Valuing Operational Flexibility and Financial Hedging

John R. Birge
The University of Chicago
Graduate School of Business
www.ChicagoGSB.edu/fac/john.birge
Motivation

• Operations (e.g., flexible production, foreign production) can mitigate the effects of demand, price, and currency exchange risks
• Financial instruments also can reduce risks (but should have zero NPVs)
• Questions: what is the value of operational methods and how do they interact with financial methods?
Outline

• Discussion of “hedging”
• Uses of operation and financial mechanisms
• Differences in correlations
• Conclusions
Preliminary Discussion: Hedging

• Definition here: reducing risk (volatility)
• Alternative interpretations:
 – Only reducing risk without affecting mean values
 – Using “hedging” instruments (e.g., derivatives): financial hedging
• Some results (e.g., Chowdhry and Howe 1999):
 – Operational hedging has value over financial hedging because of flexibility in output and correlation between demand and prices (examples later)
Risk Management and Hedging

• What is a hedge?
 – Action designed to reduce risk of future outcome
 – In finance, perfect hedge leads to no risk (risk-free return)

• Use of hedges
 – Allow pricing of financial derivatives
 – Lead to markets in derivatives
 – Also possible with operations (operational hedges)
 • Quantity - flexible production
 • Timing
Who Should Hedge?

- Farmers?
- Situation:
 - Suppose either high-yield or low-yield years for crops
 - Prices down in high years and up in the low years
Farmer’s Example

• Suppose yield of corn is either 200 k-bushels (high) or 100 k-bushels (low)

• Suppose price with high yield is $1 and price with low yield is $2

• Should the farmer use financial hedge? i.e., sell a future?
 – If so, how much?
Futures Contracts as Hedges

- *Futures contract*: an agreement to buy or sell a fixed quantity at given price at fixed time in future (marked to market every day)
- Example: can agree to sell 100 k-bushels at $1.50/bushel on October 15
- On October 15, we receive $150K and must deliver 100 k-bushels
Futures for the Farmer

• Advantages
 – Can accept the expected price now
 – No risk in the price for the amount we sell

• Potential problems
 – Risk on amount we can produce
 – May have to go into market

• Analysis: Hedge our expected yield (150 k-bushels)

 Guaranteed (all the time) $225K
 High yield – can sell 50 more + $50K (probability ½)
 Low yield – must buy 50 -$100K (probability ½)
 Expectation=225+50/2-100/2= $200k (same as no hedge)
 BUT variance (risk) is up (either $275k or $125 instead of $200k all the time)

• RESULT: should not use futures (alone)
Farmer’s Operational Hedge for Risk Management

• What else does the farmer have?

• **SILO!!**
 - *Operational hedge*
 - *Keep corn from high yield to sell at low yield*

• Now, suppose we keep 50 k-bushels in silo from high to low yield years
Farmer’s Silo “Hedge”

• Expected returns
 – High-yield years (prob. ½) $150 k
 – Low-yield years (prob. ½) $300 k
 – Expectation: ½(150+300)= $225k
 – Worth $225k-200k =$25k to use the silo
 – Value of the operational instrument *(option value of silo storage)*

• Combine with future?
 – Now, sell 150 k-bushels for $1.50 in October
 – Now, have the return guaranteed $225K

• Moral: Financial instrument only has value if farmer uses operational instrument
Copper Miner’s Example

- Should a copper mine hedge its output with futures?
- What is the nature of copper price differences?
- Demand versus supply curve change means high price-high quantity and low price-low quantity
Copper Hedging

• Suppose high demand leads to 200 k-pounds at $2/pound and low demand leads to 100 k-pounds at $1/pound

• Earn $400k (prob. ½) or $100k (prob. ½)

• Expected value of $250k

• Operational hedge? (save 50 k-lbs from high to low years – sell forward to customers)
 – High years: earn $300k (prob. ½)
 – Low years: earn $150k (prob. ½)
 – Expectation: $225k (lower value!)
Copper Futures?

- Suppose we sell all our customers forward contracts for 150 k-lbs at $1.50 in future
- Result now:
 - Guaranteed return: $225k
 - Risk reduced to 0
- Here: financial derivatives reduce risk but return is still down

<table>
<thead>
<tr>
<th>Probability</th>
<th>With Futures</th>
<th>Without Futures</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>150 (k)</td>
<td>300 (k)</td>
</tr>
</tbody>
</table>

(k)
Model for Single Period

- Suppose:
 - Price: $p(\omega)$
 - Cost: c
 - Max production: $l + kp(\omega)$ ($k > 0$ or < 0)
 - Decision: α (fraction of customers to sell forward)

- Objective

$$\text{Max } 0 \leq \alpha \leq 1 \alpha (E(p) - c)(E(l + kp)) + (1 - \alpha)E[(p - c)(l + kp)]$$

$$\Leftrightarrow \text{Max } 0 \leq \alpha \leq 1 \alpha k[E(p)^2 - E(p^2)] + E(p)l + kE(p^2) - c(1 + kE(p))$$

$$= k[E(p)^2 - E(p^2)] + E(p)l + kE(p^2) - c(1 + kE(p))n \text{ if } k \leq 0 \text{ and }$$

$$E(p)l + kE(p^2) - c(1 + kE(p))n \text{ if } k \geq 0$$

So, sell all forward if negative correlation and sell none forward if positive correlation (assuming this is possible).
Overall Observations

• Farmer:
 – Sell forward using operational instrument (storage)

• Miner:
 – Sell at spot price

• Financial instruments can reduce risk (but careful on use)