Bounds and Comparisons of Quasi-Monte Carlo Methods in Option Pricing

John R. Birge

The University of Chicago
Graduate School of Business

Illinois Institute of Technology
10 October 2005
Outline

- Motivation - Story
- Integration
- Error analysis
- Option model
- Sample Results
- Why it works?
Motivation

Challenge: Find x to

$$\min_{x \in X} \int_{\Xi} \phi(x, \xi) P(d\xi),$$

where ϕ is found by optimization for each ξ.

Fundamental Problem: Evaluate the integral, in general, find

$$\int_{\Xi} \phi(x, \xi) P(d\xi),$$

where the dimension of Ξ is large (100’s or 1000’s).
Alternatives

Simplified Problem: Find

\[\int_{[0,1]^n} f(x) \, dx. \]

Options:

- **Quadrature**
 - Requires smooth \(f \)
 - Low dimension

- **Bounding Inequalities**
 - Require some properties (e.g., \(f \) convex)
 - Generally quite loose

- **Monte Carlo Sampling**
 - Confidence intervals
 - Independent of dimension
 - Limited to \(\frac{1}{\sqrt{N}} \) error bounds for \(N \) samples
Monte Carlo Method

Method: Choose random samples \(x_1, \ldots, x_N \) and estimate

\[
I = \int_{x \in [0,1]^n} f(x) \, dx
\]

by

\[
\hat{I}(N) = \frac{1}{N} \sum_{i=1}^{N} f(x_i).
\]

Result: Assuming independent samples, finite variance \(V_f \), use Central Limit Theorem to find, with probability \(\alpha \):

\[
I \in [\hat{I}(N) - \sqrt{\frac{V_f}{N}} \Phi^{-1}\left(\frac{1-\alpha}{2}\right), \hat{I}(N) + \sqrt{\frac{V_f}{N}} \Phi^{-1}\left(\frac{1-\alpha}{2}\right)],
\]

where \(\Phi \) is the standard normal cumulative.

Note: in optimization, this becomes projection on feasible set, sometimes better asymptotic results.

Problem 1: Without reduced region, cannot avoid error declining as \(1/\sqrt{N} \).

Problem 2: Use pseudo-random points - problems in high dimensions (often collinear unless care is taken in generating these points).
Alternative Strategies

Question: Can you do better if you choose where to put your sample points, x_1, \ldots, x_N?

Alternative analysis: Numerical instead of statistical (quasi-random)

Example: Consider integration on the unit interval ($n = 1$) where f has bounded total variation (TV_f). What is the error in using $\hat{I}(N)$?

Approach: Integrate over f and count discrepancy, D_N of x_i measure relative to natural (uniform), where

$$D_N(x_1, \ldots, x_N) = \sup_{0 \leq x \leq 1} \sum_{i=1}^{N} \frac{1_{[0,x)}(x_i)}{N} - x.$$
Error Bound Result

Result: Assume continuity and use integration by parts.

\[
|I - \hat{I}(N)| = |\int_{[0,1]} f(x) dx - \frac{1}{N} \sum_{i=1}^{N} f(x_i)|
\]

\[
= |f(1) - \int_{[0,1]} x df(x) - f(1) + \frac{1}{N} \sum_{i=1}^{N} (f(1) - f(x_i))|
\]

\[
= | - \int_{[0,1]} x df(x) + \frac{1}{N} \sum_{i=1}^{N} \int_{[0,1]} (1_{[0,x]}(x_i)) df(x)|
\]

\[
= | \int_{[0,1]} (\frac{1}{N} \sum_{i=1}^{N} 1_{[0,x]}(x_i) - x) df(x) |
\]

\[
\leq |\sup_{J} (\frac{1}{N} \sum_{i=1}^{N} (1_{[0,x_j]}(x_i) - x)(f(x_{j+1}) - f(x_j)))| \text{ for partitions } J
\]

\[
\leq D_N TV_f.
\]

Impact: Error depends on discrepancy and characteristics of \(f\). Also, generalizes to higher dimension (independent of \(n\)).
Finding Low Discrepancy Points

Question: Where is the best place to put your sample points, \(x_1, \ldots, x_N\)?

Example: On the unit interval, how well can you do?

