Financial Engineering and the Effects of the Credit Crisis

John Birge
University of Chicago Booth School of Business
Introduction

• History of financial engineering
 – Rapid expansion of derivative market (total now greater than global equity)
 – Rise in successful quantitative investors (e.g., hedge funds)
 – Applications in asset management and risk management
 – Dot-com boom market
 – Securitization, housing bubble, and current crisis

• Current situation
 – Overall consolidation in the industry
 – Maintaining asset management and risk management interest
Presentation Outline

• Selected applications
 • Option pricing
 • Portfolio/asset-liability models
 • Tracking and trading
 • Securitization and its role in the crisis
 • Risk management/real options and going forward

• Future potential
Option Models

- “Derivative” securities
 - Example: Call: Buy a share at a given price at a specific time (European)
 - If by a specific time - American
 - Put: Sell; Straddle: Buy or sell

- Why?
 - Reduce risk (hedge)
 - Speculate
 - Arbitrage

- Original analysis - L. Bachelier (1900 - Brownian motion)
Results on European Options

• Black-Scholes-Merton formula

• Put-call parity for exercise price K and expiration T

 $C_t - P_t = S_t - e^{-r(T-t)}K$

American options:

• Can exercise before T

• No parity

• Calls not exercised early if no dividend

• Puts have value of early exercise
American Option Complications

• American options
 – Decision at all t - exercise or not?

• Find best time to exercise (optimize!)

![Graph showing price over time with decision points for exercise.]
American Options

• Difficult to value because:
 – Option can be exercised at any time
 – Value depends on entire sample path not just state (current price)

• Model (stopping problem):
 \[
 \max_{0 \leq t \leq T} e^{-rt} V_t(S_{0t})
 \]

• Approaches:
 – Linear programming, linear complementarity, dynamic programming
Formulating as Linear Program

- At each stage, can either exercise or not

\[V_t(S) \geq K - S \text{ and } e^{-r\delta} (pV_{t+\delta} uS + (1-p)V_{t+\delta} dS) \]

If minimize over all \(V_t(S) \) subject to these bounds, then find the optimal value.

- Linear program formulation (binomial model)

\[
\begin{align*}
\text{min } & \sum_t \sum_{kt} V_{t,kt} \\
\text{s. t. } & V_{t,kt} \geq K - S_{t,kt}, \quad t=0,\delta,2\delta,\ldots,T; \quad V_{T,kT} \geq 0 \\
& V_{t,kt} \geq e^{-r\delta} (pV_{t+\delta,u(kt)} + (1-p)V_{t+\delta,d(kt)}) \\
& t=0,\delta,2\delta,\ldots,T-1; \quad kt=1,\ldots,t+1; \\
& S_{t+\delta}(U(kt)) = uS(kt); \\
& S_{t+\delta}(D(kt)) = dS(kt); \quad S_{0,1} = S(0).
\end{align*}
\]

Result: can find the value in a single linear program
Extensions of LP Formulation

• General model:
 – Find a value function v to
 $$\min \langle C, V \rangle \text{ s.t. } V_t(S_t) \geq (K-S_t)^+, \quad \mathcal{L}V + (\partial V/\partial t) \geq 0, \quad V_T(S_T) = (K-S_T)^+$$
 where $C>0$ and \mathcal{L} denotes the Black-Scholes operator for price changes on a European option.

• Can consider in linear complementarity framework

• Solve with various discretizations
 – Finite differences
 – Finite element methods
General Option Pricing
Applications: Implied Trees

• Basic Idea:
 – Assume a discrete representation of the price dynamics (often binomial) but not with associated probabilities
 – Observe prices of all assets associated with this tree of sample paths (and imply probabilities)
 – Find price for new claim (or check on consistency of option in market)

• Methodology:
 – Minimize deviations in prices or maximize/minimize price subject to fitting different set of prices (linear programming)
Finding Implied Trees

• Given call prices \((\text{Call}(K_i, T_i))\) at exercise prices \(K_i\) and maturities \(T_i\) (assuming risk-neutral pricing)

