Productivity, Supply Chains, and the Structure of Firms

John R. Birge

University of Chicago Booth School of Business (some work joint with Alex Yang, LBS, and Jing Wu, Chicago Booth)

City University of Hong Kong
Supply chains operate as financial vehicles that can also help with coordination

Multiple suppliers as creditors can create difficulties

Correlation and reliability issues of suppliers and creditors create nonlinear effects on the value of supplier connections

Including nonlinear effects leads to a wide variety of equilibrium network configurations

New databases (e.g., Bloomberg SPLC) provide opportunities to investigate financial and operational supply chain network interactions
Outline

- Basic of trade credit interactions
- Conflict examples with multiple creditors
- Basic network configurations
- Empirical data analysis

Our data: Compustat North America quarterly financial statements for retailers (NAICS code: 441 - 454) period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st total 2,117 firm-years median size: $424 million

Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

- Compustat North America quarterly financial statements

- retailers (NAICS code: 441 - 454)

- period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st

Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

- Compustat North America quarterly financial statements
- retailers (NAICS code: 441 - 454)
- period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st
- total 2,117 firm-years
- median size: $424 million

Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

- Compustat North America quarterly financial statements
- retailers (NAICS code: 441 - 454)
- period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st
- total 2,117 firm-years
- median size: $424 million

Figure: balance sheet items as a fraction of total assets (median)
What Should We Know About Trade Credit?

- Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

- Compustat North America quarterly financial statements

- Retailers (NAICS code: 441 - 454)

- Period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st

- Total 2,117 firm-years

- Median size: $424 million

Figure: balance sheet items as a fraction of total assets (median)

- Rajan and Zingales (1995): 15% of total assets (debt in current liabilities: 7.4%).

Our data:

- Compustat North America quarterly financial statements
- Retailers (NAICS code: 441 - 454)
- Period: 1999 - 2008, fiscal year ends at Dec 31st or Jan 31st
- Total 2,117 firm-years
- Median size: $424 million

Figure: Balance sheet items as a fraction of total assets (median)
Trade Credit Can Be Risky!

On November 10th, 2008, Circuit City filed for bankruptcy. Total accounts payable: $754.5 million (total liabilities: $2.32 billions). Out of its 50 largest unsecured creditors, 48 were trade creditors. 48th (Kingston): $1.65 million... 3rd (Sony): $60.01 million 2nd (Samsung): $115.93 million 1st (Hewlett-Packard): $118.80 million
On November 10th, 2008, Circuit City filed for bankruptcy.
On November 10th, 2008, Circuit City filed for bankruptcy.

- Total accounts payable: $754.5 million (total liabilities: $2.32 billions)
Trade Credit Can Be Risky!

On November 10th, 2008, Circuit City filed for bankruptcy.

- Total accounts payable: $754.5 million (total liabilities: $2.32 billions)
- Out of its 50 largest unsecured creditors, 48 were trade creditors.
 - 48th (Kingston): $1.65 million
 - ...
 - 3rd (Sony): $60.01 million
 - 2nd (Samsung): $115.93 million
 - 1st (Hewlett-Packard): $118.80 million
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as fixed in an industry
 - net period ≤ 30 days
 - high implicit interest (e.g. 2/10 net 30)
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as **fixed in an industry**
 - net period \(\leq 30 \text{ days} \)
 - high implicit interest (e.g. 2/10 net 30)

- Petersen and Rajan (1994, 1997)
 - expensive substitute for institutional funding
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as fixed in an industry
 - net period \leq 30 days
 - high implicit interest (e.g. 2/10 net 30)

- Petersen and Rajan (1994, 1997)
 - expensive substitute for institutional funding

Figure: Table VI in Petersen and Rajan (1994)
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as fixed in an industry
 - net period ≤ 30 days
 - high implicit interest (e.g. 2/10 net 30)

- Petersen and Rajan (1994, 1997)
 - expensive substitute for institutional funding

Figure: Table VI in Petersen and Rajan (1994)
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as fixed in an industry
 - net period ≤ 30 days
 - high implicit interest (e.g. 2/10 net 30)

- Petersen and Rajan (1994, 1997)
 - expensive substitute for institutional funding

Figure: Table VI in Petersen and Rajan (1994)
The “Truth” and the Hidden Truth

- Ng. et al (1999)
 - quoted as fixed in an industry
 - net period ≤ 30 days
 - high implicit interest (e.g. 2/10 net 30)

- Petersen and Rajan (1994, 1997)
 - expensive substitute for institutional funding

![Diagram](image)

Figure: Table VI in Petersen and Rajan (1994)
The “Flexibility” in Trade Credit

2/10 Net 30

Days Payable
Cumulative Distribution

Cumulative Distribution vs. Days Payable
The “Flexibility” in Trade Credit

Days Payable
Cumulative Distribution

2/10 Net 30
All Firm (N = 2127)
The “Flexibility” in Trade Credit

- 2/10 Net 30
- All Firm (N = 2127)
- Cash/Sales >0.05 (N = 675)
Flexibility within a Subcategory