0 \[\begin{array}{cccc}
1
\end{array}\]

Result: Best place is \(x_1 = 1/2N, x_2 = 3/2N, \ldots, x_N = \frac{2^{N-1}}{2N}\) so \((1/6, 1/2, 5/6)\) for \(N = 3\).

Higher dimensions: Want to avoid collinearity and also allow \(N\) to change (without shifting all the points).

Alternatives:

- **Alpha**: Based on irrationals, such as the roots of the first \(n\) primes.
- **Halton**: Based on van der Korput sequence.
- **Faure
- **Sobol**
\textbf{\(\alpha\)-Sequence}

- \(\{x\} = x - \lfloor x \rfloor, \ x \in \mathbb{R}\)

- \(n_1, \ldots, n_s\): the first \(s\) prime numbers

- \(\alpha\) sequence: \(x_0, x_1, \ldots, x_n, \ldots\) with

\[
x_n = (\{n\sqrt{n_1}\}, \ldots, \{n\sqrt{n_s}\}) \in I^s
\]

for all \(n \geq 1\).
Van der Corput sequence

- b: $b \geq 2$, base of the Van der Corput sequence
- $Z_b = \{0,1,\ldots,b-1\}$: the least residue system mod b
- $n = \sum_{i=0}^{L(n)} a_i(n) b^i$, where $L(n) = \lfloor \log_b n \rfloor$, $n \geq 0$.
- Radical-inverse function (Glasserman [2004])
 \[\phi_b(n) = \sum_{i=0}^{L(n)} a_i(n) b^{-i-1}; \]
- Van der Corput sequence in base b: $x_0, x_1, \ldots, x_n, \ldots$ with
 \[x_n = \phi_b(n) \]
 for all $n \geq 0$.
Halton sequence

- b_1, \ldots, b_s: the first s prime numbers
- **Halton sequence**: x_0, x_1, \ldots with
 $$x_n = (\phi_{b_1}(n), \ldots, \phi_{b_s}(n)) \in I^s$$
 for all $n \geq 0$.
- Note: The Halton sequence is acceptably uniform for lower dimensions, up to about $s = 10$.
Faure sequence

- p: the smallest prime number, $p \geq s$ and $p \geq 2$
- $x_n^1 = \phi_p(n) = \sum_{i=0}^{L(n)} a_i(n)p^{-i-1}$ where
 $$n = \sum_{i=0}^{L(n)} a_i(n)p^i$$

- $x_n^k = \phi_p^k(n) = \sum_{i=0}^{L(n)} a_i^k(n)p^{-i-1}$ $k = 1, \ldots, s$ where
 $$a_i^k(n) = \sum_{j=i}^{L(n)} C_j^i a_i^{k-1}(n) \mod p, \quad C_j^i = \frac{j!}{i!(j-i)!}.$$

- **Faure sequence**: $x_0, x_1, \ldots, x_n, \ldots$ where
 $$x_n = (x_n^1, x_n^2, \ldots, x_n^s)$$
Sobol’ sequence

• \{v_i\}: “direction numbers,” \(v_i = \frac{m_i}{2^i} \)
• \(m_i \): odd positive integers, \(m_i \leq 2^i \)
• Primitive polynomial (Knuth [1981]):
 \[
P = x^d + a_1 x^{d-1} + \ldots + a_{d-1} x + 1
 \]
• recurrence formula for \(m_i \) and \(v_i \):
 \[
v_i = a_1 v_{i-1} \oplus a_2 v_{i-2} \oplus \ldots \oplus a_{d-1} v_{i-d+1} \oplus v_{i-d} \\
 \oplus \left[v_{i-d}/2^d \right], \ i > d,
 \]
 \[
m_i = 2a_1 m_{i-1} \oplus 2^2 a_2 m_{i-2} \oplus \ldots \oplus 2^{d-1} a_{d-1} m_{i-d+1} \\
 \oplus 2^d m_{i-d} \oplus \left[m_{i-d}/2^d \right], \ i > d,
 \]
Sobol’ sequence (Cont’d)

• 1-dimensional Sobol’ sequence: \(x_0, x_1, \ldots, x_n, \ldots\) where

\[
x_n = b_1 v_1 \oplus b_2 v_2 \oplus \ldots, \\
n = \sum_{i=1}^{[\log_2 n]} b_i 2^i
\]

• \(s\)-dimensional Sobol’ sequence:

 – choose \(s\) different primitive polynomials to calculate \(s\) different sets of direction numbers
Error Bounds in Option Pricing

- Traditional bounded variation bounds do not apply (Koksma-Hlawka Inequality)

\[
\frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int f d\mu \leq V(f) D_N^*(P)
\]

Owen(2004): \(C(X), P(X) \) are not BVHK.

