Dynamic Portfolio Optimization with Transaction Costs

John Birge*
University of Chicago
Booth School of Business

* Joint work with Jonas Ekblom, Linköping U.
General Theme

- Dynamic portfolio optimization with explicit consideration of transaction costs is challenging
- Several alternatives are possible including:
 - Discrete (coarse) multistage approximation (stochastic programming)
 - Discrete two-stage with transaction cost adjustment
 - Continuous ellipsoidal no-trade region approximation
 - Continuous no-trade boundary approximation
- Each appears to have advantages for different situations
- Results are sensitive to parameter combinations
Basic Model

• Basic setup:

Find \(x(t), b(t), s(t) \) to maximize \(E(u(x(T))) \) subject to \(x(0) \):

\[
e^T x^+(t) = e^T x(t) - \tau^T b(t) - \tau^T s(t),
\]

\[
e^T (b(t) + s(t)) = 0,
\]

\[
x^+(t) + (I + diag(\tau)) s(t) - (I - diag(\tau)) b(t) = x(t),
\]

where \(\tau \) represents transaction costs and \(x(0) \) gives initial conditions and, without control, \(x(t) \) follows geometric Brownian motion

\[
dx(t) = x(t)(\mu(t) + \Sigma(t)^{1/2} dW(t))
\]

where \(W(t) \) represents \(n \) independent Brownian motions.
Continuous-Time Results

Results: No trading in a region H; boundary at some distance from optimal no-transaction-cost point (for CRRA utility: $x^* = (1/\gamma) \sum^1 (\mu-r)$, Merton line)
General Result

\[x_1(t) \]

Merton line

No-trade region

Time \[T \]
Alternative Approaches
Alternative Approaches

- Multistage discrete time (stochastic programming)
- Two (single)-stage discrete (approximate transaction cost)
- Continuous ellipsoidal approximation
- Continuous boundary approximation
General observation: The continuous time solution is (approximately) equal to a discrete-time problem with a fixed boundary.

Boundary here: same as for one period to T^*.

$x_1(t)$

Merton line

No-trade region

Time T
Find \(x, b, s \) to minimize \(E[u(x(t + T^*))] \) s.t.

\[
e^T x(t) = e^T x_0(t) - \tau^T b(t) - \tau^T s(t),
\]

\[
e^T (b(t) + s(t)) = 0,
\]

\[
x(t) + (I + \text{diag}(\tau))s(t) - (I - \text{diag}(\tau))b(t) = x_0,
\]

where \(e^T x_0 = w(t) \).

Challenge: How to find \(T^* \)?
Effective Result in Terms of Average Number of Re-balances

Observation: T^* is approximately the average time between re-balances or $1/T^*$ is approximately the expected number of re-balances in a single period.

- Can normalize to a single period and use π/T^* for transaction cost.

- (Note: can learn T^* along with μ, Σ)
Ellipsoidal Region Approximation

Idea (Morton/Pliska): suppose each rebalancing has the same charge ϵ regardless of amount to re-balance

Result: Rebalance only if solution x_t leaves $x^* + \epsilon^{0.25} C$
Empirical Setup

Testing results:
- Simulate portfolios over time
- Vary T^*
- Observe final objectives and number of re-balances as a function of T^*

$\mu = 0.08$, $\Sigma = 0.04*I$, $\tau = 0.01$.

100 trials for each run; 100 periods.
Comparisons on final Sharpe ratio
Empirical Results

© JRBirge
INFORMS San Francisco, November 2014
Adjustment for Different Volatilities

- The value of T^* will vary depending on μ and Σ (which may vary over time)
- An approximation to deal with variation is to assign T^* as a function (e.g., a multiple λ) of the portfolio volatility $(x^T \Sigma x)^{1/2}$
- Now, the learning can occur on μ, Σ, λ
Conclusions

• Transaction costs create difficulties for portfolio optimization
• Finding the no-trade region is difficult in higher dimensions
• Finding an effectively equivalent single-period formulation with appropriate modification of the transaction cost can approximate the continuous-time solution
Thank you!

?