is geared towards prediction. Our application requires us to quantify the uncertainty around our estimated coefficient vector, $\hat{\Omega}$, and around various economic outcomes such as price elasticities, firm profits and customer value, to implement decision-theoretic optimized pricing structures. In addition, the approach must be fast enough for real-time demand forecasting and price recommendations.

To address these practicality concerns, we use an idea from Taddy, Gardner, Chen, and Draper (2016) to approximate the posterior $F_\Psi(\Psi|D)$ using a variant of the Bayesian Bootstrap (e.g. Rubin (1981); Newton and Raftery (1994); Chamberlain and Imbens (2003); Efron (2012)). The approach generates both a point estimate of Ψ and an approximate sample from the full posterior distribution $F_\Psi(\Psi|D)$. The approach provides an approximation of the posterior distribution required for the decision-theoretic pricing problem. In addition, the approach does not require large-sample approximations. Alternative approaches using asymptotic approximations have been developed but are cumbersome to implement and not easily scalable to the types of scenarios discussed in this paper.

3.2.1 The Bayesian Lasso

We start with our regularization procedure. Following Tibshirani (1996), suppose each model parameter, Θ_j, is assigned an i.i.d. Laplace prior with scale $\tau > 0$: $\Theta_j \sim La(\tau)$ where $\tau = N\lambda$. We can write the the posterior distribution of Θ analytically:

$$F_{\Theta}(\Theta|D) \propto \ell(D|\Theta) - \sum_{j=1}^{J} \tau_j |\Theta_j|$$

(8)

where $\ell(D|\Theta)$ is the log-likelihood of the demand data as before. This framework is termed the Bayesian Lasso (Park and Casella 2008) on account of the Bayesian interpretation of the Lasso penalized objective function. The MAP (maximum a posteriori) estimator that optimizes (8) can be shown to be equivalent to the Lasso regression:

$$\Theta^{\text{Lasso}} = \arg \max_{\Theta \in \mathbb{R}^J} \left\{ \ell(D|\Theta) - N\lambda \sum_{j=1}^{J} |\Theta_j| \right\}.$$

(9)

In Appendix A, we describe the path-of-one-step estimators procedure used to select λ and generate estimates of Θ and its sparsity structure (see also Taddy (2015b)).

3.2.2 Quantifying Uncertainty

While the MAP estimator generates a point estimate of the posterior mode it does not offer a simple way to calibrate the uncertainty in these estimates. Park and Casella (2008) propose a Gibbs sampler for a fully Bayesian implementation of the Lasso, but the approach would not scale well to settings with
very large-dimensional x_i. Instead, we simulate the approximate posterior using a Weighted Likelihood Bootstrap (WLB) of the Lasso problem. The Weighted Likelihood Bootstrap (Newton and Raftery (1994)) is an extension of the Bayesian Bootstrap originally proposed by Rubin (1981). As discussed in Efron (2012), the BB and the WLB are computationally simple alternatives to MCMC approaches. In our context, the approach is scalable to settings with a large-dimensional parameter space, and is relatively fast, making customer classification and price discrimination practical to implement in real time.

Conceptually, the approach consists of drawing weights associated with the observed data sample and solving a weighted version of (9). The application of Lasso to each replication ensures a sparsity structure that facilitates the storage of the draws in memory. This is a promising approach to approximating uncertainty in complex econometric models (see e.g. Chamberlain and Imbens (2003)).

We construct a novel WLB type procedure to derive the posterior distribution of $\hat{\Theta}|_{\lambda^*}$, $F(\Theta)$. Consider our data sample $D = (D_1, ..., D_N)$. We assume that the data-generating process for D is discrete with support points $(\zeta_1, ..., \zeta_L)$ and corresponding probabilities $\phi = (\phi_1, ..., \phi_L): Pr(D_i = \zeta_l) = \phi_l$. We can allow L to be arbitrarily large to allow for flexibility in this representation. We assume the following Dirichlet prior on the probabilities

$$\phi \sim Dir(a) \propto \prod_{l=1}^{L} \phi_l^{a_l-1}, \quad a_l > 0.$$

Following the convention in the literature, we use the improper prior distribution with $a_l \to 0$. This assumption implies that any support points, ζ_l, not observed in the data will have $\phi_l = 0$ with posterior probability one: $Pr(\phi_l = 0) = 1, \forall \zeta_l \notin D$. This prior is equivalent to using the following independent exponential prior: $V_l \sim Exp(1)$ where $V_l = \sum_{k=1}^{L} \phi_k \phi_l$.

We can now write the posterior distribution of observing a given data point, D as follows

$$f(D) = \sum_{i=1}^{N} V_i \mathbb{I}_{\{D = \zeta_i\}}, \quad V_i \sim i.i.d. Exp(1).$$

The algorithm is implemented as follows. For each of the bootstrap replications $b = 1, ..., B$:

1. Draw weights: $\{V_i^b\}_{i=1}^{N} \sim Exp(1_N)$
2. Run the Lasso

$$\hat{\Theta}^b|_{\lambda} = \arg\min_{\Theta \in \mathbb{R}^d} \left\{ \ell^b(\Theta) + N\lambda \sum_{j=1}^{J} |\Theta_j| \right\}$$

9 Challenges include drawing from a large-dimensional distribution, assessing convergence of the MCMC sampler, tuning the algorithm and storing a non-sparse simulated chain in memory.

10 To be clear, our implementation only uses the first stage of the WLB procedure described in Newton and Raftery (1994) and does not implement the Sampling-Importance-Resampling (SIR) stage. Newton and Raftery (1994) show that the first stage is sufficient to obtain a first order approximation of the posterior. We could also describe our implementation simply as a variant of the Bayesian Bootstrap but we chose to call it the WLB to acknowledge the contribution of Newton and Raftery (1994) who first outlined the possibility of recasting the Rubin (1981) framework of using the weighted likelihoods.
where \(\ell^b(D|\Theta) = \sum_{i=1}^N V_i^b \ell(D_i|\Theta) \), using the algorithm (19) in Appendix A

(a) Construct the regularization path, \(\{ \hat{\Theta}^b|_\lambda \}^{\lambda_T}_{\lambda=\lambda_1} \)

(b) Use k-fold-cross validation to determine the optimal penalty, \(\lambda^\ast \)

3. Retain \(\hat{\Theta}^b \equiv \hat{\Theta}^b|_{\lambda^\ast} \).

We can then use the bootstrap draws, \(\{ \hat{\Theta}^b \}^B_{b=1} \), to simulate the posterior of interest, \(F_{\Psi}(\Psi_i) \). We construct draws \(\{ \Psi^b_i \}^B_{b=1} \), where \(\Psi^b_i = \Psi(x_i; \Theta^b) \), which can be used to simulate the posterior \(F_{\Psi}(\Psi_i) \). We will use this sample to quantify the uncertainty associated with various functions of \(\Psi_i \) such as profits and demand elasticities.

Discussion

One useful interpretation of our proposed model would have us consider the Lasso penalization \((\lambda \sum_{j=1}^J |\Theta_j|) \) as well as the Dirichlet weighting \((f(D)) \) as components of our overall prior. Under this interpretation, the proposed sampling algorithm obtains approximate samples, \(\{ \hat{\Theta}^b \}^B_{b=1} \), from the posterior of interest. Accordingly, the framework is coherent from a Bayesian perspective in spite of the non-standard prior.

Our proposed algorithm deals with two sources of uncertainty simultaneously. In particular, by repeatedly constructing weighted Lasso type estimators we are in effect integrating over the model space spanned by the set of covariates. As such, our draws can also be used to construct posterior probabilities associated with the set of covariates retained in the model. At the same time, the sampling procedure also accounts for usual parameter uncertainty.