- Seeking error bounds that apply to option pricing problems
Does Quasi-Random Work Well for Options and (if so) Why?

Works Well

- Standard European options results
- American option results

Towards Understanding

- Dimension is effectively lower than n
- Functions in applications are well-behaved
- Discrepancy only matters on certain sets
European Option Results - Short Horizon

Figure 1
European Option Results - 2

Figure 2
European Option Results - 3

Percent Errors: 180 days, sigma=0.3

Figure 3
European Option Results -4
Error Bounds \(s=1 \)

- Consider a European call

\[
c = e^{-rT} E_{ST} [(S_T - K)^+]
\]

\[
= e^{-rT} \int_0^{+\infty} (S_T - K)^+ d\nu(S_T)
\]

\[
= e^{-rT} \int_0^{+\infty} (S_T - K)^+ g(S_T) dS_T,
\]

- Black-Scholes model:

\[
S_T = S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma\epsilon\sqrt{T}},
\]

\[
c = e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma\epsilon\sqrt{T}} - K)^+ g(\epsilon) d\epsilon,
\]
• QMC approximation:

\[c \approx \frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon_i \sqrt{T}} - K)^+ \]

where \(\epsilon_i = G^{-1}(z_i) \), \(G(\epsilon) = \int_{-\infty}^{\epsilon} g(x) \, dx \)

• Error of approximation (in 1 dimension):

\[|e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) \, d\epsilon \]

\[-\frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon_i \sqrt{T}} - K)^+ | \]
Let M to be a smallest number such that all $\epsilon_i, i = 1, \ldots, N$ are located in $[-M, M]$. Then, we define a truncated function. Let

$$Q(\epsilon) = \begin{cases}
(S_0e^{(r - \frac{\sigma^2}{2})T + \sigma M\sqrt{T}} - K)^+ & \text{if } \epsilon > M, \\
(S_0e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon \sqrt{T}} - K)^+ & \text{if } \epsilon \in [-M, M], \\
(S_0e^{(r - \frac{\sigma^2}{2})T - \sigma M\sqrt{T}} - K)^+ & \text{otherwise};
\end{cases}$$
Error Bounds (s=1) (Cont’d)

Then the error is

\[
|e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) d\epsilon - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon_i)|
\]

\[
\leq |e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r-\frac{\sigma^2}{2})T + \sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) d\epsilon - e^{-rT} \int_{-\infty}^{+\infty} Q(\epsilon) g(\epsilon) d\epsilon|
\]

\[
+ |e^{-rT} \int_{-\infty}^{+\infty} Q(\epsilon) g(\epsilon) d\epsilon - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon_i)|.
\]
Proof: The proof of Theorem 1 is based on the following lemma for \(s = 1 \) and \(2 \).

Lemma 0.1. If \(M \geq 0 \), then
\[
\int_{M}^{+\infty} e^{-\frac{x^2}{2}} \, dx \leq \sqrt{\frac{\pi}{2}} e^{-\frac{M^2}{2}}.
\]

Lemma 0.2. If \(g(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \) and \(M \geq \sigma \sqrt{T} \), then
\[
\int_{M}^{+\infty} (S_0 e^{(r-\frac{\sigma^2}{2})T+\sigma x \sqrt{T}} - K)^+ g(x) \, dx \leq \frac{1}{2} S_0 \: e^{rT} \: e^{-\frac{(M-\sigma \sqrt{T})^2}{2}}.
\]

Lemma 0.3. If \(M \) is assumed as above, then
\[
|e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r-\frac{\sigma^2}{2})T+\sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) \, d\epsilon - e^{-rT} \int_{-\infty}^{+\infty} Q(\epsilon) g(\epsilon) \, d\epsilon|
\leq S_0 e^{-\frac{(M-\sigma \sqrt{T})^2}{2}}.
\]
Error Bounds (s=1) (Cont’d)