• Find probabilities \(P_j\) on branches \(j\) to:

\[
\min \sum_i (u_i^+ + u_i^-)
\]

s.t.
\[
\sum_j P_j (S_j - K_i) + u_i^+ - u_i^- = \text{FV(Call}(K_i, T_i))
\]

\[
\sum_j P_j S_j = \text{FV}(S_t)
\]

\[
\sum_j P_j = 1, P_j \geq 0.
\]
OUTLINE

• Applications
 • Option pricing
 • Portfolio/asset-liability models
 • Tracking and trading
 • Securitization
 • Risk management/Real options
• Future Potential
Overview of Approaches

• General problem
 – How to allocate assets (and accept liabilities) over time?
 – Uses: financial institutions, pensions, endowments

• Methods
 – Static methods and extensions:
 – Dynamic extensions of static
 – Portfolio replication (duration matching)
 – DP policy based
 – Stochastic program based
Static Portfolio Model

Traditional model

– Choose portfolio to minimize risk for a given return

– Find the efficient frontier

Quadratic program (Markowitz):

find investments \(x=(x(1),...,x(n)) \) to

\[
\min x^T Q x \\
\text{s.t. } r^T x = \text{target}, \ e^T x=1, \ x\geq0.
\]
Static Model Results

For a given set of assets, find

- fixed percentages to invest in each asset
- maintain same percentage over time
- implies trading but gains over “buy-and-hold”

Needs

- rebalance as returns vary
- cash to meet obligations

Problems

- transaction costs
- cannot lock in gains
- tax effects
Static Asset and Liability Matching: Duration +

- Idea: Find a set of assets to match liabilities (often WRT interest rate changes)
 - Duration (first derivative) and convexity (second derivative) matching

- Formulation:
 Given duration \(d \), convexity \(v \) and maturity \(m \) of target security or liability pool, find investment levels \(x_i \) in assets of cost \(c_i \) to:

\[
\min \sum_i c_i \ x_i \\
\text{s.t. } \sum_i d_i \ x_i = d; \sum_i v_i \ x_i = v; \sum_i m_i \ x_i = m; \ x_i \geq 0, \ i = 1 \ldots n
\]

- Extensions:
 - Put in scenarios for the durations.. extend their application

- Problems:
 - Maintaining position over time
 - Asymmetry in reactions to changing (non-parallel yield curve shifts)
 - Assumes assets and liabilities face same risk
Extension to Liability Matching

• Idea (Black et al.)
 – Best thing is to match each liability with asset
 – Implies bonds for matching pension liabilities

• Formulation:
 Suppose liabilities are \(l_t \) at time and asset \(i \) has cash flow \(f_{it} \) at time, then the problem is:
 \[
 \min \sum_i c_i \, x_i \\
 \text{s.t. } \sum_i f_{it} \, x_i = l_t \text{ all } t; \ x_i \geq 0, \ i = 1\ldots n
 \]

• Advantages:
 – Liabilities matched over time
 – Can respond to changing yield curve

• Disadvantages
 – Still assumes same risk exposure
 – Does not allow for mix changes over time
Further Extensions to Liability Matching

• Include scenarios s for possible future liabilities and asset returns

• Formulation:

\[\min \sum_i c_i \ x_i \]

\[\text{s.t. } \sum_i f_{its} \ x_i = l_{ts} \text{ all } t \text{ and } s; \ x_i \geq 0, \ i = 1...n \]

• If not possible to match exactly then include some error that is minimized.

• Allows more possibilities in the future, but still not dealing with changing mixes over time.

• Also, does not consider possible gains relative to liabilities which can be realized by rebalancing and locking in
Extended Policies – Dynamic Programming Approaches

• Policy in static approaches
 – Fixed mix or fixed set of assets
 – Trading not explicit

• DP allows broader set of policies

• Problems: Dimensionality, Explosion in time

• Remedies: Approximate (Neuro-) DP

• Idea: approximate a value-to-go function and possibly consider a limited set of policies
Dynamic Programming Approach