The extant literature has often followed a two-step approach based on the oracle property of the Lasso (Fan and Li, 2001; Zou, 2006). When the implementation of the LASSO is an oracle procedure, it will select the correct sparsity structure for the model and will possess the optimal estimation rate. Accordingly, in a first step we could use a Lasso to select the relevant model (i.e. the subset of relevant \(x \)) and in a second step we could obtain parameter estimates after conditioning on this subset. We term this procedure Post-Lasso-MLE and use it as a benchmark in later sections. The post-Lasso-MLE is somewhat of a straw-man since several authors have already found poor small-sample properties for such post-regularization estimators (e.g. Leeb and Potscher, 2008) that, effectively, ignore the model uncertainty by placing a degenerate prior with infinite mass on the model selected by the first stage Lasso.

4 Scalable Price Targeting at Ziprecruiter.com

We conduct a case study of targeted pricing at Ziprecruiter.com to illustrate the implementation of the WLB estimator, the application to SPT and to validate our proposed approximation of the posterior of \(\Theta \). The case study involves a sequence of two randomized controlled price experiment using a sample of
Ziprecruiter’s prospective enterprise customers. The data from the first experiment are used to train our demand model and to produce price recommendations. A second experiment is then conducted using a new sample of Ziprecruiter’s prospective enterprise customers to validate our recommended pricing structures as well as our inference procedure.

Ziprecruiter.com is an online firm that specializes in matching jobseekers to potential employees. The firm caters to a variety of potential employers across various industries that subscribe to Ziprecruiter.com to gain access to a stream of resumes of matched and qualified candidates from which they might be able to recruit. These firms pay a monthly subscription rate that they can cancel at anytime. Job applicants can use the Ziprecruiter.com platform for free. In a typical month in 2015, Ziprecruiter hosted job postings for over 40,000 registered paying firms.

Our analysis focuses on prospective customers who have reached the paywall at ziprecruiter.com for the first time. Amongst all prospective customers, Ziprecruiter’s largest segment consists of the “starters,” typically small firms with less than 50 employees, looking to fill between 1 and 3 jobs. Since starters represent nearly 50% of the customer base, we focus our attention on prospective starter firms. Another advantage of focusing on small customers is that they are unlikely to create externalities that would warrant lower pricing. For instance, Ziprecruiter might want to target low prices to certain very large recruiters in spite of high willingness-to-pay to create indirect network effects that stimulate demand from the set of applicants submitting their resumes. At the beginning of this project the base rate for a “starter” firm looking for candidates was $99/month.

Each prospective new firm that registers for Ziprecruiter’s services navigates a series of pages on the ziprecruiter.com website until they reach the paywall. At the paywall, they must use a credit card to pay the subscription fee. Immediately before the request for credit card information, a firm is asked to input details of the type of jobs they wish to fill as well as characteristics describing the firm itself. During the registration process, the customer reports several characteristics of its business and the specific job posting. Table 2 summarizes the variables we retained for our analysis from the much larger set of registration features. While the set looks small, it generates 133 variables11. After completing this registration process, the customer reaches a paywall and receives a price quote. Ziprecruiter currently uses a non-linear price schedule based on the number of months of service for which a new customer is willing to pre-commit to service. The first row of Table 1 reports Ziprecruiter’s regular pricing schedule used prior to the experimental period.

4.1 Empirical Model of Demand

In our case study of prospective customers that have reached Ziprecruiter’s paywall, demand consists of a binary decision $y_i = 1$ (if purchase) or 0 (if do not purchase). A customer i obtains the following

11The firm used marginal regressions to select these variables for the demand analysis
incremental utility from purchasing versus not purchasing

\[\Delta U_i = \alpha_i + \beta_i p_i + \varepsilon_i \]

\[= \alpha (x_i; \theta_\alpha) + \beta (x_i; \theta_\beta) p_i + \varepsilon_i \]

(10)

where \(\alpha (x_i; \theta_\alpha) \) is an intercept and \(\beta (x_i; \theta_\beta) \) is a slope associated with the price, \(p_i \). To conform with our notation in section 2, we re-write equation 10 as follows

\[\Delta U_i = \tilde{p}_i' \Psi_i + \varepsilon_i \]

(11)

where \(\Psi_i = (\alpha (x_i; \theta_\alpha), \beta (x_i; \theta_\beta))' \) and \(\tilde{p}_i = (1 p_i)' \).

A customer \(i \) has the following probability of buying conditional on \(x_i \)

\[\mathbb{P}(p_i; \Psi_i) = \int 1 (\Delta U_i > 0) dF_\varepsilon (\varepsilon_i) \]

\[= 1 - F_\varepsilon (-\tilde{p}_i' \Psi_i) . \]

For our analysis below, we use a linear specification of the functions \(\alpha \) and \(\beta \)

\[\alpha (x_i; \theta_\alpha) = x_i' \theta_\alpha \]

\[\beta (x_i; \theta_\beta) = x_i' \theta_\beta. \]

However, in principle, one could use any arbitrary function of \(x_i \). We also assume that the random utility disturbance \(\varepsilon_i \) is distributed i.i.d. logistic with scale parameter 1 and location parameter 0. These assumptions give rise to the standard binary Logit choice probability

\[\mathbb{P}(p_i; \Psi_i) = \frac{\exp (\tilde{p}_i' \Psi_i)}{1 + \exp (\tilde{p}_i' \Psi_i)}. \]

(12)

Note that for our demand specification, the treatment effect of price on choice is continuous. In most data-mining applications, variables are treated as categorical. Our structural approach, which will involve optimizing the price on the supply side, motivates our use of a smooth and continuous price effect.

4.2 Pricing

Suppose Ziprecruiter collects a database for a sample of \(N \) customers, \(D = (D_1, ..., D_N) \), where \(D_i = (y_i, x_i, p_i) \). Suppose also that Ziprecruiter uses the WLB approach described in section 3.2 to estimate the posterior beliefs about the demand parameters, \(F_{\Psi} (\Psi_i | D) \). For SPT, we use the following contraction mapping to enable the real-time calculation of customer-specific prices when a new customer reaches the
We start with an initial guess \(p_0 \) and then iterate the following sequence

\[
p_{i}^{k+1} = c - \int \frac{P(p_{i}^{k}; \Psi_i) F_{\Psi}(\Psi_i|D)}{\int \frac{\partial P(p_{i}^{k}; \Psi_i)}{\partial p} F_{\Psi}(\Psi_i|D)} d\Psi_i
\]

until \(|p_{i}^{k+1} - p_{i}^{k}| < 1.6 \times 10^{-6} \). We simulate the integrals over the posterior, \(F_{\Psi}(\Psi_i|D) \) using our WLB draws \(\{\Psi_{b,i}\}_{b=1}^{B} \). Using Ziprecruiter’s online system, the evaluation of a typical prospective customer’s optimal targeted price takes approximately 18.6 microseconds using (13) above. Therefore, the approach is not only fast enough for real-time implementation, it also obviates the need for integrating optimization software with Ziprecruiter’s paywall.

4.3 Experiment One

The first phase of the case study consists of a price experiment to generate choice data with exogenous price variation. The experiment was conducted between August 28, 2015 and September 29, 2015. During this period, 7,867 unique prospective customers reached Ziprecruiter’s paywall. Each prospective customer was randomly assigned to one of ten experimental pricing cells. The control cell consisted of Ziprecruiter’s standard pricing schedule, row one of Table 1. To construct our test cells, we changed the monthly rate by some percentage amount relative to the control cell. The corresponding quarterly and annual rates were computed by using the same percentage deviation from the control cell. Following Ziprecruiter’s practices, we then rounded up each rate to the nearest $9. The nine test cells are summarized in rows two to ten of Table 1.

4.3.1 Model-free analysis

The results from the first stage experiment appear in Figure 1. As expected, we observe a statistically significant, monotonically downward-sloping pattern of demand. Demand is considerably less price elastic than Ziprecruiter’s current pricing would imply. A 100% increase in the price from $99 to $199 generates only a 25% decline in conversions. Given that most of Ziprecruiter’s services are automated and it currently has enough capacity to increase its current customer base by an arbitrary amount, the marginal cost per customer is close to $0. This means that Ziprecruiter is likely under-pricing its service.