<table>
<thead>
<tr>
<th>Subcategory in Retail (North America Industry Classification System)</th>
<th>Num. of firm-years</th>
<th>Days Payable 25%</th>
<th>Days Payable 50%</th>
<th>Days Payable 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All retailers</td>
<td>2127</td>
<td>27.8</td>
<td>41.1</td>
<td>58.8</td>
</tr>
<tr>
<td>Motor vehicle and parts dealers (441)</td>
<td>183</td>
<td>5.7</td>
<td>13.2</td>
<td>66.9</td>
</tr>
<tr>
<td>Furniture and home furnishings stores (442)</td>
<td>62</td>
<td>34.1</td>
<td>57.9</td>
<td>70.4</td>
</tr>
<tr>
<td>Electronics and appliance stores (443)</td>
<td>97</td>
<td>33.3</td>
<td>39.4</td>
<td>49.8</td>
</tr>
<tr>
<td>Building material and garden equipment and supplies dealers (444)</td>
<td>68</td>
<td>24.4</td>
<td>34.9</td>
<td>50.3</td>
</tr>
<tr>
<td>Food and beverage stores (445)</td>
<td>156</td>
<td>21.6</td>
<td>25.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Health and personal care stores (446)</td>
<td>155</td>
<td>30.2</td>
<td>42.8</td>
<td>63.0</td>
</tr>
<tr>
<td>Gasoline stations (447)</td>
<td>31</td>
<td>8.3</td>
<td>18.3</td>
<td>28.0</td>
</tr>
<tr>
<td>Clothing and clothing accessories stores (448)</td>
<td>543</td>
<td>29.5</td>
<td>38.8</td>
<td>52.6</td>
</tr>
<tr>
<td>Sporting goods, hobby, book, and music stores (451)</td>
<td>208</td>
<td>49.3</td>
<td>62.5</td>
<td>88.5</td>
</tr>
<tr>
<td>General merchandise stores (452)</td>
<td>259</td>
<td>31.3</td>
<td>41.5</td>
<td>52.3</td>
</tr>
<tr>
<td>Miscellaneous store retailers (453)</td>
<td>109</td>
<td>27.1</td>
<td>41.3</td>
<td>49.3</td>
</tr>
<tr>
<td>Nonstore retailers (454)</td>
<td>256</td>
<td>32.2</td>
<td>48.0</td>
<td>64.0</td>
</tr>
</tbody>
</table>
Flexibility within a Subcategory

<table>
<thead>
<tr>
<th>Subcategory in Retail (North America Industry Classification System)</th>
<th>Num. of firm-years</th>
<th>Days Payable</th>
</tr>
</thead>
<tbody>
<tr>
<td>All retailers</td>
<td>2127</td>
<td>27.8</td>
</tr>
<tr>
<td>Motor vehicle and parts dealers (441)</td>
<td>183</td>
<td>5.7</td>
</tr>
<tr>
<td>Furniture and home furnishings stores (442)</td>
<td>62</td>
<td>34.1</td>
</tr>
<tr>
<td>Electronics and appliance stores (443)</td>
<td>97</td>
<td>33.3</td>
</tr>
<tr>
<td>Building material and garden equipment and supplies dealers (444)</td>
<td>68</td>
<td>24.4</td>
</tr>
<tr>
<td>Food and beverage stores (445)</td>
<td>156</td>
<td>21.6</td>
</tr>
<tr>
<td>Health and personal care stores (446)</td>
<td>155</td>
<td>30.2</td>
</tr>
<tr>
<td>Gasoline stations (447)</td>
<td>31</td>
<td>8.3</td>
</tr>
<tr>
<td>Clothing and clothing accessories stores (448)</td>
<td>543</td>
<td>29.5</td>
</tr>
<tr>
<td>Sporting goods, hobby, book, and music stores (451)</td>
<td>208</td>
<td>49.3</td>
</tr>
<tr>
<td>General merchandise stores (452)</td>
<td>259</td>
<td>31.3</td>
</tr>
<tr>
<td>Miscellaneous store retailers (453)</td>
<td>109</td>
<td>27.1</td>
</tr>
<tr>
<td>Nonstore retailers (454)</td>
<td>256</td>
<td>32.2</td>
</tr>
</tbody>
</table>
Flexibility within a Subcategory

<table>
<thead>
<tr>
<th>Subcategory in Retail (North America Industry Classification System)</th>
<th>Num. of firm-years</th>
<th>Days Payable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>All retailers</td>
<td>2127</td>
<td>27.8</td>
</tr>
<tr>
<td>Motor vehicle and parts dealers (441)</td>
<td>183</td>
<td>5.7</td>
</tr>
<tr>
<td>Furniture and home furnishings stores (442)</td>
<td>62</td>
<td>34.1</td>
</tr>
<tr>
<td>Electronics and appliance stores (443)</td>
<td>97</td>
<td>33.3</td>
</tr>
<tr>
<td>Building material and garden equipment and supplies dealers (444)</td>
<td>68</td>
<td>24.4</td>
</tr>
<tr>
<td>Food and beverage stores (445)</td>
<td>156</td>
<td>21.6</td>
</tr>
<tr>
<td>Health and personal care stores (446)</td>
<td>155</td>
<td>30.2</td>
</tr>
<tr>
<td>Gasoline stations (447)</td>
<td>31</td>
<td>8.3</td>
</tr>
<tr>
<td>Clothing and clothing accessories stores (448)</td>
<td>543</td>
<td>29.5</td>
</tr>
<tr>
<td>Sporting goods, hobby, book, and music stores (451)</td>
<td>208</td>
<td>49.3</td>
</tr>
<tr>
<td>General merchandise stores (452)</td>
<td>259</td>
<td>31.3</td>
</tr>
<tr>
<td>Miscellaneous store retailers (453)</td>
<td>109</td>
<td>27.1</td>
</tr>
<tr>
<td>Nonstore retailers (454)</td>
<td>256</td>
<td>32.2</td>
</tr>
</tbody>
</table>
What Should We Know About Trade Credit?