Lemma 0.4. If $M > 0$, $G(x) = \int_{-\infty}^{x} g(\epsilon) d\epsilon$ where
\[g(\epsilon) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\epsilon^2}{2}}, \]
then there exists an $\alpha = \sqrt{2\pi} e^{\frac{M^2}{2}}$ such that
\[G^{-1}(G(M) - \frac{1}{N}) \geq M - \alpha \frac{1}{N}. \]

Lemma 0.5. If M is assumed as above, and P is a (N, ν)-uniform point set such that N includes subintervals $[\frac{i-1}{N}, \frac{i}{N})$, $i = 1, \ldots, N$, then
\[|e^{-rT} \int_{-\infty}^{+\infty} Q(\epsilon) g(\epsilon) d\epsilon - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon_i)| \leq \sqrt{2\pi T} \sigma S_0 e^{-\frac{\sigma^2}{2} T} e^{\sigma \sqrt{T M + \frac{M^2}{2}}} \frac{1}{N}, \]
where $Q(x)$ is defined as above.
Theorem 0.6. Assuming a uniform point set as given in Lemma 0.5, there exists a number N_0 and C such that for all $N > N_0$,

$$|e^{-rT} \int_{-\infty}^{+\infty} (S_0e^{(r-\frac{\sigma^2}{2})T+\sigma\epsilon\sqrt{T}} - K)^+ g(\epsilon) d\epsilon - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0e^{(r-\frac{\sigma^2}{2})T+\sigma\epsilon_i\sqrt{T}} - K)^+ | \leq CN^{-\frac{1}{3}},$$

where C is a constant that only depends on S_0, σ and T.
Error Bounds(s=1)(Cont’d)

Corollary 0.1. Under the uniform point set conditions as given in Lemma 0.5, for any $k \in \mathbb{N}$, there exists a number N_0 such that for all $N > N_0$,

\[
|e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) \, d\epsilon
\]

\[- \frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \epsilon_i \sqrt{T}} - K)^+ | \leq CN^{-\frac{k}{2k+1}},
\]

where C is a constant that only depends on S_0, σ and T.
Corollary 0.2. Under the uniform point set conditions as given in Lemma 0.5, given any $\delta > 0$, there exists a number N_0 such that for all $N > N_0$,

\[|e^{-rT} \int_{-\infty}^{+\infty} (S_0 e^{(r-\frac{\sigma^2}{2})T+\sigma \epsilon \sqrt{T}} - K)^+ g(\epsilon) \, d\epsilon - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0 e^{(r-\frac{\sigma^2}{2})T+\sigma \epsilon_i \sqrt{T}} - K)^+ | \leq CN^{-\frac{1}{2}+\delta}, \]

where C is a constant that only depends on S_0, σ and T.
Simulating the path followed by the price process S,

$$S(t + \frac{T}{s}) = S(t)e^{(r - \frac{\sigma^2}{2})\frac{T}{s} + \sigma \epsilon_t \sqrt{\frac{T}{s}}}, \quad t = 0, \frac{T}{s}, \ldots, \frac{(s - 1)T}{s},$$

where $\epsilon_t \sim \phi(0, 1)$.

The European call price is then given by

$$c = e^{-rT} E_{S_T}[(S_T - K)^+]$$

$$= e^{-rT} \int_{\mathbb{R}^s} (S_T - K)^+ d\nu(S_T).$$
Error Bounds (s=n) (Cont’d)

Denote $X = R^s$, $\epsilon^i = (\epsilon^i_1, \epsilon^i_2, ..., \epsilon^i_s)$. The error of the approximation is then

$$|e^{-rT} \int_{\mathbb{R}^s} \int_{...} (S_T - K)^+ \, d\nu(S_T)$$

$$- \frac{1}{N} \sum_{i=1}^{N} e^{-rT} (S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma \sqrt{\frac{T}{s}}} (\sum_{j=1}^{s} \epsilon^i_j) - K)^+|.$$

We select M to be such that all $(\epsilon^i_1, ..., \epsilon^i_s), i = 1, ..., N$ are located in $[-M, M]^s$.