In practice, many firms are reluctant to run field experiments because of the opportunity costs of testing a sub-optimal price (Anderson and Simester (2011)). Figure 2 plots Ziprecruiter’s monthly revenues per customer at each tested price level. Interestingly, the experiment itself generated incremental revenues for Ziprecruiter. By running the experiment, Ziprecruiter increased the average monthly revenue per prospective customer by 14% relative to what it would have earned had it charged everyone $12.

12 The contraction-mapping typically converged in less than 20 milliseconds and obviated the need for optimization software on Ziprecruiter’s website. This practical aspect played an important role for implementation since Ziprecruiter did not have optimization software integrated with its customer paywall.
$99. The incremental profitability of the higher tested price levels more than offset the high conversion at extremely small test price levels that are well below the control level of $99.

Figure 2 visualizes Ziprecruiter’s pricing incentives. Along our grid of tested price levels, the average monthly revenue per prospective customer is maximized $399. Although, once we take into account statistical uncertainty, we cannot rule out that the revenue-maximizing price lies somewhere between $249 and $399. Ziprecruiter could increase its monthly revenues from new customers by raising its prices by more than 100%. However, the experiment alone may be insufficient to help Ziprecruiter determine the optimal price increase. A model is ultimately needed to design the optimized pricing structures.

4.3.2 Demand estimation

The second phase of the case study consists of using the choice data from the field experiment to estimate the Logit demand model using our WLB estimator discussed in section 4.113. The price experiment avoids the usual concerns about price endogeneity that plague the demand estimation literature. During the registration stage, our prospective customers provided responses on 12 categorical variables. We break the different levels of these variables into 133 dummy variables, \(x_i \). We include the main effects of these 133 dummy variables in the intercepts of our model, \(\alpha \), and the 133 interaction effects with price in the slopes, \(\beta \).14 For comparison, we also report results for the MLE estimates of a model including all 266 covariates, which we expect would suffer from over-fitting. In addition, we report results from the unweighted Lasso penalized regression estimates with optimal penalty selected by cross-validation.15.

In Table 3, we report the Bayesian Information Criterion (BIC) associated with the MLE estimator that includes all 266 coefficients and with the Lasso estimator. The BIC includes a penalty for the number of model parameters. We also report the range of BIC values across the 100 bootstrap replications of the Lasso estimator used for constructing our Bayesian Bootstrap estimate of the posterior, \(F(\Theta) \). As expected, the switch from MLE to Lasso improves the in-sample BIC considerably: 10,018 versus 8,366. This improvement suggests over-fitting with the MLE. Across our 100 bootstrap replications, our WLB estimator produces a range of BIC values from 7,805 to 8,940.

To see the important role of both variable selection and model uncertainty, note that across the 100 bootstrap replications, we retain as few as 58 to as many as 188 variables in the active set. 172 of the

13We use the gamlr function in the R package “gamlr” to implement the logistic Lasso at each iteration of our Bayesian Bootstrap. We simulate the weighted Lasso procedure as follows. For each iteration, we draw a vector of weights for each observation in our sample. We then draw a subsample by drawing with replacement from the original sample using our weights. The logistic Lasso is then applied to this new subsample.

14These variables were chosen from larger set of over 120,000 covariates (including interactions) available to the firm. This particular subset was relevant to the subset of customers involved in the experiment. The methods proposed herein scale well with larger sets - we have implemented a version for the firm with the complete set of covariates. Others have had success with the general approach, e.g. Taddy (2015a) successfully implements the approach in a distributed computing environment for applications with thousands of potential covariates.

15The Lasso algorithm can easily accommodate much larger dimensions in a distributed computing environment. For instance, Taddy (2015a) presents a case study with 11,940 attribute dimensions.
parameters have more than a 50% posterior probability of being non-zero. If we look at the 6 parameters with a more than 90% posterior probability of being non-zero, these include diverse factors such as “price”, “job in British Columbia”, “company type: staffing agency,” “employment type: full_time” and “is resume required.” There is no a priori “obvious” candidate types of variables that emerge suggesting that the variable selection is important.

As an additional verification, we also examine the out-of-sample fit of each of our estimators. We randomly sample 90% of the firms (with replacement) from the original 7,866 as a training sample. The remaining 10% of firms are held out as a prediction sample. The second column of Table 3 reports the out-of-sample fit for each estimator. Once again, the entire range of BIC values from the WLB is below the BIC of the MLE. These findings are consistent with our concern that MLE may suffer from over-fitting, generating potentially less reliable estimates of the firm’s posterior uncertainty.

4.3.3 Price Optimization

We now use our demand estimates to calibrate Ziprecruiter’s decision-theoretic price optimization problem. Since we do not impose any restrictions on the range of parameter values, we cannot rule out the possibility of positive price coefficients or excessively large willingness-to-pay, two issues that could interfere with the optimization. During the price optimization procedures, we drop any draws for which \(\hat{\beta}(x) \geq 0 \) or \(\hat{\alpha}(x) \hat{\beta}(x) \geq 2000^{16} \). A summary of the various pricing scenarios analyzed is provided in Table 4.

We begin with an analysis of optimal uniform pricing. At the current price of $99, the posterior expected own-price elasticity of demand is only -0.36 with a 90% posterior credibility interval of (-0.43,-0.3). Consistent with our model-free analysis above, Ziprecruiter.com is pricing on the inelastic region of demand. Optimal pricing for an information good like Ziprecruiter would be set at the unit-elastic point of demand. Recall from Figure 2 that the revenue-maximizing price appears to lie between $249 and $399. We can rule out $399 as being too high since there is close to a 100% posterior probability that the own-elasticity is well above -1 at that point. At a price of $249, the posterior expected own-price elasticity is -0.91 and the 90% posterior credibility interval is (-1.09,-0.74). Therefore, we cannot rule out the probability that this price maximizes expected revenues. More formally, the optimized uniform price, as defined in equation 5, is $280.57. Figure 4 displays Ziprecruiter’s posterior expected revenue function under uniform pricing. The plot visualizes that Ziprecruiter is currently underpricing its service by nearly 63%, when charging $99 instead of $280.57.

An important component of the decision-theoretic approach consists of the integration of profits over the firm’s posterior distribution \(F_\Psi(\Psi|D) \). As explained in section 2.2, a simpler plug-in approach will be biased towards lower profitability, possibly leading to under-pricing. The plug-in approach produces a recommended price of $241. If we compute the posterior profits at a price of $241, the range is not very different from the range in posterior profits at our WLB-based optimized price of $281. There is nevertheless a 96% posterior probability that $281 is more profitable than $241.

\[^{16}\text{In total, we only drop 6\% of the posterior draws across } \Psi_i^b \text{ for all } i = 1,\ldots,N \text{ and } b = 1,\ldots,B.\]
In fact, Ziprecruiter subsequently decided to implement a uniform price of $249 instead of $281. Taking into account the parameter uncertainty, there is a 96% probability that the $218 price is more profitable than the $249 price. But, Table 4 indicates that the two prices produce very similar ranges of posterior profits at the 95% credibility level. Ziprecruiter concluded that $249 was a more conservative recommendation.

We now explore targeted pricing. Figure 3 summarizes the estimates of heterogeneity. In panel (a), we report the distribution of customers’ posterior mean price sensitivities

\[\hat{\beta}_i = \frac{1}{R} \sum_{r=1}^{R} x_i \hat{\beta}^r. \]

The dispersion across customers suggests a potential opportunity for Ziprecruiter to price discriminate. In panel (b), we report the distribution of customers’ posterior mean surplus when Ziprecruiter prices its monthly service at $99:

\[\hat{C}_S_i = \frac{1}{R} \sum_{r=1}^{R} \log \left(1 + \exp \left(x_i \hat{\alpha}^r - 99 \times x_i \hat{\beta}^r \right) \right). \]

The measure of surplus measures the dollar value created to a customer by the availability of Ziprecruiter’s service (versus only the no-purchase option). Panel (b) illustrates the wide dispersion in value customers derive from the availability of Ziprecruiter when it costs $99. The 2.5th percentile, median and 97.5th percentile customers derive $20.49, $74.84 and $280.95 in surplus respectively. The magnitudes and degree of dispersion in value indicate an opportunity for Ziprecruiter to target different prices across customers reflecting differences in the value they derive from the service.