Trade Credit and Inventory

Days Payable vs. Days Inventory

- 441 (Motor vehicle and parts dealers)
- 442
- 443
- 444
- 445
- 446
- 447
- 448

Birge (Chicago Booth)
Trade Credit and Inventory

- Days Inventory vs. Days Payable
- Net 30: 0 days
- 441 (Motor vehicle and parts dealers)

Source: Birge (Chicago Booth)
Trade Credit and Inventory

Days Payable = 18.3 + 0.26 Days Inventory
(t-stat) (2.44) (3.01)

Days Payable = 18.3 + 0.26 Days Inventory
(t-stat) (2.44) (3.01)

441 (Motor vehicle and parts dealers)

Net 30

Days Payable

Days Inventory
Trade Credit and Inventory

Days Payable = 18.3 + 0.26 Days Inventory
(t-stat) (2.44) (3.01)

Days Payable = 18.3 + 0.26 Days Inventory
(t-stat) (2.44) (3.01)
Extension: Roles for Multiple Creditors and Priority Rules...

- Focus: Multiple Creditors and Priority Rules;
Extension: Roles for Multiple Creditors and Priority Rules.

- Focus: Multiple Creditors and Priority Rules;
- What is priority?
Extension: Roles for Multiple Creditors and Priority Rules. . .

- Focus: Multiple Creditors and Priority Rules;
- What is priority?
 - the order in which claims (bank debts, trade credit, etc.) are paid in bankruptcy.
Extension: Roles for Multiple Creditors and Priority Rules.

- **Focus:** Multiple Creditors and Priority Rules;

- **What is priority?**
 - the order in which claims (bank debts, trade credit, etc.) are paid in bankruptcy.

- **What are we interested in?**
What Should We Know About Trade Credit?

Extension: Roles for Multiple Creditors and Priority Rules...

- **Focus:** Multiple Creditors and Priority Rules;
- **What is priority?**
 - the order in which claims (bank debts, trade credit, etc.) are paid in bankruptcy.
- **What are we interested in?**
 - Priority rules related to trade credit;
Extension: Roles for Multiple Creditors and Priority Rules.

Focus: Multiple Creditors and Priority Rules;

What is priority?

- the order in which claims (bank debts, trade credit, etc.) are paid in bankruptcy.

What are we interested in?

- Priority rules related to trade credit;
- The influence of priorities on trade credit usage and chain performance;
Extension: Roles for Multiple Creditors and Priority Rules.

- Focus: Multiple Creditors and Priority Rules;
- What is priority?
 - the order in which claims (bank debts, trade credit, etc.) are paid in bankruptcy.
- What are we interested in?
 - Priority rules related to trade credit;
 - The influence of priorities on trade credit usage and chain performance;
 - Priorities and other trade credit theories.
Priority Rules

- General Case:
Priority Rules

- General Case:
 - Pre-petition: general unsecured claim;
Priority Rules

- General Case:
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.
Priority Rules

- **General Case:**
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- **Trade Creditors’ Reclamation Rights:**
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA) § 546(c): reclamation of goods or value within 45 days before bankruptcy;
 - Chapter 11 Critical Vendor Motion: reclamation within 90 days;
 - BAPCPA § 503(b)(9): administrative priority claims on goods sold up to 20 days before bankruptcy;
Priority Rules

- **General Case:**
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- **Trade Creditors’ Reclamation Rights:**
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
Priority Rules

- **General Case:**
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- **Trade Creditors’ Reclamation Rights:**
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA) §546(c): reclamation of goods or value within 45 days before bankruptcy;
Priority Rules

- General Case:
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- Trade Creditors’ Reclamation Rights:
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA) §546(c): reclamation of goods or value within 45 days before bankruptcy;
 - Chapter 11 Critical Vendor Motion: reclamation within 90 days;
Priority Rules

- **General Case:**
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- **Trade Creditors’ Reclamation Rights:**
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA) §546(c): reclamation of goods or value within 45 days before bankruptcy;
 - Chapter 11 Critical Vendor Motion: reclamation within 90 days;
 - BAPCPA §503(b)(9): administrative priority claims on goods sold up to 20 days before bankruptcy;
Priority Rules

- **General Case:**
 - Pre-petition: general unsecured claim;
 - Post-petition: administrative priority.

- **Trade Creditors’ Reclamation Rights:**
 - Uniform Commercial Code (U.C.C.) § 2-702: reclamation of goods or value within 10 days;
 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA) §546(c): reclamation of goods or value within 45 days before bankruptcy;
 - Chapter 11 Critical Vendor Motion: reclamation within 90 days;
 - BAPCPA §503(b)(9): administrative priority claims on goods sold up to 20 days before bankruptcy;

- **How Do Judges Rule?**
Notations and Assumptions

- A bank loan with market value B and face value L_b
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit L_s
- Total liabilities: $L_t = L_b + L_s$
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
- Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.

Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
- Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.
- No distress costs;
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s

Total liabilities: $L_t = L_b + L_s$

Default thresholds: θ_b and θ_s

Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.

- No distress costs;

- The bank loan market is perfectly competitive:

$$B = \int_0^{\theta_b} l_b(y) dF(y) + L_b \bar{F}(L_b)$$
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
- Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.
- No distress costs;
- The bank loan market is perfectly competitive:

\[
B = \int_0^{\theta_b} l_b(y) dF(y) + L_b \bar{F}(L_b)
\]
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
- Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.
- No distress costs;
- The bank loan market is perfectly competitive:

$$B = \int_0^{\theta_b} l_b(y)dF(y) + L_b \bar{F}(L_b)$$
Notations and Assumptions

- A bank loan with market value B and face value L_b
- Trade credit with wholesale price w and line of trade credit \bar{L}_s
- Total liabilities: $L_t = L_b + L_s$
- Default thresholds: θ_b and θ_s
- Allocation rule: $l_b(y)$ and $l_s(y)$ (y is the total value)
 - only depends on total payoff y.
- No distress costs;
- The bank loan market is perfectly competitive:

\[B = \int_0^{\theta_b} l_b(y) dF(y) + L_b \bar{F}(L_b) \]
The Model

The retailer decides whether to invest in the generic project.