Let $\epsilon = (\epsilon_1, ..., \epsilon_s)$. From now on, we assume M is large enough that $S_0 e^{(r - \frac{\sigma^2}{2})T - sM \sqrt{\frac{T}{s}}} \leq K.$
Error Bounds (s=n) (Cont’d)

We can then define the truncated function as below:

\[
Q(\epsilon) = \begin{cases}
(S_0 e^{(r - \frac{\sigma^2}{2}) T + s M N - \frac{T}{s} - K})^+ & \text{if } \sum_{j=1}^{s} \epsilon_j > s M, \\
(S_0 e^{(r - \frac{\sigma^2}{2}) T + \sum_{j=1}^{s} \epsilon_j N - \frac{T}{s} - K})^+ & \text{if } -s M \leq \sum_{j=1}^{s} \epsilon_j \leq s M, \\
0 & \text{otherwise.}
\end{cases}
\]

The error of the approximation is then

\[
|e^{-rT} \int \cdots \int_{\mathbb{R}^s} (S_T - K)^+ \, d\nu(S_T) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon^i)| \\
\leq |e^{-rT} \int \cdots \int_{\mathbb{R}^s} (S_T - K)^+ \, d\nu(S_T) - e^{-rT} \int \cdots \int_{\mathbb{R}^s} Q(\epsilon) \, d\nu(\epsilon)| \\
+ |e^{-rT} \int \cdots \int_{\mathbb{R}^s} Q(\epsilon) \, d\nu(\epsilon) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon^i)|.
\]
Error Bounds (s=n) (Cont’d)

Note that

\[| \int \ldots \int_{\mathbb{R}^s} (S_T - K)^+ \, d\nu(S_T) - \int \ldots \int_{\mathbb{R}^s} Q(\epsilon) \, d\nu(\epsilon) | \]

\[\leq \int \ldots \int_{\mathbb{R}^s \setminus [-M,M]^s} (S_T - K)^+ \, d\mu(S_T). \]

Lemma 0.7. There exists a constant \(L \) that only depends on \(S_0, r, T, \sigma, \) and \(s \) such that

\[e^{-rT} \int \ldots \int_{\mathbb{R}^n \setminus [-M,M]^s} (S_T - K)^+ \, d\mu(S_T) \leq L e^{\sigma M \sqrt{\frac{T}{s}} - \frac{M^2}{2}}. \]
Let b_1, \ldots, b_{s-1} be the first $s - 1$ prime numbers. For the s-dimensional case here, we use the following construction (see, e.g., Deák(1990)), where

$$x^i = (\phi_{b_1}(i), \ldots, \phi_{b_{s-1}}(i), \frac{i}{N} - \delta),$$

and $0 < \delta < \frac{1}{N}$ is an arbitrary parameter to maintain the sequence in $[0, 1)$.

Lemma 0.8. For the quasi-random sequence defined above, there exists a constant L' that only depends on S_0, r, T, σ, and s such that

$$|e^{-rT} \int \cdots \int_{\mathbb{R}^s} Q(\epsilon) \, d\nu(\epsilon) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} Q(\epsilon^i)| \leq L' \frac{e^{s \sigma M \sqrt{T_s + \frac{M^2}{2}}}}{N}.$$
Combining Lemma 0.7 and Lemma 0.8, we have the following theorem.

Theorem 0.9. For the quasi-random sequence defined above, given any $\delta > 0$, there exists a number N_0 such that for all $N > N_0$,

$$|e^{-rT} \int \cdots \int_{\mathbb{R}^n} (S_T - K)^+ d\mu(S_T) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT}(S_0 e^{\xi_i} - K)^+| \leq CN^{-\frac{1}{2}+\delta},$$

where C only depends on S_0, r, σ and s.

Theorem 0.10. If a derivative has a payoff function $g(S_T)$ such that \exists a constant K_0 s.t. $|g(S_T)| < K_0S_T$ and, over any $H_j = \Pi_i[a_i^j, b_i^j] \in \mathcal{H}$ in the uniform point set condition,