Figure 5 summarizes the targeted pricing results. Ziprecruiter wanted to ensure that the targeted prices seemed natural to customers and also did not create a back-lash. Hence, they rounded all the targeted prices down to the closest $9. For instance, a targeted price of $251 would be rounded down to $249. They also capped the prices at $499. We use our demand estimates to assess the predicted performance of this scheme for our September 2015 customer sample. We observe considerable dispersion in the targeted prices, ranging from as low as $119 to as high as $499. The upper bound of $499 binds for 455 of our customers, or 5% of the sample. All of the targeted prices are strictly larger than the $99 baseline price. Interestingly, the mean targeted price, $272.95, is almost identical to the optimized uniform price, $280.57. So, on average, customers are paying slightly less under targeted pricing than under uniform pricing. Figure 6 plots the relationship between the estimated price sensitivity of each customer and the corresponding targeted price. As expected, we observe a strong positive correlation between the targeted prices are the price sensitivities. In Table 4, we compare the profits for the Implemented Tar-

17For each customer, we drop positive draws, i.e. we do not average over draws \(r \) where \(x_i \hat{\beta}^r < 0 \). This trimming is important for the pricing analysis since positive support of the price sensitivity will lead to unbounded pricing. Across our entire sample of customers, we end up dropping only 4.5% of the draws. Without trimming, only 15 of our 7,867 customers would have a positive posterior mean price sensitivity (about 0.19% of our sample).
geting scheme and the theoretical Targeting scheme without any rounding or capping. While there is a 95% posterior probability that the unrestricted Targeted prices are more profitable than the Implemented Targeted prices, the expected profit difference is only about 4%. Ziprecruiter concluded that this small difference justified the simplicity of the implemented scheme.

Once again, we can compare our decision-theoretic price recommendations to a plug-in approach. Figure 7 displays the density of targeted prices using our decision-theoretic approach and the WLB characterization of uncertainty. The figure also displays the targeted prices using the plug-in approach. As expected, the distribution of prices is shifted to the left using the plug-in estimator, which (by Jensen’s Inequality) under-estimates the posterior profitability at any given price. There is a 99% posterior probability that our WLB-based targeted prices generate higher overall profits than the plug-in based targeted prices. In spite of this bias, all of the prices are strictly greater than $99.

We now compare the expected posterior profits per customer from our various pricing structures. The posterior mean profits from the implemented uniform price of $249 and the implemented targeted prices are 56% higher and 71% higher respectively than the profits under the control monthly price level of $99. Taking into account our posterior statistical uncertainty around the parameter estimates, there is a more than 99% posterior probability that baseline profits are lower than uniform and targeted profits, respectively. In the next section, we discuss the follow-up experiment to test the relative profitability of these three pricing structures.

Based on conversations with Ziprecruiter management, we also do not expect any competitive response from other platforms. Since our recommendations involve raising prices, mitigating any concerns about triggering a price war. Furthermore, pricing is not transparent in this industry since prices are not posted in a public manner. At Ziprecruiter, for instance, a firm must complete the registration process to obtain a price quote. Since our targeting is based on a complex array of customer characteristics, it also seems unlikely that our SPT structure would lead to unintended strategic behavior by Ziprecruiter’s customers (e.g., (Fudenberg and Villas-Boas, 2006; Chen, Li, and Sun, 2015)). Moreover, customers need to report their registration characteristics truthfully to ensure that Ziprecruiter’s matching algorithm identifies the most appropriate resumés for recruiting purposes.

4.3.4 Lifetime Value of the Customer

Our analysis of the September 2015 sample was based on myopic pricing geared towards instantaneous profits. A potential concern is that raising the price not only lowers current conversion, it may also lower long-term retention, thereby lowering long-term profitability. We now consider the a longer four-month horizon to accommodate the renewal behavior for each starter firm up to the end of December 2015.

Figure 8 reports the expected net present value of profits in September over a 4-month horizon. The top panel assumes a discount factor of $\delta = 0$ and corresponds to our static analysis from the previous subsection. The bottom panel assumes a discount factor of $\delta = 0.996$ and assumes a monthly interest rate of 0.4% (or an annual interest rate of 5%). While the net present value of profits is much higher in each
cell under $\delta = 0.996$, our ranking of prices is quite similar. To understand this finding, it is helpful to look at both the initial conversion rate along with the retention rates. In Table 5, we report the acquisition and retention rates for each of the experimental price cells. As expected, conversion and retention both fall in the higher-price cells. However, survival rates are still low enough that the profit implications in the first month overwhelm the expected future profits from surviving customers. As a result, the optimal Uniform price does not look much different from the myopic (one-month-horizon) case.

4.3.5 Customer Surplus and the Role of Information

In the previous section, we clearly see that targeting increases the firm’s profits. We now turn to the demand side. Using the surplus measure (14), the posterior expected mean customer surplus across customers under the optimal uniform price of $281 is $67.70. Under targeting, customer surplus falls 4.6% to $55.07, whereas under the implemented targeting rule, customer surplus falls only 1.5% to $56.82. Even though customers are slightly worse off, 61% of the customers would be charged a lower price under targeting and 64% would be charged a lower price under the implemented targeting rule. Thus, the majority of customers benefit from the proposed SPT algorithm.

We now explore the types of customers that benefit from targeted pricing. While our experiment was not designed to recover the causal effect of individual firm features, it is nevertheless interesting to analyze the role of feature information. If we correlate the targeted prices for each firm with their features, we find that the job benefit variables are the most highly correlated. For instance, indicating medical benefits has a correlation of 0.5 with the targeted price levels. Company size is also strongly correlated with prices (small companies have a correlation of -0.26). However, the correlational value of information can be clouded by the fact that certain features, such as state and company type, comprise many underlying dummy variables (e.g., 62 state/province dummy variables) that collectively may be important drivers of prices.

As an exploratory exercise, we classify each of the feature variables into $g = 1, \ldots, 5$ groups: state, benefits, job category, employment type, and company type. Let \mathcal{X} represent the complete feature set and let $f(p^*|\mathcal{X})$ denote the density of targeted prices based on information set \mathcal{X}_g. To assess the targetable information in each group g, we drop all the corresponding features and rerun the WLB algorithm and the targeted pricing calculations to derive $f(p^*|\mathcal{X}_{-g})$ where $-g$ denotes the exclusion of feature group g. We then compute the Kullback-Leibler divergence associated with the distribution of targeted prices with a given product group excluded relative to the distribution of targeted prices using all the features:

$$KLD(\mathcal{X}||\mathcal{X}_{-g}) = \int f(p|\mathcal{X}) \log \left(\frac{f(p|\mathcal{X})}{f(p|\mathcal{X}_{-g})} \right).$$

We effectively treat $f(p^*|\mathcal{X}_g)$ as our target distribution and then $KLD(\mathcal{X}||\mathcal{X}_{-g})$ measures the entropy associated with approximating $f(p^*|\mathcal{X})$ with $f(p^*|\mathcal{X}_{-g})$, the distribution of prices based on the narrower information set that excludes the feature group g. Ranking our feature groups by divergence, job category ($KLD(\mathcal{X}||\mathcal{X}_{-\{job\ category\}}) = 0.25$) is the most informative group, followed
by state \((KLD (\mathcal{X} \mid \mathcal{X}_{-\text{state}}) = 0.20)\), benefits \((KLD (\mathcal{X} \mid \mathcal{X}_{-\text{benefits}}) = 0.08)\), employment type \((KLD (\mathcal{X} \mid \mathcal{X}_{-\text{employment type}}) = 0.02)\) and company type \((KLD (D \mid D_{-\{\text{company type}\}}) = 0.02)\). Since company type and state each require only a single categorical question during the registration process on Ziprecruiter’s website, these information sources are more efficient to elicit from prospective customers. In sum, individual features like company size and benefits are the most correlated with targeted prices. However, aggregating information into groups, the distribution of targeted prices seems most influenced by broad job categories and geographic locations.