The supplier proposes a contract; the retailer places an order.

The order is delivered.

Both demand and the generic project payoff are realized.

If yes, the retailer borrows a bank loan to finance this project.

A noisy signal of the realizations of payoffs are revealed.

The retailer uses trade credit or bank loan to finance inventory.

Bank loan and trade credit are paid off, or the retailer default.
The Model

- “Selling to the newsvendor”: one supplier with production cost c, one retailer with retail price $p = 1$, salvage value $s = 0$;
The Model

- “Selling to the newsvendor”: one supplier with production cost c, one retailer with retail price $p = 1$, salvage value $s = 0$;

- One type of goods, all three parties know and agree on demand distribution $\xi \sim F(y) \ (f(y), \bar{F}(y) = 1 - F(y), \ g(y) = y \frac{f(y)}{\bar{F}(y)});$
“Selling to the newsvendor”: one supplier with production cost c, one retailer with retail price $p = 1$, salvage value $s = 0$;

One type of goods, all three parties know and agree on demand distribution $\xi \sim F(y) (f(y), \bar{F}(y) = 1 - F(y), g(y) = y \frac{f(y)}{\bar{F}(y)});$

A long term (generic) project with risky payoff;
“Selling to the newsvendor”: one supplier with production cost c, one retailer with retail price $p = 1$, salvage value $s = 0$;

One type of goods, all three parties know and agree on demand distribution $\xi \sim F(y) \ (f(y), \bar{F}(y) = 1 - F(y), \ g(y) = y \frac{f(y)}{\bar{F}(y)})$;

A long term (generic) project with risky payoff;

All parties are risk-neutral (or equivalent risk-neutral measure).
Fixing Wholesale Price \(w \)

1. Only a Bank Loan: M-M holds, \(\bar{F}(x^*) = w; \)
Fixing Wholesale Price w

1. Only a Bank Loan: M-M holds, $\bar{F}(x^*) = w$;

2. Only Trade Credit: $\bar{F}(\bar{L}_s^*) = \frac{c}{w}$;
Fixing Wholesale Price w

1. Only a Bank Loan: $M-M$ holds, $\bar{F}(x^*) = w$;

2. Only Trade Credit: $\bar{F}(\bar{L}_s^*) = \frac{c}{w}$;

Figure: $c = 0.4$, $\xi \sim \text{Uniform}[0, 1]$
Fixing Wholesale Price w

1. Only a Bank Loan: M-M holds, $\bar{F}(x^*) = w$;

2. Only Trade Credit: $\bar{F}(\bar{L}_s^*) = \frac{c}{w}$;

Figure: $c = 0.4$, $\xi \sim \text{Uniform}[0, 1]$
Trade Credit with High Priority

Proposition (Trade Credit with High Priority)

\[\exists \kappa_{ts}^n \geq 0 \text{ such that:} \]

1. when \(K < \kappa_{ts}^n \), the supplier does not offer trade credit;
2. when \(K \geq \kappa_{ts}^n \), the supplier offers a line of trade credit \(\bar{L}_s^* = \bar{F}^{-1}(c/w) \), and the retailer uses only trade credit.
Proposition (Trade Credit with High Priority)

\[\exists \kappa_n^{ts} \geq 0 \text{ such that:} \]

1. when \(K < \kappa_n^{ts} \), the supplier does not offer trade credit;
2. when \(K \geq \kappa_n^{ts} \), the supplier offers a line of trade credit \(\bar{L}_s^* = \bar{F}^{-1}(c/w) \), and the retailer uses only trade credit.
Proposition (Trade Credit with Low Priority)

Comparing with the case when trade credit is senior, when trade credit has low priority:

1. More retailers receive trade credit;
2. \(L_t^{ij} \leq L_s^* \) (less trade credit is offered);
3. The supplier’s profit is higher.
Comparing Different Priorities . . .

Figure: \(c = 0.6, \; w = 0.8, \; \xi \sim \text{Uniform}[0, 1] \)
Comparing Different Priorities . . .

Figure: \(c = 0.6, w = 0.8, \xi \sim \text{Uniform}[0, 1] \)
The Optimal Trade Credit Contract

Proposition

When demand uncertainty is the only risk the retailer faces, if the supplier has control of the wholesale price w, she offers unlimited trade credit with net terms, and the retailer only uses trade credit. Priority rules become irrelevant.
Priorities and Efficiency

Proposition

When the retailer has to borrow a bank loan, assigning trade credit with low priority improves the chain efficiency and the supplier’s profit, compared with the case when trade credit has high priority.
Priorities and Efficiency

Proposition

When the retailer has to borrow a bank loan, assigning trade credit with low priority improves the chain efficiency and the supplier’s profit, compared with the case when trade credit has high priority.

- When trade credit is junior, the supplier has the option to cut off trade credit.
Proposition

When the retailer has to borrow a bank loan, assigning trade credit with low priority improves the chain efficiency and the supplier’s profit, compared with the case when trade credit has high priority.

- When trade credit is junior, the supplier has the option to cut off trade credit.
- Anticipating that, the retailer increases cash holding.
Priorities and Efficiency

Proposition

When the retailer has to borrow a bank loan, assigning trade credit with low priority improves the chain efficiency and the supplier’s profit, compared with the case when trade credit has high priority.

- When trade credit is junior, the supplier has the option to cut off trade credit.
- Anticipating that, the retailer increases cash holding.
- When trade credit is senior, trade credit is offered only when it is riskless.
Empirical Tests of Priority Effects

BAPCA Effect Hypothesis

BAPCA (2005) raised the priority of trade credit through the 20-day administrative-claim and 45-day reclamation-right periods. The result should be a decrease in retailers’ use of trade credit and an increase in their use of bank debt.

