Investment and Production Decisions with Exchange Risk

John R. Birge*
The University of Chicago
Graduate School of Business
www.ChicagoGSB.edu/fac/john.birge

*Joint work with Umut Aytekin, Booz Allen Hamilton.
Motivation

- Operations (e.g., flexible production, foreign production) can mitigate the effects of demand, price, and currency exchange risks
- Financial instruments also can reduce risks (but should have zero NPVs)
- Questions: what is the value of operational methods and how do they interact with financial methods?
Outline

• Preliminary discussion of “hedging”
• Specific case in foreign exchange
• Value calculations
• Investment problem solutions
• Operational policies
• Conclusions
Preliminary Discussion: Hedging

• Definition here: reducing risk (volatility)
• Alternative interpretations:
 – Only reducing risk without affecting mean values
 – Using “hedging” instruments (e.g., derivatives): financial hedging
• Some results (e.g., Chowdhry and Howe 1999):
 – Operational hedging has value over financial hedging because of flexibility in output and correlation between demand and prices (examples later)
Risk Management and Hedging

• What is a hedge?
 – Action designed to reduce risk of future outcome
 – In finance, perfect hedge leads to no risk (riskfree return)

• Use of hedges
 – Allow pricing of financial derivatives
 – Lead to markets in derivatives
 – Also possible with operations (operational hedges)
 • Quantity - flexible production
 • Timing
Who Should Hedge?

• Farmers?
• Situation:
 – Suppose either high-yield low-yield years for crops
 – Prices down in high years and up in the low years
Farmer’s Example

• Suppose yield of corn is either 200 k-bushels (high) or 100 k-bushels (low)
• Suppose price with high yield is $1 and price with low yield is $2
• Should the farmer use financial hedge? i.e., sell a future?
 – If so, how much?
Futures Contracts as Hedges

- *Futures contract*: an agreement to buy or sell a fixed quantity at given price at fixed time in future (marked to market every day)
- Example: can agree to sell 100 k-bushels at $1.50/bushel on October 15
- On October 15, we receive $150K and must deliver 100 k-bushels
Futures for the Farmer

• Advantages
 – Can accept the expected price now
 – No risk in the price for the amount we sell

• Potential problems
 – Risk on amount we can produce
 – May have to go into market

• Analysis: Hedge our expected yield (150 k-bushels)

 Guaranteed (all the time) $225K
 High yield – can sell 50 more + $50K (probability ½)
 Low yield – must buy 50 -$100K (probability ½)

 Expectation=225+50/2-100/2= $200k (same as no hedge)
 BUT variance (risk) is up (either $275k or $125 instead of $200k all the time)

• RESULT: should not use futures (alone)
Farmer’s Operational Hedge for Risk Management

• What else does the farmer have?
• **SILO!!**
 – *Operational hedge*
 – *Keep corn from high yield to sell at low yield*

• Now, suppose we keep 50 k-bushels in silo from high to low yield years
Farmer’s Silo “Hedge”

• Expected returns
 – High-yield years (prob. ½) $150 k
 – Low-yield years (prob. ½) $300 k
 – Expectation: ½(150+300)= $225k
 – Worth $225k-200k =$25k to use the silo
 – Value of the operational instrument (*option value of silo storage*)

• Combine with future?
 – Now, sell 150 k-bushels for $1.50 in October
 – Now, have the return guaranteed $225K

• Moral: Financial instrument only has value if farmer uses operational instrument
Copper Miner’s Example

- Should a copper mine hedge its output with futures?
- What is the nature of copper price differences?
- Demand versus supply curve change means high price-high quantity and low price-low quantity
Copper Hedging

• Suppose high demand leads to 200 k-pounds at $2/pound and low demand leads to 100 k-pounds at $1/pound
• Earn $400k (prob. ½) or $100k (prob. ½)
• Expected value of $250k
• Operational hedge? (save 50 k-lbs from high to low years – sell forward to customers)
 – High years: earn $300k (prob. ½)
 – Low years: earn $150k (prob. ½)
 – Expectation: $225k (lower value!)
Copper Futures?

• Suppose we sell all our customers forward contracts for 150 k-lbs at $1.50 in future

• Result now:
 – Guaranteed return: $225k
 – Risk reduced to 0

• Here: financial derivatives reduce risk but return is still down
Model for Single Period

• Suppose:
 – Price: \(p(\omega) \)
 – Cost: \(c \)
 – Max production: \(l+kp(\omega) \) \((k>0 \text{ or } <0)\)
 – Decision: \(\alpha \) (fraction of customers to sell forward)

• Objective
 \[
 \text{Max}_{0 \leq \alpha \leq 1} \left(\alpha(E(p)-c)(E(l+kp)) + (1-\alpha)E[(p-c)(l+kp)] \right) \\
 \iff \text{Max}_{0 \leq \alpha \leq 1} \left(\alpha k[E(p)^2-E(p^2)]+E(p)l+kE(p^2)-c(1+kE(p)) \right) \\
 = k[E(p)^2-E(p^2)]+E(p)l+kE(p^2)-c(1+kE(p))n \text{ if } k \leq 0 \text{ and} \\
 E(p)l+kE(p^2)-c(1+kE(p))n \text{ if } k \geq 0
 \]
 So, sell all forward if negative correlation and sell none forward if positive correlation (assuming this is possible).
Overall Observations