We can now address the public policy concern regarding the potential harm to customers from targeting based on their observable features. All of the targeted pricing schemes based on limited information sets that exclude groups of customer features lead to lower customer surplus than uniform pricing. In comparison with the full feature set, the expected surplus is slightly higher when the firm excludes either “benefits” or “company type” from its set of targetable features ($55.32 and $55.18 respectively), though the posterior probability of increase is only 75% and 72% respectively. In contrast, the targeted pricing schemes that exclude the feature groups “state,” “job category” or “employment type” each generate lower expected customer surplus than the full feature set ($52.58, $54.01 and $54.42 respectively) with respective posterior probabilities of decline of 100%, 97% and 100% respectively. The loss in surplus from excluding state from the targetable set of features lowers customer surplus by almost as much as switching from uniform pricing to targeting with all the feature variables. These findings are broadly consistent with the characterization theorems in Bergemann, Brooks, and Morris (2015), which show that consumer surplus can rise or fall under different segmentation structures. Moreover, the findings suggest that over-regulation of the set of customer features a firm can use for targeted pricing could potentially harm customers.

4.3.6 Degree of Targetability

Our proposed targeting scheme is imperfect in the sense that we cannot estimate a prospective customer’s logistically-distributed idiosyncratic utility shock, \(\varepsilon\), as in equation 10. Therefore, our targeted pricing structure, while granular, is a form of third-degree price discrimination. Any set of customers with the same observable traits, \(x\), would all be targeted the same price. We now assess our targeting scheme by comparing it to the theoretical benchmark of perfect price discrimination, or first-degree price discrimination.

Suppose the firm was able to estimate each customer’s utility shock, \(\varepsilon\). Customer \(i\)’s maximum willingness-to-pay (WTP) for Ziprecruiter service is

\[
WTP_i = \frac{(\alpha (x_i) + \varepsilon)}{\beta (x_i)}.
\]
Under perfect price discrimination, the firm would set the targeted price

\[p_{i}^{PD} = \max(WTP_i, 0) \]

and customer \(i \) would deterministically buy as long as \(WTP_i \geq 0 \).

Accounting for the fact that the researcher (unlike the firm in this case) does not observe \(\epsilon \), the expected probability that a customer with preferences \((\alpha, \beta)\) would purchase at the perfect price discrimination price is

\[
Pr(\text{buy}|p = p_{i}^{PD} \alpha, \beta) = Pr(WTP \geq 0) = 1 - \frac{1}{1 + \exp(\alpha)}.
\]

The corresponding expected profit from this customer is

\[
\pi(p_{i}^{PD}|\alpha, \beta) = E(WTP|WTP \geq 0, \alpha, \beta) \cdot Pr(\text{buy}|p = p_{i}^{PD} \alpha, \beta).
\]

In Appendix B, we show that

\[
E(WTP|WTP > 0, \alpha, \beta) = \frac{\alpha}{\beta} + \frac{1}{\beta} \left(-\alpha + \frac{[1+\exp(\alpha)]\ln[1+\exp(\alpha)]}{\exp(\alpha)} \right).
\]

We can now assess how well our proposed targeting scheme performs relative to the theoretical benchmark of perfect price discrimination. In the final row of Table 4, we report the results if the firm was able to price discriminate. The expected conversion, equation 16, increases considerably, more than double the rate under targeted pricing, since every customer with a positive \(WTP \) would buy. The expected profit per lead, equation 17, also increases considerably to $98.58. Nevertheless, our proposed targeting scheme is expected to generate 46% of the potential profits under perfect price discrimination. There is a 90% posterior probability that our proposed targeting structure could generate as much as 55% of the profits under perfect price discrimination. These profit differences are visualized in Figure 9 where we plot the posterior CDF of profits in our control, Implemented Uniform and Implemented Targeting pricing structures respectively. In sum, targeting on the observed customer features at the registration stage explain almost half of the customer willingness-to-pay according to our model estimates.

4.4 Experiment Two

The third phase consisted of a second price experiment to validate the price recommendations out of sample and to validate the approximate inference procedure. The experiment was conducted between October 27, 2015 and November 17, 2015 using a new sample of prospective customers that arrived to the ziprecruiter.com paywall during this period and had not previously paid for the firm’s services. Each prospective customer during this period was randomly assigned to one of the three following pricing structures:
1. Control pricing – $99 (25%)
2. Uniform pricing – $249 (25%)
3. Targeted pricing (50%).

We over-sampled the targeted pricing cell to obtain more precision given the dispersion in prices charged across customers. For our optimal uniform pricing cell, all customers were charged a monthly rate of $249. This price was chosen given the fact that (i) the profit implications relative to the optimum were minimal and (ii) the management believed that $249 would be more palatable on account of similar prices being used elsewhere in the industry. For our targeted pricing cell, customers were targeted a price based on the values of \(x_i \) they reported during the registration stage. As explained in the previous section, we then rounded the targeted price down to the nearest $9, discretizing the targeted prices into $10 buckets ranging from $119 to $499. For instance, a customer with a targeted price of $183 would be charged $179.

During this period, 12,381 prospective customers reached Ziprecruiter’s paywall. Of these prospec-
tives, 5,315 were starters and the remainder were larger firms. Amongst our starters in the November 2015 study, 26% were assigned to control pricing, 27% to the uniform pricing and 47% to the targeted pricing. In the targeting cell, the lowest targeted price was $99 and, hence, neither of our test cells ever charged a prospective customer less than the baseline price of $99.

To verify that our three experimental cells are balanced, we compare the targeted prices that would have been used had we implemented our targeting method in each cell. Figure 10 reports the density of targeted prices in each cell. The three densities are qualitatively similar, indicating that the nature of heterogeneity and willingness-to-pay is comparable in each cell. This comparison provides a compelling test for the balance of our randomization as it indicates that our distribution of targeted prices would look the same across each of the experimental cells.

4.4.1 Model-free analysis

We begin by comparing the realized conversion and subscription revenue across our three pricing structures, control ($99), Optimal Uniform ($249) and SPT. To account for sampling error in our analysis, we bootstrap our sample 1,000 times (sampling with replacement).

Results are summarized in Table 6. As expected, average conversion is higher in the control cell which has the lowest monthly price. Average conversion is almost identical in the uniform and targeted cells, at 15%. However, the average profit per customer is higher in the targeted cell, as one would theoretically expect. Overall, the uniform pricing increases expected profits per customer by 67.74% relative to control pricing; although our bootstrapped confidence interval admits a change as low as 46%. Targeted pricing increases expected profits by 84.4% relative to control pricing; although our bootstrapped confidence interval admits a change as low as 64%. These improvements from targeting exceed our predictions based on the September sample discussed above in section 4.3.3. Finally, although
not reported, our bootstrap generates an 87% probability that targeted profits will exceed uniform profits. These profit differences are visualized in Figure 11 where we plot the posterior CDF of profits in our control, Uniform and Targeted pricing structures respectively. The CDF is computed using our bootstrap draws of the mean profits per customer. Although not reported in the table, a Kolmogorov-Smirnov test rejects the hypothesis of identical profit distributions for control and uniform \((p < 0.01)\) and of identical profit distributions for uniform and targeted \((p < .01)\).

In sum, the November experiment demonstrates the large, permanent increase in profitability achievable by optimized prices and, moreover, by targeting different prices across customers based on their identifiable traits at the registration stage. The targeting scenario performs even better than we had predicted based on our September sample.

4.4.2 Customer Surplus

To analyze the impact of SPT on customer surplus, we focus on the 2,485 customers assigned to the targeting cell. Another advantage of our November experiment is that we can analyze the “actual” behavior of targeted customers. Recall that customers were in fact charged a simplified version of the targeted prices, rounded as explained above. In section 4.3.5, we predicted that customer surplus would fall by a small amount (1.5%) under the implemented targeting scheme. While surplus is not observed in our new November sample, we do observe that 67% of the prices charged to the customers in our targeting cell are lower than the optimal uniform price. Therefore, SPT strictly benefits the majority of the customers. Furthermore, total predicted conversion increases by close to 1%, meaning that more of the market will likely be covered under SPT. Figure 13 reports the total surplus across all customers assigned to each targeted price cell. As a comparison, we also report the total surplus for those customers had they instead been charged the optimal uniform price. The figure indicates that a small group of customers with very high willingness-to-pay ($499 or above) are subsidizing the majority of customers who are targeted a price less than the uniform rate.

