Dynamic Learning in Strategic Pricing Games

John R. Birge
Matt Stern
The University of Chicago
Booth School of Business
How to Price and Learn?

• Situation
 – New products (e.g., games, insurance, drugs)
 – Unlimited capacity (e.g., digital goods)
 – Multiple (possibly differentiated) suppliers

• Questions
 – What is optimal (equilibrium) pricing behavior and how is it different from the monopoly setting?
 – What is the impact on consumers, social welfare, and intermediaries?
Outline

• Monopoly pricing
• Collusion, competition, and oligopoly results
• Results from simple policies
• Regret due to learning and influence
• Strategic incomplete learning in simple policies
• “Willful ignorance” in prisoner’s dilemma
• Implications
Monopoly Pricing Results

- Monopolist needs to vary price sufficiently to learn demand
- Monopolist can learn a demand function with:
 \[\text{Regret}(T, \theta, \sigma) = O(\sqrt{T \log T})\]
 where \(\text{Regret}(T, \theta, \sigma) = T \pi^* - E[\sum_{t=1}^{T} \pi_t(\theta, \sigma)]\)
 \(\theta\) are parameters, \(\sigma\) is policy, and \(\pi_t\) is revenue with maximum expected value \(\pi^*\).

(Keskin and Zeevi (2013))
Price Optimization in Auto Insurance

- 72% of firms consider competitor's prices when setting prices
- 26% of firms currently employ price optimization (45% over $1B in revenue)
- An additional 36% plan to start in the near future

Figure 8: Estimating the overall effect of a rate change by company size

© Earnix 2013
Maryland Insurers Using ‘Price Optimization’ Ordered to File Corrective Action Plan

November 3, 2014

Insurance Commissioner v. Engelman

- “The Maryland Insurance Administration (MIA) has determined that the use of price optimization results in rates that are unfairly discriminatory”

- “the use of price optimization may result in two insureds with like risk characteristics being charged different premiums, which is a violation of 27-212(e)(1) of the Insurance Article.”
Results from Limiting Price Variation

• Myopically optimizing prices and estimating demand can lead to incomplete learning and poor prices

• Example (Lai and Robbins 1982):

```
true demand

q_0
0=p_0

p^*

estimated demand

q_1 q_2 ...

U=p_1=p_2=...
```
Questions for Competition

• Can sellers in competition learn as efficiently as monopolists?
• Is efficient learning always an optimal strategy?
• How much can optimal equilibrium strategies with competition differ from optimal monopolistic pricing strategies?
New Markets and Price Impact Uncertainty

- New consumer products?
- New drugs?

© JRBirge
Cornell University, October 2015
Relationship to Pricing Collusion

Results

• Stigler (1964) – can maintain collusive prices with mechanism to detect secret price-cutting

• Maskin/Tirole (1988) – can maintain collusion with kinked demand curves

• Cooper et al. (2013) – may obtain collusion by assuming monopoly model

• Quantity/Prisoner’s Dilemma (Kreps et al. (1982), Green/Porter (1984), Abreu/Pierce/Stacchetti (1986), Sannikov/Skrzypacz (2007), Rahmann (2015))
Overview of Results

• General impact of uncertainty in previous models:
 – Makes “cheater” detection harder and is costly for enforcement
 – Effective monitoring necessary to enforce collusion

• Impact of uncertainty with observed actions, unobserved payoffs, and unknown parameters:
 – Uncertain and limited observations may limit learning and lead to collusive outcomes
 – Collusion becomes more likely with limited price ranges and deviations
Setup for Investigation

- **Model:**

 - Two firms face noisy linear demands over T periods

 $$d_{it} = \alpha_i + \beta_i p_{it} + \gamma_i p_{-it} + \epsilon_{it}$$

 - Estimate the parameters via OLS: $\hat{\theta}_{it} = [a_{it}, b_{it}, c_{it}]$
 - Forecast the price of their competitor: p^e_{-it}
 - Choose prices: $p_{it} \in \{l, u\}$, $0 < l < u < \infty$

- **Simple candidate policy:** best-response plus noise
Classifying Learning: Notions of Regret

Regret

\[\Delta_i(T) = \sum_{t=1}^{T} \mathbb{E}[p_{i,NE}^T (\alpha_i + \beta_i p_{i,NE} + \gamma_i p_{-i,NE}) - p_{it}(\alpha_i + \beta_i p_{it} + \gamma_i p_{-it})] \]

