Operational Decisions, Capital Structure, and Managerial Compensation

John R. Birge*

The University of Chicago
Graduate School of Business

Stern School, New York University
7 October 2005

*Work with Xiaodong Xu, Deutsche Bank, NY; Supported by National Science Foundation under Grant DMI-0100462.
Outline

- Basic Issues
- Single-stage Framework
- Single-stage Results
- Capital Structure Observations
- Principal-Agent Model and Incentive Compensation
- Conclusions
Basic Issues

- Financing affects production decisions (and v.v.)
- Traditional analyses ignore interactions
- No market valuation for private firms
- Bankruptcy provision necessary for evaluation
- Capital structure relationship explained in different ways
- Incentive compensation can affect operational and financial decisions
Financing Effects - Single Stage

News vendor with debt \((D)\) and equity \((E)\)
- Convert to risk-neutral equivalent demand distribution \((F)\)
- Suppose debt priced at market rate
- Find optimal mix of debt and equity

Basic single-stage problem:

\[
\begin{align*}
\text{maximize } & \quad p \left(\int_0^x s \, dF(s) + x \int_x^\infty dF(s) \right) - cx(1 + r_f) \\
\text{subject to } & \quad cx \leq E + (1 + r_f)^{-1} \left(\int_0^{s_b} ps \, dF(s) + D(1 + r) \int_{s_b}^\infty dF(s) \right), \\
& \quad x \geq 0.
\end{align*}
\]
Risk-Neutral Equivalent Forms

Simple Setup:

- Assume future cash flow proportional to future demand \(d \) at \(t = 1 \)
- \(N \) future states
- Suppose a maximum \(U \) (and minimum 0)
- Current value in \([c_L, c_U]\)
- Market prices \(s \) (future \(S_i, i = 1, \ldots, N \))
- Riskfree rate \(r_f \)
No Arbitrage Model

Implications:

- Above c_L, Buyer cannot purchase share $0 \leq x \leq 1$ of d:
 - Using y of market instruments at s, B of riskfree
 - End with non-negative value in all states and positive in some
 (No free lunch)

Buyer Model Formulation:

\[
0 = \min_{x,y,B} \left\{ \sum_i p_i (d_i x - S^T_i y - e^{rf} B) \right\},
\]
subject to
\[
-cx + s^T y + B = 0,
\]
\[
-d_i x + S^T_i y + e^{rf} B \leq 0, \forall i, 0 \leq x \leq 1.
\]
Dual Problem

Formulation:

\[
0 = \min_{\lambda, \pi \geq 0, \rho} \rho \\
\text{subject to} \quad \sum_i d_i p_i + \lambda c + \sum_i \pi_i d_i - \rho \leq 0, \\
- \sum_i S_i p_i - \lambda s - \sum_i \pi_i S_i = 0, \\
- e^{r_f} - \lambda - \sum_i \pi_i e^{r_f} = 0.
\]

Solution: \(\lambda^L, \pi^L, \rho^L\) s.t.

\[
c \leq \sum_i d_i (p_i + \pi_i^L) / (-\lambda^L), \\
s = \sum_i (p_i + \pi_i^L) S_i / (-\lambda^L), \\
- \lambda^L = e^{r_f} (1 + \sum_i \pi_i^L).
\]

Resulting prices: \(q_i^L = \frac{p_i + \pi_i^L}{\sum_i (p_i + \pi_i^L)}\)

- \(q^L \geq 0, \sum_i q_i^L = 1, c_L = e^{-r_f} \sum_i d_i q_i^L, s = e^{-r_f} \sum_i S_i q_i^L\)
- I.e., All prices consistent with \(q^L\) (risk-neutral or equivalent martingale measure (EMM))
Seller’s Problem and Overall Result

Seller Model Formulation – for $c \leq c_U$:

$$0 = \min_{x,y,B} \left\{ \sum_i p_i (-d_i x + S_i^T y + e^{r_f} B) \right\},$$
subject to $c x - s^T y - B = 0, d_i x - S_i^T y - e^{r_f} B \leq 0, \forall i, 0 \leq x \leq 1.$

Dual Solution: λ^U, π^U, ρ^U s.t.

$$c_U = \sum_i d_i (p_i + \pi_i^U)/(-\lambda^U), s = \sum_i (p_i + \pi_i^U) S_i/(-\lambda^U L),$$
$$-\lambda^U = e^{r_f} (1 + \sum_i \pi_i^L).$$

Resulting prices: $q_i^U = \frac{p_i + \pi_i^U}{\sum_i (p_i + \pi_i^U)}, c_U = e^{-r_f} \sum_i d_i q_i^U, s = e^{-r_f} \sum_i S_i q_i^U$

Conclusion:

- Convex combination of q^L and q^U consistent with market prices and any value $c_L \leq c \leq c_U$
- Can find correlation to market for a CAPM view of value
- Alternative values can produce range of consistent decisions
Debt Pricing

Debt payoff:

\[Y_D(x, D) = \begin{cases} \alpha ps & \text{if } s \geq s^b, \\ D(1 + r(D)) & \text{if } s^b > s, \end{cases} \]

Expected payment \(E(Y_D) = D(1 + r_f) \)

\[D(1 + r_f) = D(1 + r) \int_{s^b}^{\infty} f(s)ds + \alpha \int_{0}^{s^b} psf(s)ds. \]