$G_j(g(S_T)) - g_j(g(S_T)) \leq K_0(S_T(b^j) - S_T(a^j))$, then, for the sequence defined above, given any $\delta > 0$, there exists a number N_0 such that for all $N > N_0$

$$|e^{-rT} \int \ldots \int_{\mathbb{R}^n} g(S_T) \, d\mu(S_T) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} g(S_0e^{\epsilon_i})| \leq C N^{-\frac{1}{2}} + \delta,$$

where C is a constant that only depends on K_0, S_0, r, σ, T and s.
Corollary 0.3. If a derivative has a payoff function $g(S_T)$ such that \exists a constant K_0 s.t. $|g(S_T)| < K_0 S_T$ and, over any $H_j = \Pi_i[a_i^j, b_i^j] \in \mathcal{N}$, $G_j(g(S_T)) - g_j(g(S_T)) \leq K_0(S_T(b^j) - S_T(a^j))$, then, for a quasi-random sequence with discrepancy $D_N^* < (R(N)/N)$ decreasing in N, given any $\delta > 0$, there exists a number N_0 such that, for all $N > N_0$,

$$|e^{-rT} \int_{\mathbb{R}^N} g(S_T) d\mu(S_T) - \frac{1}{N} \sum_{i=1}^{N} e^{-rT} g(S_0 e^{\epsilon_i})| \leq C \left[\frac{N}{R(N)} \right]^{-\frac{1}{2} + \delta},$$

where C is a constant that only depends on K_0, S_0, r, σ, s, and T.

Error Bounds(s=n)(Cont’d)
Numerical Experiment

• Model: duality approach to American option valuation
 – Rogers (2001)
 – Haugh & Kogan (2001)
 – Andersen & Broadie (2001)

• Numerical comparisons
Duality approach to American option valuation
— Rogers and Haugh & Kogan (2001)

• Economy : \((\Omega, \mathcal{F}, \mathcal{Q})\)

• State : \(\{X_t \in \mathbb{R}^d : t \in [0, T]\}\)

• Payoff of the option: \(h_t = h(X_t)\)

• Primal problem:
 − Price of American option:

\[
V_0 = \sup_{\tau \in \Gamma} E_\tau \left[\frac{h_\tau}{B_\tau} \right]
\]
Duality approach (Cont’d)

- Dual function: \(F(t, M) \)

\[
\frac{F(t, M)}{B(t)} = E\left[\max_{t \leq \tau \leq T} (Z(\tau) - M(\tau)) \right] + M(t)
\]

- Dual problem:

\[
U(0) = \inf_{M} F(0, M) = \inf_{M} E\left[\max_{t \leq \tau \leq T} (Z(\tau) - M(\tau)) \right] + M(0)
\]

- Upper bound

\[
F(0, M) = E\left[\max_{0 \leq t \leq T} (Z(t) - M(t)) \right] + M(0) \geq V(0)
\]

\[
M(t) = B(t)^{-1} V_{euro}[S(t), K, \sigma, T - t, r] - V_{euro}[S(0), K, \sigma, T, r]
\]
Numerical Comparisons

Simulation prices of standard American puts. Parameter values were \(K = 100, r = 0.06, T = 0.5, \) and \(\sigma = 0.4. \) \(N = 50,000. \) (50 batches with batch size 1000)

<table>
<thead>
<tr>
<th>(S_0)</th>
<th>True Price</th>
<th>Pseudo</th>
<th>alpha</th>
<th>Halton</th>
<th>Faure</th>
<th>Sobol’</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>18.0374</td>
<td>18.1202</td>
<td>18.1195</td>
<td>18.1207</td>
<td>18.1205</td>
<td>18.1312</td>
</tr>
<tr>
<td>105</td>
<td>8.0281</td>
<td>8.04813</td>
<td>8.046</td>
<td>8.04835</td>
<td>8.04494</td>
<td>8.05182</td>
</tr>
<tr>
<td>115</td>
<td>5.1265</td>
<td>5.13394</td>
<td>5.13443</td>
<td>5.13532</td>
<td>5.13385</td>
<td>5.13647</td>
</tr>
<tr>
<td>120</td>
<td>4.0611</td>
<td>4.06736</td>
<td>4.06659</td>
<td>4.06723</td>
<td>4.06597</td>
<td>4.06808</td>
</tr>
<tr>
<td>Avg. RE</td>
<td>0.00%</td>
<td>0.30%</td>
<td>0.29%</td>
<td>0.31%</td>
<td>0.29%</td>
<td>0.36%</td>
</tr>
</tbody>
</table>
Numerical Comparisons (Cont’d)

Standard errors of simulations.