Analysis

- Model as follows:

\[
Y_t = \sum_i \left(\frac{\text{Trade Payable}}{\text{Trade Payable} + \text{Debt in Current Liability}} \right)_{it},
\]

where \(t \) represents year and \(i \) for individual firms. Test the following specification:

\[
Y_t = \alpha + \beta_1 D_1 + \beta_2 D_2 + \beta_3 X_t + \epsilon_t,
\]

where \(D_1 \) and \(D_2 \) are dummies for 1999 – 2002 and 2006 – 2008 and \(X_t \) is GDP.
Relative Trade Credit Regression Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2002</td>
<td>-0.0397*</td>
<td>-0.0215*</td>
</tr>
<tr>
<td></td>
<td>(0.0089)</td>
<td>(0.0080)</td>
</tr>
<tr>
<td>2006-2008</td>
<td>-0.0188*</td>
<td>-0.0147*</td>
</tr>
<tr>
<td></td>
<td>(0.0095)</td>
<td>(0.0069)</td>
</tr>
<tr>
<td>GDP Growth</td>
<td></td>
<td>-0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0023)</td>
</tr>
<tr>
<td>Receivable</td>
<td></td>
<td>-2.4319*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.7498)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.820*</td>
<td>1.026*</td>
</tr>
<tr>
<td></td>
<td>(0.0067)</td>
<td>(0.0656)</td>
</tr>
<tr>
<td>Observations</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.67</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Notes:

- The standard errors are shown in the parenthesis. * represent coefficients significant at 5%.
- The reduction in trade credit is significant (4% or 1.4% according to the specification).
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
</tbody>
</table>
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
<tr>
<td>Liquidation Value</td>
<td>Senior</td>
</tr>
</tbody>
</table>
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
<tr>
<td>Liquidation Value</td>
<td>Senior</td>
</tr>
<tr>
<td>Signaling</td>
<td>Junior</td>
</tr>
</tbody>
</table>
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
<tr>
<td>Liquidation Value</td>
<td>Senior</td>
</tr>
<tr>
<td>Signaling</td>
<td>Junior</td>
</tr>
<tr>
<td>Bankruptcy Reorganization</td>
<td>Junior</td>
</tr>
</tbody>
</table>
Summary: Priority under Trade Credit Theories

<table>
<thead>
<tr>
<th>Theories of Trade Credit</th>
<th>“Optimal” Priority of Trade Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
<tr>
<td>Liquidation Value</td>
<td>Senior</td>
</tr>
<tr>
<td>Signaling</td>
<td>Junior</td>
</tr>
<tr>
<td>Bankruptcy Reorganization</td>
<td>Junior</td>
</tr>
<tr>
<td>Quality Guarantee</td>
<td>Junior</td>
</tr>
<tr>
<td>Theories of Trade Credit</td>
<td>“Optimal” Priority of Trade Credit</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Transaction Cost</td>
<td>Senior</td>
</tr>
<tr>
<td>Liquidation Value</td>
<td>Senior</td>
</tr>
<tr>
<td>Signaling</td>
<td>Junior</td>
</tr>
<tr>
<td>Bankruptcy Reorganization</td>
<td>Junior</td>
</tr>
<tr>
<td>Quality Guarantee</td>
<td>Junior</td>
</tr>
<tr>
<td>Risk-Sharing</td>
<td>Junior</td>
</tr>
</tbody>
</table>
Connections

- With other supply chain contracts:

 - Trade credit dominates price-only contract;
 - Trade credit can achieve "super-coordination".

 - Inventory is financed by a portfolio;
 - Raises questions of the true price of over-stocking.

 - With classical static capital structure theories:
 - Trade-off: risk-sharing vs. financial distress;
 - Pecking order: Cash \succ Trade Credit \succ Debt.

 - Potential for conflicts implies that trade credit not favored for firms facing negatively correlated risks (and, hence, diversification may destroy value).
Connections

- With other supply chain contracts:
 - trade credit *dominates* price-only contract;
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

Potential for conflicts implies that trade credit not favored for firms facing negatively correlated risks (and, hence, diversification may destroy value).
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a portfolio;
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a portfolio;
 - raises questions of the true price of over-stocking.
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a portfolio;
 - raises questions of the true price of over-stocking.

- With classical static capital structure theories:
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a portfolio;
 - raises questions of the true price of over-stocking.

- With classical static capital structure theories:
 - trade-off: risk-sharing vs. financial distress;
Connections

- With other supply chain contracts:
 - trade credit *dominates* price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a *portfolio*;
 - raises questions of the true price of over-stocking.

- With classical static capital structure theories:
 - trade-off: risk-sharing vs. financial distress;
 - pecking order: *Cash* ≫ *Trade Credit* ≫ *Debt*.
Connections

- With other supply chain contracts:
 - trade credit dominates price-only contract;
 - trade credit can achieve “super-coordination”.

- With inventory management:
 - inventory is financed by a portfolio;
 - raises questions of the true price of over-stocking.