Implications: Debt is priced fairly, \(r \) includes payment for bankruptcy cost (not risk aversion)
Single Stage Model

No bankruptcy cost or tax shield

- D and E do not affect optimal solution
- Modigliani-Miller (MM) result that capital structure is irrelevant
- **Problem:** Financial distress, interest deductibility, varying tax rates for income, dividends, cap. gains

$$\implies \text{Market imperfection}$$

Bankruptcy and tax assumptions

- Proportional bankruptcy cost α
- Corporate tax rate τ
- No loss carry-overs or personal tax effects
Single Stage Results

- Capital structure and production interdependent
- Production more critical than capital structure
- Low-margin companies especially exposed to mis-specifying leverage
Debt Ratio as Function of Profitability

Traditional views:
- Tradeoff theory: More profitable firms have higher debt ratios
- Pecking-order theory (Myers): Less profitable firms have higher debt ratios
- Empirical evidence (Fama and French): Debt ratio declines with profitability

Results of this model:
- Capital structure is convex function of operating margin
- Book and market leverage may increase at both high and low operating margins
Model Results: Leverage as Function of Margin

![Graph showing leverage as a function of production cost for both book leverage and market leverage ratios.](image)
Empirical Results as Function of Operating Margin

Data sources:
- Value-line public firms
- Operating margin, book, and market leverage

Results:
- Strong evidence ($p = 0.0008$) for declining leverage at low margins
- Weak evidence ($p = 0.09$) for increasing leverage at high margins
Multiple Stage Framework

Key Observations

- Equity and debt investments over time
- Special relevance for valuation of private equity
- Need to include bankruptcy possibility
- Need to include growth and contingencies

Traditional valuation models

- Discount dividend models (V^0_E equity value at 0, d_t dividend, TV_T terminal value, ρ_e discount factor)

$$V^0_E = \sum_{t=1}^{T} \rho_e^{-t} E_0(d_t) + \rho_e^{-T} E_0(TV_T)$$

- Multiple models (V_F firm value, S_F firm parameter (e.g., sales), $Comp$ - competitor values)

$$V_F = V_{Comp} \times \text{relative size} = V_{Comp} \times (S_F/S_{Comp}) = (V_{Comp}/S_{Comp}) \times S_F$$
Three Stage Example

Key Observations

- Varying interest rates for time and scenario
- Allows bankruptcy in one of middle branches (but not all)
- Value increase over two-stage and traditional methods

Terminal Value

185 (Demand)

61.1, 5%
116.7

144.9, 18%
68.64

133

Bankrupt
34

96

247

64

62.6

178

0 Bankrupt

34

247

246.3

246.3

68.4

62.6

D: 110.9, r_0: 19%
E: 59.6

68.64

343

247

46
Multistage Results

Equity value for stochastic program, discount dividend, and multiple methods as function of parameters

- Decreasing in production cost, volatility
- Increasing in bankruptcy recovery, terminal value multiple
- Wider gaps for high margins, large volatility, recovery, terminal value
Multistage Compared to Single Stage

Observations:

- Equity value increases with multiple stages
- Leverage decreases with multiple stages
- Bigger gaps for higher margins (lower costs)
Effect of Managerial Compensation

Framework:
- Manager receives either ownership or bonus (call option on value)
- Relative weights given by λ ($= 0$ for all ownership)
- Assume manager acts to maximize compensation
- Observe distortion in decisions

Expected bonus compensation $U(x, D)$:

\[
\text{maximize} \quad U(x, D) = (1 - \tau)(px - cx - rD) \int_{x}^{\infty} f(s) \, ds \\
+ \int_{s^*}^{x} (1 - \tau)(ps - cx - rD)f(s) \, ds \\
\text{subject to} \quad D(1 + rf) = D(1 + r)[1 - F(s^b)] + \alpha \int_{0}^{s^b} psf(s) \, ds, \\
0 \leq D \leq cx
\]

Overall objective: \((1 - \lambda)V(x, D) + \lambda U(x, D)\)
General Results

Effect on decisions \((x^m, D^m)\) for manager-optimal \(0 < \lambda < 1\):

- Aggressive production: \(x^m > x^*\)
- Conservative debt: \(D^m \leq D^*\)

Numerical costs in terms of \((V^* - V^m)/V^*\):

![Diagram showing numerical costs with varied parameters](image)
Production and Leverage Differences

Effect of λ relative to optimal decisions:

- Greater effect on production for low-margin
- No debt after λ exceeds tax rate τ
Observations on Bonus Compensation

Effect on value:
- Greatest for low-margin firms
- Little impact on high-margin firms
- Potential overall benefit from options for high-growth (high-margin)

Effect on production and leverage:
- Most pronounced on low-margin for production
- Debt conservatism impacts low-margin most
Conclusions

Results:

- Capital restriction may cause sub-optimal production decisions
- Mistaken production choice generally worse than mistaken financing
- Low-margin producers face greater risk in not coordinating finance and operations
- Capital structure may be U-shaped function of operating margin
- Bonus compensation creates aggressive production and conservative debt - worst for low-margin

Caveats:

- Assumed risk-neutral demand transformation and full disclosure on debt offer
- Only single-period debt (no explicit issuing cost); No explicit investment timing
- Multi-stage structural result for one product only
- No competitor and supply chain interactions (*in process*)