Learning:
\[\sum_{t=1}^{T} \mathbb{E} \left[(p_{i,NE}^T - p_{it})^2 \right] \]

Influence:
\[\sum_{t=1}^{T} \mathbb{E} \left[p_{it} \left(\mathcal{BR}_\theta(p_{-i,NE}) - \mathcal{BR}_\theta(p_{-it}) \right) \right] \]
Myopic (No Noise) Result

Best Response:

$$BR_\theta(p^e_{it}) = \frac{a_{it}}{-2b_{it}} + \frac{c_{it}}{-2b_{it}} p^e_{it}$$

Competitive Equilibrium

Figure: Myopic strategies fail to learn demand
Measure Learning

Let $x_t := [1\ p_{it}\ p_{-it}]^T$ is the public price vector.

- **Fisher Information Matrix:**

 $$
 \mathcal{J}_t := \sum_{s=1}^t x_s x_s^T = \sum_{s=1}^t \begin{bmatrix}
 1 & p_{is} & p_{-is} \\
 p_{is} & p_{is}^2 & p_{is}p_{-is} \\
 p_{-is} & p_{is}p_{-is} & p_{-is}^2
 \end{bmatrix}
 $$

- **Firm i’s OLS estimates are**

 $$
 \hat{\theta}_{it} = \mathcal{J}_t^{-1} \left(\sum_{s=1}^t d_{is} x_s \right)
 $$

- **Estimation Error:**

 $$
 \hat{\theta}_{it} - \theta_i = \mathcal{J}_t^{-1} \sum_{s=1}^t \epsilon_{is} x_t
 $$
Information and Error Bounds

Lemma (Keskin and Zeevi 2014)

If the demand shocks \(\{\epsilon_{is}\}_{i=\pm 1, s=1, \ldots, t} \) have light-tailed distributions, then there exist finite positive constants \(\rho \) and \(k \) such that,

\[
P \left\{ \left\| \hat{\theta}_{it} - \theta_i \right\| > \delta, \lambda_{\min}(J_t) \geq m \right\} \leq kt \exp \left(-\rho (\delta \wedge \delta^2) m \right),
\]

for all \(\delta, m > 0 \) and all \(t \geq 3 \).

- Since \(J_t \) is public, firms know (with high probability) how close their estimates are to the true value.

- **Question:** How can we grow the minimum eigenvalue of \(J_t \)?
Adding Noise for Learning

Best Response with Random Dithering:

\[p_{it} = BR_{\hat{\theta}}(p^e_{-it}) + \nu_{it} \]

\(\nu_{it} \) conditionally independent, mean zero noise.
Learning Result

Theorem

Under best-response pricing with random dithering, the worst-case regret due to learning is $O(\sqrt{T \log T})$ for both players under the following assumptions:

- Cournot Adjustment: $p^e_{it} = p_{-i(t-1)}$
- $\operatorname{Var}(\nu_{it}) = O(\frac{1}{\sqrt{t}})$

• Implication and question:
 Can achieve (close to) the monopolist’s learning rate with competitors.
 But, is this optimal?
Theorem (Matrix Freedman, Trop 2011)

Consider a finite series $Z = \sum_s Y_s$ of adapted, self-adjoint matrices with dimension d such that

$$\mathbb{E}_{s-1} Y_s = 0 \text{ and } \lambda_{\max}(Y_s) \leq R.$$

Let $\nu(Z) := \sum_s \mathbb{E}_{s-1}(Y_s^2)$

Then for all $\delta \geq 0$,

$$\mathbb{P} \left\{ \lambda_{\min}(\sum_s Y_s) \leq -\delta \right\} \leq d \cdot \exp \left(\frac{-\delta^2 / 2}{\nu(Z) + R\delta / 3} \right).$$
Use of Key Result

Applying the matrix Freedman inequality,

\[\mathbb{P} \{ \lambda_{\min}(\mathcal{J}_t) \leq \lambda_{\min}(\mathcal{E}_{s-1}\mathcal{J}_t) - \delta \} \leq 3 \exp \left(\frac{-\delta^2/2}{\nu(\mathcal{J}_t) + R\delta/3} \right) \]

Show:
- \[\lambda_{\min}(\mathcal{E}_{s-1}\mathcal{J}_t) = O(\sqrt{t}) \]
- \[\nu(\mathcal{J}_t) = O(\sqrt{t}) \]

Choose:
- \[\delta = \sqrt{t} \]
Is Learning Optimal?