- With classical static capital structure theories:
 - trade-off: risk-sharing vs. financial distress;
 - pecking order: Cash \succ Trade Credit \succ Debt.
 - Potential for conflicts implies that trade credit not favored for firms facing negatively correlated risks (and, hence, diversification may destroy value)
Network Implications

1. Correlation among business interests and suppliers may create opportunities for increased risk.

2. Diversification may lead to reduced incentives for financing.

3. Independent supplier and customer interests may have value, but negative correlation may be counterindicated.

4. Nonlinear (joint firm) effects may be critical in the formation of supply chain links.

5. Nonlinear effects may have implications for supply chain structure.
Network Implications

1. Correlation among business interests and suppliers may create opportunities for increased risk
2. Diversification may lead to reduced incentives for financing
Network Implications

1. Correlation among business interests and suppliers may create opportunities for increased risk
2. Diversification may lead to reduced incentives for financing
3. Independent supplier and customer interests may have value, but negative correlation may be counterindicated
Network Implications

1. Correlation among business interests and suppliers may create opportunities for increased risk
2. Diversification may lead to reduced incentives for financing
3. Independent supplier and customer interests may have value, but negative correlation may be counterindicated
4. Nonlinear (joint firm) effects may be critical in the formation of supply chain links
Network Implications

1. Correlation among business interests and suppliers may create opportunities for increased risk.
2. Diversification may lead to reduced incentives for financing.
3. Independent supplier and customer interests may have value, but negative correlation may be counterindicated.
4. Nonlinear (joint firm) effects may be critical in the formation of supply chain links.
5. Nonlinear effects may have implications for supply chain structure.
Network Model

1. Previous work: Jackson and Wolinsky (1996): Firm i maximizes utility u_i by creating connections ij in graph G (distance d_{ij}) where

$$u_i = w_{ii} + \sum_{j \neq i} \delta^{d_{ij}} w_{ij} - \sum_{(ij) \in G} c_{ij}.$$
Network Model

Previous work: Jackson and Wolinsky (1996): Firm i maximizes utility u_i by creating connections ij in graph G (distance d_{ij}) where

$$u_i = w_{ii} + \sum_{j \neq i} \delta^{d_{ij}} w_{ij} - \sum_{(ij) \in G} c_{ij}.$$

Results: For symmetric networks, either G is complete, a star graph, or linkless.
Network Model

1. Previous work: Jackson and Wolinsky (1996): Firm i maximizes utility u_i by creating connections ij in graph G (distance d_{ij}) where

$$u_i = w_{ii} + \sum_{j \neq i} \delta d_{ij} w_{ij} - \sum_{(ij) \in G} c_{ij}.$$

2. Results: For symmetric networks, either G is complete, a star graph, or linkless.

3. Innovation: allow nonlinear effects $w_{i,j,k} x_{ij} x_{ik}$ where $x_{ij} = 1$ for $(ij) \in G$
Network Model

1. Previous work: Jackson and Wolinsky (1996): Firm i maximizes utility u_i by creating connections ij in graph G (distance d_{ij}) where

$$u_i = w_{ii} + \sum_{j \neq i} \delta^{d_{ij}} w_{ij} - \sum_{(ij) \in G} c_{ij}.$$

2. Results: For symmetric networks, either G is complete, a star graph, or linkless.

3. Innovation: allow nonlinear effects $w_{i,jk}x_{ij}x_{ik}$ where $x_{ij} = 1$ for $(ij) \in G$

- $w_{i,jk}$ may be positive or negative depending on correlation of j and k interests and their reliability
Network Model

1. Previous work: Jackson and Wolinsky (1996): Firm i maximizes utility u_i by creating connections ij in graph G (distance d_{ij}) where

$$u_i = w_{ii} + \sum_{j \neq i} \delta^{d_{ij}} w_{ij} - \sum_{(ij) \in G} c_{ij}.$$

2. Results: For symmetric networks, either G is complete, a star graph, or linkless.

3. Innovation: allow nonlinear effects $w_{i,jk}x_{ij}x_{ik}$ where $x_{ij} = 1$ for $(ij) \in G$

- $w_{i,jk}$ may be positive or negative depending on correlation of j and k interests and their reliability
- Hypothesis: negative correlation yields negative $w_{i,jk}$.

Implications for Supply Chain Structure

- Even symmetric networks with this cost structure may have widely varying equilibrium structure
- With a single parameter α for the correlation, a full range of degree distributions exist
- Examples:
Implications for Supply Chain Structure

- Even symmetric networks with this cost structure may have widely varying equilibrium structure
- With a single parameter α for the correlation, a full range of degree distributions exist
- Examples:
Implications for Supply Chain Structure

- Even symmetric networks with this cost structure may have widely varying equilibrium structure.
- With a single parameter α for the correlation, a full range of degree distributions exist.
- Examples:
Implications for Supply Chain Structure

- Even symmetric networks with this cost structure may have widely varying equilibrium structure
- With a single parameter α for the correlation, a full range of degree distributions exist
- Examples:
Implications for Supply Chain Structure

- Even symmetric networks with this cost structure may have widely varying equilibrium structure.
- With a single parameter α for the correlation, a full range of degree distributions exist.
- Examples:
Verifying Hypotheses Empirically

- New database: Bloomberg SPLC, 25000×25000 supply chain connections
- With effort can be fully collected (so far, 8000×8000)
- Initial observations: Size distribution:
Verifying Hypotheses Empirically

- New database: Bloomberg SPLC, 25000×25000 supply chain connections
- With effort can be fully collected (so far, 8000×8000)
- Initial observations: Size distribution:
Verifying Hypotheses Empirically

- New database: Bloomberg SPLC, 25000×25000 supply chain connections
- With effort can be fully collected (so far, 8000×8000)
- Initial observations: Size distribution:
Verifying Hypotheses Empirically

- New database: Bloomberg SPLC, 25000×25000 supply chain connections
- With effort can be fully collected (so far, 8000×8000)
- Initial observations: Size distribution:
Verifying Hypotheses Empirically

- New database: Bloomberg SPLC, 25000×25000 supply chain connections
- With effort can be fully collected (so far, 8000×8000)
- Initial observations: Size distribution:
Degree distributions

- Date for 8000×8000 firms
- In- and out-degree follows exponential distributions
Degree distributions

- Date for 8000×8000 firms
- In- and out-degree follows exponential distributions
Degree distributions