In Figure 14, we look at the realized conversion rate in each cell. In spite of the fact that strong customers subsidize weak customers, the realized conversion rate is actually higher for the strong customers (16.54%) than for the weak customers (13.9%). Moreover, for the extreme strong customers targeted a price of $499, conversion is higher than in any of the weak customer cells, even though most of the latter are charged prices that are less than half of $499.

As an exploratory exercise, we correlate the 133 non-price registration features with an indicator for whether each of the 2,485 firms is charged a targeted price lower than the optimal uniform price\(^{18}\). The features “Company Type: Small” and “Employment Type: part time” both correlate positively with being targeted prices lower than uniform (correlations of 0.22 and 0.23 respectively). The median strong customer, a firm targeted a higher price than the optimal uniform price, has 20 employees. In contrast,

\(^{18}\)This exercise needs to be interpreted as “exploratory” since the model selection procedure is not guaranteed to recover the causal effect of specific company features.
the median weak customer, a firm targeted a lower price than the optimal uniform price, has only 10 employees. Overall, there is an observed association between smaller firms and being targeted a relatively low price. Interestingly, several of the features related to job benefits are strongly negatively correlated with being targeted prices below uniform: “job total benefits,” “job medical benefit,” “job vision benefit” and “job dental benefit” (with correlations of -0.48, -0.44, -0.40 and -0.44 respectively). These diverse findings suggest an important role for variable selection in determining which of the 133 registration features is best-suited to price targeting.

We also find that firm size and job benefits are correlated with the changes in the composition of firms that choose to buy in our uniform pricing cell relative to our targeted pricing cell. Small firms are 6.8 percentage points more likely to buy under targeted pricing than under uniform pricing. The probability of purchase for a firm without medical, dental or vision benefits increases by 12.2 percentage points, 10.7 percentage points and 8.3 percentage points respectively under targeted pricing. Finally, a firm posting part-time employment is 7.1 percentage points more likely to purchase under targeting. These results are conservative since Ziprecruiter tested $249 instead of the optimal uniform price, $281. To the extent that these firm traits reflect smaller and more disadvantaged firms with less resources, targeted pricing appears to make Ziprecruiter’s services more accessible. Most of these qualitative results are broadly consistent with our predictions based on the September 2015 training sample. Moreover, these results again highlight the potential benefits to customers from targeted pricing and the potential downsides to over-regulation of data-based marketing.

4.5 Validation of the Proposed Inference Procedure

We now compare the predictions and sampling properties from our WLB estimates and the realized outcomes from the November data. These comparisons allow us to judge how well our proposed WLB approach worked. Since the sample of prospective customers changes in November 2015, we apply the WLB estimates obtained from the September 2015 sample to predict the purchase behavior for the November 2015 sample. Table 7 summarizes our predictions for conversion and profits per customer. The profit predictions are comparable to our predictions from the end of September (see Table 4). The posterior mean conversions do not differ by more than 1 percentage point across cells. The posterior mean profits never differ by more than $1 across cells. Most important, our posterior credibility intervals on profits are very similar, suggesting that the population of prospective customers in November is not too different from the training sample in September.

By comparing Table 7 and Table 6, we can evaluate the properties of our inference approach. The realized mean profits per customer in each of the three cells (Table 6) falls within the predicted 95% credibility intervals for each of the cells (7). The predicted mean conversion rates are also very close to the realized mean conversion rates and fall within the predicted 95% credibility intervals. In sum, the WLB inference approach appears to have produced reliable predictions regarding both conversion and profits in each of the cells.
In Figure 12, we compare the empirical distribution of the realized conversion rates in each of the November pricing structure test cells to the predicted distribution using WLB, post-Lasso MLE and MLE respectively. As described earlier, the post-Lasso MLE follows a two-step approach - the first step implements a Lasso to select the relevant model (i.e. the subset of relevant x) and in a second step obtain parameter estimates after conditioning on this identified subset. The MLE estimator simply uses all available covariates (feasible for the current problem). All confidence intervals for these methods rely on standard Bootstraps. Each panel compares the densities of conversion for each of our compared methods in a given pricing cell. For SPT, we report densities for 6 of the 39 price tiers. The density of realized conversion rates is computed by bootstrapping with replacement from the November data in a given cell.

The figures indicate a relatively good match between our approximate posterior using WLB and the actual observed data. In contrast, the post-Lasso MLE approach predicts considerably less uncertainty than our WLB approach. The post-Lasso MLE would likely lead to managerial over-confidence when compared to the actual conversion rates, which exhibit much more variation. This overconfidence is particularly striking under SPT, where we have much smaller samples for each of the targeted price tiers. Furthermore, comparing to the actual mean conversion, the mean conversion under post-Lasso MLE is systematically less accurate than for the WLB. The figure illustrated additional out-of-sample performance for our WLB procedure.

In each of the three panels, we also report the Kullback-Leibler divergence measure associated with the conversion rate using (1) WLB relative to the true distribution (KLD^{WLB}), and (2) post-Lasso MLE relative to the true distribution ($\text{KLD}^{\text{post-Lasso MLE}}$). We find that the divergence is considerably higher for post-Lasso MLE than for WLB, suggesting that WLB is a much better approximation of the true distribution of conversion. Across each of the panels, the percentage difference between the divergence for post-Lasso MLE and for WLB ranges from 50% to 746%. Perhaps not surprisingly, the largest improvements for WLB arise in the control and uniform pricing cells where we have more observations per cell.

The relatively poor performance of post-Lasso MLE reveals the important roles of both variable selection and model uncertainty. Even when we take the best features from the Lasso, the corresponding MLE still performs worse than WLB both on prediction and uncertainty quantification. Although not reported herein, a naive approach that includes all the features in the MLE leads to considerably worse prediction and uncertainty quantification. These findings indicate that price targeting based on registration features is a big data problem for Ziprecruiter.

5 Conclusions

A long theoretical literature has studied the potential profit improvements associated with monopoly price discrimination. However, only recently have academics and practitioners begun to recognize the practicality of more granular personalized price discrimination structures using big data, or SPT. Not
surprisingly, there is still a lot of uncertainty about the impact of such practices on firm profits and customer well-being. Our field experiments provide some preliminary evidence on the practicality and implications of SPT. The algorithm is fast and sufficiently scalable to accommodate a large number of customer features. We find that SPT increases profits by over 10% relative to optimized uniform pricing, both in and out of sample. In fact, relative to Ziprecruiter’s historic price of $99 per month, SPT increases profits by over 80%. We also find that the proposed algorithm does a reasonable job accounting for the statistical uncertainty in demand.

A surprising finding in the field experiments is that Ziprecruiter had previously been under-pricing its monthly service by almost 65%. Even when we assess the optimal uniform price over a horizon of several months, accounting for customer acquisition and retention, we still find that Ziprecruiter increases its profits dramatically by a large price increase. The evidence is consistent with our conversations with Ziprecruiter’s management team, which had devoted considerable human capital to the development of the platform and the technology, but not to the optimization of revenues.

Turning to the demand side, our model estimates predict that total customer surplus decreases slightly (under 1.5%) under SPT relative to optimal uniform pricing. However, the majority of customers are in fact targeted prices that are below the optimal uniform rate. In sum, the redistributive aspects of SPT cause the majority of customers to benefit. Current public debate surrounding the fairness of differential pricing needs to consider these redistributive aspects of SPT. Most importantly, over-regulation of the types of data firms can use for targeted pricing purposes could potentially harm customers.