- **State:** x_t corresponding to positions in each asset (and possibly price, economic, other factors)
- **Value function:** $V_t (x_t)$
- **Actions:** u_t
- **Possible events s_t, probability p_{st}**
- **Find:**
 \[
 V_t (x_t) = \max -c_t u_t + \sum_{s_t} p_{st} V_{t+1} (x_{t+1}(x_t, u_t, s_t))
 \]

Advantages: general, dynamic, can limit types of policies

Disadvantages: Dimensionality, approximation of V at some point needed, limited policy set may be needed, accuracy hard to judge
General Methods

• Basic Framework: Stochastic Programming
 – Allows general policies

• Model Formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{\sigma} p(\sigma) \left(U(W(\sigma, T)) \right) \\
\text{s.t.} (\text{for all } \sigma): & \quad \sum_k x(k, 1, \sigma) = W(o) \\
\text{(initial)} & \\
\sum_k r(k, t-1, \sigma) x(k, t-1, \sigma) - \sum_k x(k, t, \sigma) = 0, \text{ all } t > 1; \\
\sum_k r(k, T-1, \sigma) x(k, T-1, \sigma) - W(\sigma, T) = 0, \text{ (final);} \\
x(k, t, \sigma) & \geq 0, \text{ all } k, t;
\end{align*}
\]

Nonanticipativity:
\[
x(k, t, \sigma') - x(k, t, \sigma) = 0 \text{ if } \sigma', \sigma \in S_t \text{ for all } t, i, \sigma', \sigma
\]

This says decision cannot depend on future.

Advantages: General model, can handle transaction costs, include tax lots, etc.

Disadvantages: Size of model, computational capabilities, insight into policies.
General Model Properties

- Assume possible outcomes over time
 - discretize generally
- In each period, choose mix of assets
- Can include transaction costs and taxes
- Can include liabilities over time
- Can include different measures of risk aversion
Example: Investment to Meet Goal

- Proportion in stock versus bonds depends on success of market (no fixed fraction)

<table>
<thead>
<tr>
<th>Now</th>
<th>Stocks Up</th>
<th>Stocks Down</th>
<th>Stocks Up, Up</th>
<th>Stocks Up, Down</th>
<th>Stocks Down, Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After 5 years

After 10 years

Stock Fraction
Bond Fraction
OUTLINE

• Applications
 • Option pricing
 • Portfolio/asset-liability models
 • Tracking and trading
 • Securitization
 • Risk management/Real options

• Future Potential
Tracking a Security/Index

• **GOAL**: Create a portfolio of assets that follows another security or index with maximum deviation above the underlying asset.
Asset Tracking Decisions

• Pool of Assets:
 – TBills
 – GNMAs, Other mortgage-backed securities
 – Equity issues

• Underlying Security:
 – Mortgage index
 – Equity index
 – Bond index

• Decisions:
 – How much to hold of each asset at each point in time?
Traditional Approach

- **MODEL**: variant of Markowitz model
- **SOLUTION**: Nonlinear optimization
- **PROBLEMS**:
 - Must rebalance each period
 - Must pay transaction costs
 - May pay taxes
 - Reward on beating target?
- **RESOLUTION**:
 - Make transaction costs explicit
 - Include in dynamic model
Trading and Pricing

• Situation:
 – A can borrow 7% fixed or LIBOR+3%
 – B can borrow 6.5% fixed or LIBOR+2%
 – Dealer offers a swap of fixed interest rate for floating (LIBOR)

• Questions
 – How to price? Who pays what?
 – How to trade? How to identify partners?

Counterparty A
(Net: LIBOR+2.8%)

Counterparty B
(Net: 6.30% fixed)

© JR Birge
U. of Kentucky, 8Dec2008
Dynamic Trading Formulation

- **PRICES**: $p(i)$ for asset i with future cash flows $c(i,t,s)$ under scenario s; required cash flow of $b(t,s)$;
- Pay $x(i)$ now (and perhaps in future)
- **PRICING MODEL** (like liability matching):

$$\min \sum_i p(i) x(i)$$

s.t. (for all s): $\sum_i c(i,t,s) x(i) = b(t,s)$ all t,s.