- Date for 8000×8000 firms
- In- and out-degree follows exponential distributions
Degree distributions

- Date for 8000×8000 firms
- In- and out-degree follows exponential distributions
Degree distributions

- Date for 8000×8000 firms
- In- and out-degree follows exponential distributions

![Graphs showing log out and in degree distributions](image-url)
Supply Chain Relationship Hypotheses

- **Performance metric: stock price**
- **First-order effects**
 - Suppliers’ and customers’ concurrent performance relates to the firm
 - Supplier momentum (one-month lag) may be related to firm performance
 - Customer momentum (following Cohen and Frazzini (2008) not related to firm performance
- **Second-order (systematic risk) effects**
 - Centrality influences firm risk and return performance
 - More central manufacturing firms have lower returns
 - More central logistics firms have higher returns
First-Order Effects

Model:

\[r_{i,t} = \alpha + \beta_1 r_{i,t-1} + \beta_2 \sum_j w_{ij}^{in} r_{j,t-1} + \beta_3 \sum_j w_{ij}^{out} r_{j,t-1} \]

\[+ \beta_4 \sum_j w_{ij}^{in} r_{j,t} + \beta_5 \sum_j w_{ij}^{out} r_{j,t} + \epsilon_{i,t}. \]

Coefficients \(\alpha \) and \(\beta_k, k = 1, \ldots, 5 \) (estimated); \(\sum_j w_{ij}^{in} r_{j,t-1} \) - one-month supplier momentum, \(\sum_j w_{ij}^{out} r_{j,t-1} \) - one-month customer momentum, \(\sum_j w_{ij}^{in} r_{j,t} \) - concurrent supplier return, and \(\sum_j w_{ij}^{out} r_{j,t} \) - the concurrent customer return.

Use US firms in SPLC.

Monthly returns over 2010-2012.

Include common risk factors (MKT, SMB, HML, MOM).
First-Order Results

Table: Fama-Macbeth Regression of Concurrent Returns and Momentum.

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>$r_{i,t} - 1$</th>
<th>$\sum_j w_{ij}^{\text{in}} r_{j,t} - 1$</th>
<th>$\sum_j w_{ij}^{\text{out}} r_{j,t} - 1$</th>
<th>$\sum_j w_{ij}^{\text{in}} r_{j,t}$</th>
<th>$\sum_j w_{ij}^{\text{out}} r_{j,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. Coef</td>
<td>-0.001</td>
<td>-0.088***</td>
<td>0.036**</td>
<td>0.024</td>
<td>0.399***</td>
<td>0.755***</td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(-0.96)</td>
<td>(-11.06)</td>
<td>(2.17)</td>
<td>(0.95)</td>
<td>(20.90)</td>
<td>(3.12)</td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.009***</td>
<td>-0.090***</td>
<td>0.057***</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(10.38)</td>
<td>(-9.08)</td>
<td>(2.96)</td>
<td>(0.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.009***</td>
<td>-0.047***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(10.53)</td>
<td>(-6.96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.008***</td>
<td></td>
<td>0.022**</td>
<td></td>
<td>(1.83)</td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(11.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.008***</td>
<td></td>
<td>-0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(10.92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.003***</td>
<td></td>
<td></td>
<td>0.619***</td>
<td>(37.25)</td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(3.61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>-0.002**</td>
<td></td>
<td></td>
<td></td>
<td>0.992***</td>
<td>(4.54)</td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(-2.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>0.004***</td>
<td></td>
<td>0.018*</td>
<td>0.625***</td>
<td>(36.44)</td>
<td></td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(4.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>-0.002*</td>
<td></td>
<td></td>
<td></td>
<td>1.001***</td>
<td>(4.51)</td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(-1.92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave. Coef</td>
<td>-0.001*</td>
<td></td>
<td></td>
<td></td>
<td>0.393***</td>
<td>0.744***</td>
</tr>
<tr>
<td>(T-Stat)</td>
<td>(-1.80)</td>
<td></td>
<td></td>
<td></td>
<td>(22.48)</td>
<td>(3.20)</td>
</tr>
</tbody>
</table>

*p-value < 10%, **p-value < 5%, ***p-value < 1%
Second-Order Effects

- **Model:**
 - Characterize centrality by eigenvector centrality and in- and out-degree centrality
 - Use average of industry if no relationship in dataset
 - Split by NAICS code (3 for manufacturing, 4 for logistics)

- Split into quintiles of centrality.
- Observe trends and significance in returns across quintiles.
Second-Order Results: Manufacturing

Table: Factor Sensitivities by In-degree Centrality for Manufacturing Firms.