• With limited noise, may improve outcomes:

Higher revenues for Product 2

Static Nash equilibrium
Is Incomplete Learning Optimal for General Strategies?

• Simplified Case with Two Players:

Consider a Prisoner’s Dilemma game with deterministic payoffs.

\[
\begin{array}{ccc}
\rho_0 & \rho_1 \\
 p_0 & (R_k, R_k) & (T_k, S_k) \\
 p_1 & (S_k, T_k) & (P_k, P_k) \\
\end{array}
\]

\[T_k > R_k > P_k > S_k, \quad k = 1, 2\]

• Common prior:

\[\pi := Pr(\text{Scenario} = 1)\]

• Uncertainty between cooperation or competition:

\[R_1 = P_2\]
Game Setup

\[p_0 \quad (R_k, R_k) \quad (T_k, S_k) \]
\[p_1 \quad (S_k, T_k) \quad (P_k, P_k) \]

\[T_k > R_k > P_k > S_k, \quad k = 1, 2 \]

- Represents pricing game where \(p_0 \) and \(p_1 \) are the competitive and cooperative equilibrium prices.
- Assume that the firms choose \((p_1, p_1)\) in the first period and observe \(R_1 = P_2 \) payoffs.
- Choice: Continue charging \((p_1, p_1)\) or deviate and learn the game.
Game Reduction

Result:
The T period game can be reduced to a single period game by incorporating the future value into the current beliefs.

Expected Payoff Parameters:
- x_π, the expected payoff to firm i with beliefs π of (p_1, p_1)
- y_π, the expected payoff to firm i with beliefs π of (p_1, p_0).

\[
x_\pi := (1 - \pi)(P_2 - S_2) + \pi(R_1 - T_1)
\]
\[
y_\pi := (1 - \pi)(T_2 - R_2) + \pi(S_1 - P_1)
\]
Stable Dynamics of the Game

Expected Payoff Parameters:

- x_π, the expected payoff to firm i with beliefs π of (p_1, p_1)
- y_π, the expected payoff to firm i with beliefs π of (p_1, p_0).

![Game Diagram]

- (p_1, p_0)
- (p_0, p_1)
- (p_1, p_1)
- (p_0, p_0)

Reveal Game	Remain Ignorant
T | T | $T - 1$ | $T - 2$

(p_1, p_1)
(p_0, p_0)
(p_1, p_1)
(p_0, p_0)

Both
Alternate Stable Dynamics

Expected Payoff Parameters:
- x_π, the expected payoff to firm i with beliefs π of (p_1, p_1)
- y_π, the expected payoff to firm i with beliefs π of (p_1, p_0).

```
\begin{array}{|c|c|}
\hline
\text{Reveal Game} & \text{Reveal Game} \\
\text{$(p_0, p_0)$} & \text{$(p_0, p_1)$} \\
\hline
\text{Remain Ignorant} & \text{Both} \\
\text{$(p_1, p_1)$} & \text{$(p_1, p_0)$} \\
\hline
\end{array}
```
Result of Simple Game

• Willful ignorance is optimal (cooperative equilibrium) if the firms observe the uninformative revenue outcomes
• Firms choose not to experiment and learn the full market information
• Extends to cases with uncertainty in the outcomes
Implications for Dynamic Pricing

• Firms may prefer not to experiment with prices, particularly for new products where products may be complements or substitutes
• Examples in digital goods and pharmaceuticals
• Uncertainty makes observation and enforcement difficult but can also ensure collaboration
Policies for Pricing with Competition

- Use initial priors for optimal prices
- Base decisions to vary prices and learn on support for alternatives
- Issues for government policy:
 Caution for regulations restricting pricing adjustments (e.g., auto insurance in Maryland)
Conclusions

• Simple best-response policies with noisy adjustments can yield efficient learning as in monopolistic pricing

• Learning policies may not be optimal within the class of best-response and adjustment policies

• In general policies, learning may not be optimal for firms

• Policies restricting price adjustments can reduce consumer value
Additional Issues

• How extensive is the set of situations in which firms may choose not to learn the market?
• What should happen in markets with nonstationary behavior?
• What role do intermediaries play in ensuring learning and efficiency?
• How should policy be used to ensure efficiency and maximum social welfare?
Thank you!

Questions?