• Farmer:
 – Sell forward using operational instrument (storage)

• Miner:
 – Sell at spot price

• Financial instruments can reduce risk (but careful on use)

• Next: dynamic model; focus on the value addition over hedging
Foreign Currency Exchange Issues

• Foreign exchange risk costly (e.g., Laker/LVMH)
• Operational hedges may be valuable
• Supplier risk also important

Questions:
 – What is the value of foreign capacity?
 – What are alternatives for optimal capacity configurations?
 – What is an optimal operating policy?
 – How can values inform decisions without complete distribution information?
Capacity Alternatives

Domestic Investment
No flexibility

Domestic Parent Plant,
Foreign Subsidiary
Semi flexible

Two Plant Model
Fully flexible
Notation

- $i =$ index of the originating market, 1 domestic, 2 foreign;
- $j =$ index of the destination market, 1 domestic, 2 foreign;
- $r =$ domestic risk free rate;
- $r_f =$ foreign risk free rate;
- $s_i =$ sales price (in respective currency) of the product in country i;
- $c_i =$ production cost of the product in country i;
- $d_i =$ demand for the product in country i;
- $k_i =$ production capacity (in units) in country i, $\vec{k} = (k_1, k_2)$ is the investment vector;
- $Y_t =$ Foreign exchange rate given by (dom. currency)/(for. currency);
- $X_{ij}(t), i,j = 1,2$ - the amount of product produced in market i and sold at market j at time t.
- $Z_i^i = 1$ if capacity in market i is available, $= 0$ if not available.
Assumptions

- Continuous monitoring and instantaneous shifts (if not, put in switching costs)
- No inventory holding (contracted or spot market)
- Focus on stochastic exchange rate - other data known
- Fixed same-country margin (contract prices and costs, but can include transportation costs)
- Positive margins if in same country
- No shutdown or abandonment
Valuation

• No flexibility
 – Stream of cash flows in two currencies

• Semi-flexibility
 – Continuous option to use lowest-cost source
 – Integral of option value over time gives value of flexibility

• Full flexibility
 – Option value over solution of transportation problem at each point in time
 – Integration over time of parametric LP solution
Value Calculations

No Flexibility:

\[
V_{\text{noflex}} = \mathbb{E} \left[\int_0^\infty e^{-rt} \left((s_1 - c_1)d_1 + (s_2 Y_t - c_1)d_2 \right) Z_t^1 dt \right]
\]

Semi-flexibility \((k_1 \geq d_1 + d_2)\):

Instantaneous cash flow:

\[
p(t) = (s_1 - c_2)d_1 Z_t^1 + \max (d_2(s_2 Y_t - c_1)Z_t^1, (d_2 - k_2)(s_2 Y_t - c_1)Z_t^1 + k_2 Y_t(s_2 - c_2)Z_t^2)
\]

\[
V_{\text{semi-flex}}(\bar{k}) = \mathbb{E} \left[\int_0^\infty e^{-rt} p(t) dt \right]
= \mathbb{E} \left[\int_0^\infty e^{-rt} \left((s_1 - c_1)d_1 + d_2(s_2 Y_t - c_1) \right) Z_t^1 + k_2c_2 \max (0, \frac{c_1}{c_2} - Y_t) Z_t^2 \right] dt
\]
Full-Flexible Capacity Valuation

\[\text{Max} \quad (s_1 - c_1)X_{11} + (s_2Y_t - c_1)X_{12} + (s_1 - c_2Y_t)X_{21} + (s_2 - c_2)Y_tX_{22} \]

\[\text{s.t.} \quad X_{11} + X_{12} \leq k_1; \quad X_{21} + X_{22} \leq k_2; \]

\[X_{11} + X_{21} = d_1; \quad X_{12} + X_{22} = d_2; \]

\[X_{ij} \geq 0, \text{ for all } i \text{ and } j. \]

Solution:

- Ordering of margins determines possible set of optimal bases; Maximum-margin allocation optimal
- Each ordering corresponds to 3 potential optimal bases; at most 5 optimal bases for given \(c_i, s_i \)
- Can compute analytically for each of the 5 bases as time-integrated continuum of options
- Can include transportation costs (with potentially more breakpoints of optimal bases)
- Random demand also possible with additional integration
Volatility Effect

\[\sigma \]
\[\text{Net Worth} \]
\[\sigma' \]
\[\max(\bar{V}_{\text{semi-flex}} - C \text{ for } (d_1 + d_2, 0)) \]
\[\bar{V}_{\text{semi-flex}} - C \text{ for } (d_1, d_2) \]
\[\bar{V}_{\text{semi-flex}} - C \text{ for } (d_1 + d_2, d_2) \]
Volatility Effect Observations