<table>
<thead>
<tr>
<th>S_0</th>
<th>Pseudo</th>
<th>alpha</th>
<th>Halton</th>
<th>Faure</th>
<th>Sobol’</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.001564</td>
<td>0.00067456</td>
<td>0.00113523</td>
<td>0.00281853</td>
<td>0.000682138</td>
</tr>
<tr>
<td>85</td>
<td>0.001353</td>
<td>0.00058157</td>
<td>0.00099498</td>
<td>0.00232266</td>
<td>0.000650659</td>
</tr>
<tr>
<td>90</td>
<td>0.001607</td>
<td>0.00084140</td>
<td>0.00132556</td>
<td>0.00227021</td>
<td>0.000778371</td>
</tr>
<tr>
<td>95</td>
<td>0.001327</td>
<td>0.00075605</td>
<td>0.00107099</td>
<td>0.00194825</td>
<td>0.000729888</td>
</tr>
<tr>
<td>100</td>
<td>0.001717</td>
<td>0.00090967</td>
<td>0.00165845</td>
<td>0.00218293</td>
<td>0.000873421</td>
</tr>
<tr>
<td>105</td>
<td>0.001334</td>
<td>0.00083873</td>
<td>0.00139874</td>
<td>0.00178361</td>
<td>0.000802426</td>
</tr>
<tr>
<td>110</td>
<td>0.001059</td>
<td>0.00075968</td>
<td>0.00113792</td>
<td>0.00145889</td>
<td>0.000701484</td>
</tr>
<tr>
<td>115</td>
<td>0.000952</td>
<td>0.00066225</td>
<td>0.00096773</td>
<td>0.00117762</td>
<td>0.00062149</td>
</tr>
<tr>
<td>120</td>
<td>0.00083</td>
<td>0.00055593</td>
<td>0.00082419</td>
<td>0.00099835</td>
<td>0.000548867</td>
</tr>
<tr>
<td>Avg. ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>85.66%</td>
<td>4.06%</td>
<td>65.41%</td>
<td>169.71%</td>
<td>1.44%</td>
</tr>
</tbody>
</table>
Numerical Comparisons (Cont’d)

Simulation times (seconds).

<table>
<thead>
<tr>
<th>S_0</th>
<th>Pseudo</th>
<th>alpha</th>
<th>Halton</th>
<th>Faure</th>
<th>Sobol’</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>6.812</td>
<td>8.234</td>
<td>21.999</td>
<td>35.093</td>
<td>47.734</td>
</tr>
<tr>
<td>85</td>
<td>6.453</td>
<td>7.906</td>
<td>21.609</td>
<td>34.702</td>
<td>47.702</td>
</tr>
<tr>
<td>90</td>
<td>6.015</td>
<td>7.468</td>
<td>21.281</td>
<td>34.296</td>
<td>47.719</td>
</tr>
<tr>
<td>95</td>
<td>5.453</td>
<td>6.953</td>
<td>20.703</td>
<td>33.75</td>
<td>47.718</td>
</tr>
<tr>
<td>100</td>
<td>4.703</td>
<td>6.282</td>
<td>19.952</td>
<td>33.03</td>
<td>47.734</td>
</tr>
<tr>
<td>105</td>
<td>4.063</td>
<td>5.765</td>
<td>19.328</td>
<td>32.39</td>
<td>47.75</td>
</tr>
<tr>
<td>110</td>
<td>3.547</td>
<td>5.203</td>
<td>18.828</td>
<td>31.843</td>
<td>47.75</td>
</tr>
<tr>
<td>115</td>
<td>3.156</td>
<td>4.75</td>
<td>18.421</td>
<td>31.469</td>
<td>47.749</td>
</tr>
<tr>
<td>120</td>
<td>2.844</td>
<td>4.516</td>
<td>18.141</td>
<td>31.374</td>
<td>47.797</td>
</tr>
<tr>
<td>Avg. > Min.</td>
<td>0.00%</td>
<td>36.28%</td>
<td>349.29%</td>
<td>648.84%</td>
<td>993.15%</td>
</tr>
</tbody>
</table>
Conclusion

• Error bounds
 – Deterministic bounds at order of Monte Carlo method without bounded variation property

• Numerical experiment:
 – alpha and Sobol’ most consistent results with low variation
 – alpha more efficient to simulate