Our results are based on a single case study of a large digital human resources platform. The generalizability of our findings may be limited beyond settings where, like ours, consumers are unlikely to be able to game the targeting structure. We assume that customers are irrational in the sense that they do not attempt to misrepresent their “types” to obtain lower prices (e.g., Acquisti and Varian, 2005; Fudenberg and Villas-Boas, 2006). Our findings also do not consider the potential role of longer-term customer backlash based on fairness concerns regarding differential pricing, which could lead to more price elastic demand in the long run under SPT. This type of backlash might be more problematic in a consumers goods market where targeted pricing may be more transparent and less accepted. Finally, our findings focus on the monopoly price discrimination problem for Ziprecruiter.com. We do not consider the impact of SPT in a competitive market, which could lead to a toughening or softening of price competition.

In addition to our substantive evidence, we have also developed a Bayesian Decision Theoretic scalable price targeting method that can accommodate large-dimensional, observable heterogeneity. The approach bridges basic microeconomic principles with machine learning in a manner that is practical and scalable. The approach is potentially generalizable to more complex demand environments with multiple products and non-discrete-choice. An interesting extension would be the application of the method to an oligopolistic setting in which the firm not only faces uncertainty about demand, it also

19 Negotiated price deals are quite common in B2B pricing, especially with sales agents.
20 See for instance the empirical analysis of competitive geographic price targeting in Dubé, Fang, Fong, and Luo (2017) and the theoretical work by Corts (1998)
faces uncertainty about its rival’s likely actions.

In this paper, we approximate the posterior distribution of demand using a weighted likelihood bootstrap of the lasso estimator. Subsequent to our analysis, new research has emerged with formal results on the sampling properties of similar machine-learning estimators applied to settings with high-dimensional observed heterogeneity with discrete treatments (Athey and Imbens, 2016b,a) and, more recently, with continuous treatments (Hansen, Kozbur, and Misra, 2017). We believe this to be a fertile area for future work on both the theoretical and applied fronts.
References

Table 1: Experimental Price Cells for Stage One

<table>
<thead>
<tr>
<th></th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>99</td>
<td>249</td>
<td>590</td>
</tr>
<tr>
<td>Test 1</td>
<td>19</td>
<td>49</td>
<td>119</td>
</tr>
<tr>
<td>Test 2</td>
<td>39</td>
<td>99</td>
<td>239</td>
</tr>
<tr>
<td>Test 3</td>
<td>59</td>
<td>149</td>
<td>359</td>
</tr>
<tr>
<td>Test 4</td>
<td>79</td>
<td>199</td>
<td>479</td>
</tr>
<tr>
<td>Test 5</td>
<td>159</td>
<td>399</td>
<td>999</td>
</tr>
<tr>
<td>Test 6</td>
<td>199</td>
<td>499</td>
<td>1199</td>
</tr>
<tr>
<td>Test 7</td>
<td>249</td>
<td>629</td>
<td>1499</td>
</tr>
<tr>
<td>Test 8</td>
<td>299</td>
<td>759</td>
<td>1789</td>
</tr>
<tr>
<td>Test 9</td>
<td>399</td>
<td>999</td>
<td>2379</td>
</tr>
</tbody>
</table>

Table 2: Company/Job Variables

<table>
<thead>
<tr>
<th>Feature Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>job state</td>
</tr>
<tr>
<td>company type</td>
</tr>
<tr>
<td>hascomm</td>
</tr>
<tr>
<td>company declared job slots needed</td>
</tr>
<tr>
<td>job total benefits</td>
</tr>
<tr>
<td>employment type</td>
</tr>
<tr>
<td>is resume required</td>
</tr>
<tr>
<td>job medical benefit</td>
</tr>
<tr>
<td>job dental benefit</td>
</tr>
<tr>
<td>job vision benefit</td>
</tr>
<tr>
<td>job life insurance benefit</td>
</tr>
<tr>
<td>job category</td>
</tr>
</tbody>
</table>

Table 3: Predictive Fit from MLE, Lasso and Weighted Likelihood Bootstrap estimation (WLB) (for WLB we report the range across all 100 bootstrap replications). In-Sample results are based on entire September 2015 sample with 7,866 firms. Out-of-Sample results are based on a randomly-selected (without replacement) training sample representing 90% of the firms, and a hold-out sample with the remaining 10% of the firms.

<table>
<thead>
<tr>
<th>Model</th>
<th>In-Sample BIC</th>
<th>Out-of-Sample BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>10018.78</td>
<td>4430.65</td>
</tr>
<tr>
<td>Lasso</td>
<td>8366.47</td>
<td>2286.63</td>
</tr>
<tr>
<td>WLB range</td>
<td>(7805.11,8940.06)</td>
<td>(3249.34,4071.96)</td>
</tr>
</tbody>
</table>
Figure 1: Stage One Experimental Conversion Rates. Each bar corresponds to one of our 10 experimental price cells. The height of the bar corresponds to the average conversion rate within the cell. Error bars indicate the 95% confidence interval for the conversion rate.
Figure 2: Stage One Experimental Revenues per Customer. Each bar corresponds to one of our 10 experimental price cells. The height of the bar corresponds to the average revenue per prospective customer within the cell. Error bars indicate the 95% confidence interval for the revenues per customer.
Figure 3: Distribution across customers of posterior mean price sensitivity and posterior surplus from the provision of the service (N=7,867).
Figure 4: Posterior Monthly Revenues Per Customer (dotted lines represent the 95% posterior credibility interval at each point)

Figure 5: Optimized Prices (N=7,867).
Figure 6: Targeted Prices vs Posterior Mean Price Sensitivities \((\hat{\beta}_k) \) (N=7,867).

<table>
<thead>
<tr>
<th>Pricing Structure</th>
<th>Price Range</th>
<th>Conversion Rate</th>
<th>Profit per Lead ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>95% Credibility Interval</td>
</tr>
<tr>
<td>Control</td>
<td>$99</td>
<td>0.26</td>
<td>(0.24,0.28)</td>
</tr>
<tr>
<td>Optimized Uniform</td>
<td>$280.57</td>
<td>0.15</td>
<td>(0.12,0.17)</td>
</tr>
<tr>
<td>Implemented Uniform</td>
<td>$249</td>
<td>0.16</td>
<td>(0.14,0.18)</td>
</tr>
<tr>
<td>Targeted</td>
<td>($125.45,$2465.71)</td>
<td>0.15</td>
<td>(0.13,0.18)</td>
</tr>
<tr>
<td>Implemented Targeted</td>
<td>(119.5,489)</td>
<td>0.16</td>
<td>(0.13,0.19)</td>
</tr>
<tr>
<td>Perfect</td>
<td>(1.87,60.5)</td>
<td>0.36</td>
<td>(0.32,0.4)</td>
</tr>
</tbody>
</table>

Table 4: Stage one posterior profitability by pricing structure (Targeted and Perfect price discrimination cap the prices charged at $499).

<table>
<thead>
<tr>
<th>Price ($)</th>
<th>Acquisition</th>
<th>at least 1 month</th>
<th>at least 2 months</th>
<th>at least 3 months</th>
<th>at least 4 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0.36</td>
<td>0.8</td>
<td>0.77</td>
<td>0.61</td>
<td>0.56</td>
</tr>
<tr>
<td>39</td>
<td>0.32</td>
<td>0.75</td>
<td>0.73</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>59</td>
<td>0.27</td>
<td>0.65</td>
<td>0.63</td>
<td>0.49</td>
<td>0.4</td>
</tr>
<tr>
<td>79</td>
<td>0.29</td>
<td>0.69</td>
<td>0.64</td>
<td>0.5</td>
<td>0.39</td>
</tr>
<tr>
<td>99</td>
<td>0.24</td>
<td>0.69</td>
<td>0.66</td>
<td>0.48</td>
<td>0.38</td>
</tr>
<tr>
<td>159</td>
<td>0.2</td>
<td>0.63</td>
<td>0.61</td>
<td>0.43</td>
<td>0.34</td>
</tr>
<tr>
<td>199</td>
<td>0.18</td>
<td>0.56</td>
<td>0.5</td>
<td>0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>249</td>
<td>0.17</td>
<td>0.63</td>
<td>0.59</td>
<td>0.39</td>
<td>0.27</td>
</tr>
<tr>
<td>299</td>
<td>0.13</td>
<td>0.58</td>
<td>0.53</td>
<td>0.35</td>
<td>0.29</td>
</tr>
<tr>
<td>399</td>
<td>0.11</td>
<td>0.54</td>
<td>0.52</td>
<td>0.37</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 5: Acquisition and Retention Rates (September 2015)
Figure 7: Distribution of Targeted Prices using WLB and “plug-in.” Plug-in estimates are the posterior mean values of Ψ_i.