Either $\exists \sigma^*$ such that foreign capacity investment is optimal for $\sigma > \sigma^*$

or

$\nexists \sigma$ such that foreign capacity is optimal

With transaction (and other) costs, the critical value σ^* declines

Allows for evaluation with bounds on costs and selling prices

Assumes stable (zero drift) exchange rate, costs, and selling prices
Optimal Capacity Investments

- Observations on value of capacity
 - Value of capacity is linear in capacity levels $k = (k_1, k_2)$ for semi-flexible case
 - In fully flexible case, $B^{-1}(h(k, d))$, where B is an optimal basis at time t
 - Overall, integral over t for value is piecewise-linear in k with breakpoints at $d_1, d_2, d_1 + d_2$

- Assumptions on cost of capacity
 - Concave in k, e.g., fixed plus proportional

- Result:
 - Optimal capacity investments at extreme points of the demand possibilities with fixed demand
 - Alternatives for random demand (varying breakpoints)
Optimal Plant Configurations (No Switch Cost/Fixed Demand)

Domestic parent:
\[\vec{k} \in \{(0, 0), (d_1 + d_2, 0), (d_1, d_2), (d_1 + d_2, d_2)\} \]

Two plant cases:
\[\vec{k}^* \text{ is one of:} \]
- \((0, 0) \)
- \((d_1 + d_2, 0) \)
- \((0, d_1 + d_2) \)
- \((d_1, d_2) \)
- \((d_2, d_1) \)
- \((d_2, d_1 + d_2) \)
- \((d_1 + d_2, d_1) \)
- \((d_1 + d_2, d_1 + d_2) \).
Operational Model ($k_2 = d_2$)

Assumptions:

- Switching times τ_i
- Switching amounts ξ_i
- Impulse control $u = (\tau, \xi)$
- $X(t)$ amount at 2
- Dynamics: $dX(t) = 0$, $\tau_i \leq t < \tau_{i+1}$
- Forced switches at times η_i^1, η_i^2

Objective: maximize

$$J^u(s, x, y) = E^{s,x,y} \left[\int_0^\infty e^{-r(s+t)} \left[(-c_1 + c_2Y_t) X_t dt + \sum_{i=1}^{\sup\{i: \tau_i < \infty\}} e^{-r(s+\tau_i)} (\alpha + \beta |\xi_i|) \right] \right]$$
Optimal Policies

Characterization:

- The continuous-time problem has a unique viscosity solution
- The Markov chain discretization converges to the unique viscosity solution
- The discretization provides characterization of optimal policies

Policies characterized by continuation region $D = (X^*, Y^*)$

- Within D, no un-forced switches
- When Y_t reaches boundary of Y^* given X_t, switch to X_t in X^*
- Switches force $X_t = 0$ or d_2 (and then alternating)
- Region includes $(0, y), y \leq Y_H$ and $(d_2, y), y \geq Y_L$
- Can use policy result to compute analytical value of expectation at a renewal $X_t = 0$ or d_2 for efficient optimization
- Can extend to fully flexible case directly and random demand (with some assumption of costs to follow demand)
Example Results

Observation:

- Continuation region expands with higher volatility and higher transaction costs

Base	0.3704	0.3817	0.3933	0.4053	0.4176	0.4304	0.4435	0.4570	0.4709	0.4852	0.5	0.5152	0.5309	0.5471	0.5637	0.5808	0.5986	0.6168	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.1	-3	-3	-3	-3	-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.15	-4	-4	-4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2	-5	-5	-5	-5	-5	-5	-5	0	0	0	0	0	0	0	0	0	0	0	0
0.25	-6	-6	-6	-6	-6	-6	-6	-6	0	0	0	0	0	0	0	0	0	0	0
0.3	-7	-7	-7	-7	-7	-7	-7	-7	-7	0	0	0	0	0	0	0	0	0	0
0.35	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	0	0	0	0	0	0	0
0.4	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	0	0	0	0	0	0	0	0
0.45	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	0	0	0	0	0	0	0	0
0.5	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	0	0	0	0	0	0	0	0
0.55	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	0	0	0	0	0	0	0	0
0.6	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	0	0	0	0	0	0	0	0
0.65	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	0	0	0	0	0	0	0	0
0.75	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	0	0	0	0	0	0	0	0
0.8	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	0	0	0	0	0	0	0	0
0.85	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	0	0	0	0	0	0	0	0
0.9	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	0	0	0	0	0	0	0	0
0.95	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	0	0	0	0	0	0	0	0
1	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	0	0	0	0	0	0	0	0
Conclusions and Next Steps

Results:

- Valuation of flexible resources with unreliable suppliers
- Characterization of optimal capacity configurations
- Analytical form for calculating value of different configurations
- Discrete convergence to obtain general operational policy characterization
- Maximum value on foreign capacity over all exchange rate volatilities

Result: with a small number of computations, can determine maximum values on configurations over multiple parameter ranges and critical levels of relevant parameters

Next steps:

- Demand uncertainty with switching costs
- Supplier reliability (e.g., delay/quality) and foreign investment
- Empirical verification of implications (e.g., effect of exchange rate volatility on investment)
- Extensions to additional markets