Extensions
- Different maturity on the securities
- Maintain hedge over time
- Trade securities and match as closely as possible
- Again, can include transaction costs.
Real-time Trading

• Arbitrage searching:
 – Assume a set of prices p_{ijk} for asset i to asset j trade in market k (e.g., currency)
 – Start with initial holdings $x(i)$ and maximize output z from asset 1 over trades y

$$\max z(1)$$

$$\text{s.t. } x(i) - \sum_{jk} p_{ijk} y_{ijk} + \sum_{jk} p_{jik} y_{jik} = z(i)$$

$y \geq 0, z \geq 0$

(Generalized network: want to find negative cycles)
Trading and Market Impact

• Suppose goal is to purchase Q shares.
• The transaction cost of trading increases in the amount of each trade by going through order book.
• Objective: break Q into q_1, \ldots, q_N to minimize transaction cost.

Order book: list of limit orders to buy or sell at a given price.
OUTLINE

• Applications
 • Option pricing
 • Portfolio/asset-liability models
 • Tracking and trading
 • Securitization
 • Real options/risk management
• Future Potential
Securitization

- Suppose you hold a collection of assets (loans, royalties, real properties) with different credit worthiness, maturities, and chance for early return of principal
- Idea: divide cash flows into marketable slices with different ratings, maturities
- Maximize value of division of asset cash flows:
\[
\max \sum_i p(i) x(i)
\]
s.t. (for all s): \[
\sum_i c(i,t,s) x(i) = b(t,s) \text{ all } t,s.
\]
Securitized Products

- Collateralized Debt Obligations (CDOs):
 Re-organize debt by losses due to default

Some may default, then collect collateral.

CDO Tranches:
- First 3% of losses: Equity
- 3-7% of losses: 1st Mezzanine
- 7-10% of losses: 2nd Mezzanine
- 10-15% of losses: Senior
- 15-30% of losses: Super Senior
Extensions and Implications of CDOs

• Synthetic CDOs: Instead of actual loans, make payments based on other party’s credit quality (or an index)
 – Funding requirement: Issuer buys credit default swap (CDS) to insure payments on the CDO
 – Requires credit worthiness of CDS counter-party

• CDO-squared: CDO composed of other CDOs
Key Assumptions for Valuing CDOs

• Known credit quality of original loans (often assumed homogeneous)
• Correlation structure of defaults
• Valuation of collateral
• Credit quality of counterparty for CDO (and their CDS counterparty)
Implications of Models: Multiple Interconnections

CDO Issuer

CDS Issuer

Loan obligors

Loan obligors

Loan obligors
Sequence of Events

• Interest rate rise \Rightarrow Defaults \uparrow
 Collateral value \downarrow
 High correlation
• Defaults\uparrow/Collateral \downarrow \Rightarrow Multiple CDO tranches \downarrow
 \RightarrowCDS counterparty stretched
 \RightarrowLiquidations to meet obligations
 \RightarrowMore defaults/counterparty defaults and repetition
 \RightarrowNo confidence in prices and credit quality
Problems for Models

• How to assess the credit worthiness of multiple inter-connected obligations?
• What is the impact of multiple guarantees on a single asset?
• What happens with “agency issues”?
• How to structure products that can be properly valued and restore liquidity?
OUTLINE

• Applications
 • Option pricing
 • Portfolio/asset-liability models
 • Tracking and trading
 • Securitization
 • Real options/risk management
• Future Potential
Real Options for Comprehensive Risk Management

• Use real option approach to risks of the firm
• Combine operational and financial decisions
• Set levels for risk (insurance from buy and sell sides)
• Use of stochastic models on several levels and distributed optimization
Future Possibilities and Needs

• Better discretization methods (FEM v. finite differences)
• On-line (continual) optimization for real-time applications
• Inclusion of incomplete markets – distributed optimization
• Consideration of taxes – nonconvex and discrete optimization
• Integration of stochastic model/simulation and optimization
Conclusions

• Analysis and optimization bring value to financial engineering
• Existing implementations in multiple areas of financial industry
• Current crisis partly caused by inability to assess higher-level complexity of interactions
• Potential for resolution with comprehensive risk management models requiring research, theory, methodology, and implementation in real options, incomplete markets, and broader pricing issues