Optimal Dynamic Portfolio Construction with Transaction Costs

John Birge
University of Chicago
Booth School of Business
General Theme

• Dynamic portfolio optimization is difficult due to:
 • Consistency
 • Many parameters to estimate
 • Non-stationarity
 • Non-normality
 • Transaction costs across time

• Continuous time models provide guidance in how to control directly

• By equating transaction costs from continuous time with discrete time analogues, close-to-optimal portfolios are possible
Basic Model

• Basic setup:
Continuous-Time Results

Results: No trading in a region H; boundary at some distance from optimal no-transaction-cost point (for CRRA utility: $x^* = (1/\gamma) \Sigma^{-1}(\mu-r)$, Merton line)

© JRBirge

INFORMS Phoenix, October 2012
General Result

\[x_1(t) \]

Merton line

No-trade region

Time

© JRBirge

INFORMS Phoenix, October 2012
Equivalence in Discrete Time

General observation: The continuous time solution is (approximately) equal to a discrete-time problem with a fixed boundary.

\[x_1(t) \]

Merton line

No-trade region

Boundary here: same as for one period to \(T^* \).
Discrete Time (Single Period) Problem
Effective Result in Terms of Average Number of Re-balances

Observation: T^* is approximately the average time between re-balances or $1/T^*$ is approximately the expected number of re-balances in a single period.

- Can normalize to a single period and use π/T^* for transaction cost.

- (Note: can learn T^* along with μ, Σ)
Empirical Setup

Testing results:
- Simulate portfolios over time
- Vary T^*
- Observe final objectives and number of re-balances as a function of T^*

$\mu = 0.08, \Sigma = 0.04*I, \tau = .01.$

100 trials for each run; 100 periods.
Comparisons on final Sharpe ratio
Adjustment for Different Volatilities

• The value of T^* will vary depending on μ and Σ (which may vary over time).

• An approximation to deal with variation is to assign T^* as a function (e.g., a multiple λ) of the portfolio volatility $(x^T \Sigma x)^{1/2}$.

• Now, the learning can occur on μ, Σ, λ.

© JRBirge

INFORMS Phoenix, October 2012
Extensions

• Integrate with estimation of other parameters (and possibly with non-log-normal distributions)
• Use GARCH-type models of the volatility to capture periods of faster turnover
Conclusions

• Transaction costs create difficulties for portfolio optimization
• Finding the no-trade region is difficult in higher dimensions
• Finding an effectively equivalent single-period formulation with appropriate modification of the transaction cost can approximate the continuous-time solution
Thank you!