Table 6: Stage two conversion and profitability by pricing structure. (Bootstrapped confidence intervals obtained using 1,000 replications draw with replacement from entire sample in each of the cells).
Figure 8: Expected Net Present Value of Monthly Revenues Per Lead over a 4-Month Horizon (September 2015)

discount factor= 0

discount factor= 0.996

<table>
<thead>
<tr>
<th>Pricing Structure</th>
<th># subjects</th>
<th>Conversion Rate Mean</th>
<th>95% Credibility Interval</th>
<th>Profit per Lead ($) Mean</th>
<th>95% Cred. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1360</td>
<td>0.26</td>
<td>(0.24,0.29)</td>
<td>25.76</td>
<td>(23.74, 28.5)</td>
</tr>
<tr>
<td>Implemented Uniform</td>
<td>1430</td>
<td>0.16</td>
<td>(0.13,0.19)</td>
<td>40.05</td>
<td>(32.97, 47.5)</td>
</tr>
<tr>
<td>Targeted</td>
<td>2485</td>
<td>0.15</td>
<td>(0.13,0.18)</td>
<td>44.74</td>
<td>(35.24, 54.09)</td>
</tr>
</tbody>
</table>

Table 7: Stage Two posterior profitability predictions by pricing structure
Figure 9: CDFs of Profit Per Customer in Each Cell (September, 2015)

CDF of Profit per Customer

$F_n(x)$

$H_0: \pi_{\text{Control}} = \pi_{\text{Uniform}} \ (p-value < 0.01)$

$H_0: \pi_{\text{Uniform}} = \pi_{\text{Targeted}} \ (p-value < 0.01)$
Figure 10: Density of Targeted Prices in Each Cell (November, 2015)

density of targeted prices
Figure 11: CDFs of Profit Per Customer in Each Cell (November, 2015)

CDF of Profit per Customer

- Control
- Uniform
- Targeted

H_0: π_{Control} = π_{Uniform}$ (p-value < 0.01)
H_0: π_{Uniform} = π_{Targeted}$ (p-value < 0.01)
The plots compare the empirical density of realized conversion, for a given pricing structure, to the corresponding predicted densities for WLB, post-Lasso MLE and MLE respectively. The density of realized conversions is computed by bootstrapping (with replacement) from the Nov data.
Figure 13: Comparison of Predicted Total Customer Surplus (by price cell) for Scalable Price Targeting and Uniform Pricing

Results pertain to the 2,485 customers in the targeting cell of the November 2015 experiment. For each of the targeted price cells, we report total surplus across all customers in that cell under SPT (blue). As a comparison, we also report the total surplus had those customers instead been charged the optimal uniform price.

Figure 14: Realized Conversion by Targeted Price Cell

Results pertain to the 2,485 customers in the targeting cell of the November 2015 experiment. Strong customers are targeted a price higher than the uniform price. Weak customers are targeted a price lower than the uniform price.
A Appendix: Lasso Regression

The penalized Lasso estimator solves for

$$\hat{\Theta}_{\lambda} = \arg\min_{\Theta \in \mathbb{R}^J} \left\{ \ell(\Theta) + N\lambda \sum_{j=1}^J |\Theta_j| \right\}$$

(18)

where $\lambda > 0$ controls the overall penalty and $|\Theta_j|$ is the L_1 coefficient cost function. Note that as $\lambda \to 0$, we approach the standard maximum likelihood estimator. For $\lambda > 0$, we derive simpler “regularized” models with low (or zero) weight assigned to many of the coefficients. Since the ideal λ is unknown a priori, we derive a regularization path, $\{\hat{\Theta}_{\lambda}\}_{\lambda=\lambda_1}^{\lambda_T}$, consisting of a sequence of estimates of Θ corresponding to successively lower degrees of penalization. Following Taddy (2015b), we use the following algorithm to construct the path:

1. $\lambda_1 = \inf \{ \lambda : \hat{\Theta}_{\lambda_1} = 0 \}$
2. set step size of $\delta \in (0, 1)$
3. for $t = 2, \ldots, T$:
 $$\begin{align*}
 \lambda^t &= \delta \lambda^{t-1} \\
 \omega^t_j &= \left(|\Theta^t_j|^{-1} \right), j \in \hat{S}_t \\
 \hat{\Theta}^t &= \arg\min_{\Theta \in \mathbb{R}^J} \left\{ \ell(\Theta) + N\sum_{j=1}^J \lambda^t \omega^t_j |\Theta_j| \right\}.
 \end{align*}$$

(19)

The algorithm produces a weighted-L_1 regularization, with weights ω_j. The concavity ensures that the weight on the penalty on $\hat{\Theta}_j$ falls with the magnitude of $|\hat{\Theta}_j|$. As a result, coefficients with large values earlier in the path will be less biased towards zero later in the path. This bias diminishes faster with larger values of γ.

The algorithm in (19) above generates a path of estimates corresponding to different levels of penalization, λ. We use K-fold cross-validation to select the “optimal” penalty, λ^*. We implement the approach using the cv.gamlr function from the gamlr package in R.

B Appendix: Conditional Expectation of Truncated Logistic Random Variable

The random utility component of equation 10 is assumed to be i.i.d. logistic with pdf

$$f(\Delta \varepsilon) = \frac{\exp(-\Delta \varepsilon)}{[1 + \exp(-\Delta \varepsilon)]^2}$$
and CDF
\[F(\Delta \varepsilon) = \frac{1}{1 + \exp(-\Delta \varepsilon)}. \]

The truncated density for \(\Delta \varepsilon \) when it is known to be strictly greater than \(k > 0 \) is
\[f(\Delta \varepsilon|\Delta \varepsilon \geq k) = \frac{f(\Delta \varepsilon)}{Pr(\Delta \varepsilon \geq k)} = \left[\frac{\exp(-k)}{1 + \exp(-k)} \right]^{-1} \frac{\exp(-\Delta \varepsilon)}{[1 + \exp(-\Delta \varepsilon)]^2} \]

We can then compute the conditional expectation of the truncated random variable \(\Delta \varepsilon \) when \(k > 0 \) as follows:
\[
E(\Delta \varepsilon|\Delta \varepsilon \geq k) = \left[Pr(\Delta \varepsilon \geq k) \right]^{-1} \int_{-\infty}^{\infty} \Delta \varepsilon f(\Delta \varepsilon) d\Delta \varepsilon
= \left[\frac{\exp(-k)}{1 + \exp(-k)} \right]^{-1} \int_{-\infty}^{\infty} \Delta \varepsilon \frac{\exp(-\Delta \varepsilon)}{[1 + \exp(-\Delta \varepsilon)]^2} d\Delta \varepsilon
= \left[\frac{1 + \exp(-k)}{\exp(-k)} \right] \left[\frac{k \exp(-k) + [1 + \exp(-k)] \ln[1 + \exp(-k)]}{1 + \exp(-k)} \right]
= k + \frac{[1 + \exp(-k)] \ln[1 + \exp(-k)]}{\exp(-k)}
\]

where
\[
\Delta \varepsilon \frac{\exp(-\Delta \varepsilon)}{[1 + \exp(-\Delta \varepsilon)]^2} = \frac{d}{d\Delta \varepsilon} \left(\frac{-\Delta \varepsilon \exp(-\Delta \varepsilon) + [1 + \exp(-\Delta \varepsilon)] \ln[1 + \exp(-\Delta \varepsilon)]}{[1 + \exp(-\Delta \varepsilon)]} \right).
\]