<table>
<thead>
<tr>
<th>N3 Portfolio</th>
<th>Alpha(%)</th>
<th>$R_{mt} - R_{ft}$</th>
<th>SMB</th>
<th>HML</th>
<th>MOM</th>
<th>Adj. R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(Low)</td>
<td>0.340(0.99)</td>
<td>1.250***</td>
<td>0.327(1.17)</td>
<td>-0.366(-1.68)</td>
<td>-0.145(-1.27)</td>
<td>92.13</td>
</tr>
<tr>
<td></td>
<td>0.630*(1.81)</td>
<td>1.119***</td>
<td>(9.90)</td>
<td>(1.17)</td>
<td>(-1.68)</td>
<td>(1.27)</td>
</tr>
<tr>
<td>2</td>
<td>0.077(0.22)</td>
<td>1.220***</td>
<td>0.491(1.85)</td>
<td>-0.594**(-2.86)</td>
<td>0.025(0.23)</td>
<td>91.10</td>
</tr>
<tr>
<td></td>
<td>0.414(1.25)</td>
<td>1.085***</td>
<td>(10.07)</td>
<td>(1.85)</td>
<td>(-2.86)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>3</td>
<td>0.430(1.26)</td>
<td>0.902***</td>
<td>-0.561*(-2.00)</td>
<td>-0.205(-0.94)</td>
<td>0.079(0.69)</td>
<td>86.05</td>
</tr>
<tr>
<td></td>
<td>0.175(0.50)</td>
<td>1.091***</td>
<td>(9.61)</td>
<td>(-2.00)</td>
<td>(-0.94)</td>
<td>(0.69)</td>
</tr>
<tr>
<td>4</td>
<td>0.105(0.37)</td>
<td>1.066***</td>
<td>-0.079(-0.31)</td>
<td>-0.338(-1.73)</td>
<td>0.022(0.22)</td>
<td>92.44</td>
</tr>
<tr>
<td></td>
<td>0.127(0.41)</td>
<td>1.098***</td>
<td>(10.83)</td>
<td>(-0.31)</td>
<td>(-1.73)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>5(High)</td>
<td>0.053(0.16)</td>
<td>0.804***</td>
<td>-0.659***(-3.05)</td>
<td>-0.431**(-2.56)</td>
<td>0.009(0.10)</td>
<td>84.67</td>
</tr>
<tr>
<td></td>
<td>-0.170(-0.63)</td>
<td>1.006***</td>
<td>(11.52)</td>
<td>(-3.05)</td>
<td>(-2.56)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>High-Low</td>
<td>-0.287***(-2.87)</td>
<td>-0.446***</td>
<td>(11.52)</td>
<td>(-3.05)</td>
<td>(-2.56)</td>
<td>(0.10)</td>
</tr>
<tr>
<td></td>
<td>-0.800***(-8.52)</td>
<td>-0.113***</td>
<td>(-3.71)</td>
<td>(-13.10)</td>
<td>(-1.10)</td>
<td>(5.03)</td>
</tr>
</tbody>
</table>

*p-value|10%, **p-value|5%, ***p-value|1%
Second-Order Results: Logistics

Table: Factor Sensitivities by In-degree Centrality for Logistics Firms.

<table>
<thead>
<tr>
<th>N4 Portfolio</th>
<th>Alpha(%)</th>
<th>$R_{mt} - R_{ft}$</th>
<th>Factor Loadings</th>
<th>Adj. R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SMB</td>
<td>HML</td>
</tr>
<tr>
<td>1 (Low)</td>
<td>0.061</td>
<td>1.072***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(9.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.324</td>
<td>1.302***</td>
<td>-0.684</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>(-0.58)</td>
<td>(7.19)</td>
<td>(-1.53)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>2</td>
<td>0.327</td>
<td>1.078***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
<td>(10.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.327</td>
<td>1.153***</td>
<td>-0.875**</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(8.87)</td>
<td>(-2.72)</td>
<td>(-0.26)</td>
</tr>
<tr>
<td>3</td>
<td>0.493</td>
<td>0.973***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.01)</td>
<td>(8.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.242</td>
<td>1.142***</td>
<td>-0.427</td>
<td>-0.092</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(6.40)</td>
<td>(-0.97)</td>
<td>(-0.27)</td>
</tr>
<tr>
<td>4</td>
<td>0.703*</td>
<td>0.893***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.73)</td>
<td>(9.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.741</td>
<td>0.888***</td>
<td>0.737*</td>
<td>-0.571*</td>
</tr>
<tr>
<td></td>
<td>(1.67)</td>
<td>(6.20)</td>
<td>(2.08)</td>
<td>(-2.07)</td>
</tr>
<tr>
<td>5 (High)</td>
<td>0.922**</td>
<td>0.638***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.71)</td>
<td>(8.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.878**</td>
<td>0.735***</td>
<td>-0.140</td>
<td>-0.549**</td>
</tr>
<tr>
<td></td>
<td>(2.81)</td>
<td>(7.26)</td>
<td>(-0.56)</td>
<td>(-2.81)</td>
</tr>
<tr>
<td>High-Low</td>
<td>0.861***</td>
<td>-0.434***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.60)</td>
<td>(-14.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.202***</td>
<td>-0.567***</td>
<td>0.544***</td>
<td>-0.646***</td>
</tr>
<tr>
<td></td>
<td>(8.80)</td>
<td>(-12.82)</td>
<td>(4.97)</td>
<td>(-7.57)</td>
</tr>
</tbody>
</table>

*p-value|10%, **p-value|5%, ***p-value|1%
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.

3. Priority rules play an important role in trade credit usage and supply chain performance.
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.

3. Priority rules play an important role in trade credit usage and supply chain performance.

4. Negative correlation can lead to loss of value of trade credit (and connection).

5. Correlation creates opportunities for variety of network structures (supported in data).

6. Evidence of concurrent supplier and customer effects plus supplier momentum effects on returns.

7. Evidence of decreasing returns to centrality in manufacturing and increasing returns to centrality in logistics.
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.

3. Priority rules play an important role in trade credit usage and supply chain performance.

4. Negative correlation can lead to loss of value of trade credit (and connection).

5. Correlation creates opportunities for variety of network structures (supported in data).
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.

3. Priority rules play an important role in trade credit usage and supply chain performance.

4. Negative correlation can lead to loss of value of trade credit (and connection).

5. Correlation creates opportunities for variety of network structures (supported in data).

6. Evidence of concurrent supplier and customer effects plus supplier momentum effects on returns.
Conclusions

1. Trade credit can play an important role in flexibly sharing risk in supply chains.

2. Empirical evidence is consistent with a portfolio of credit for inventory financing.

3. Priority rules play an important role in trade credit usage and supply chain performance.

4. Negative correlation can lead to loss of value of trade credit (and connection).

5. Correlation creates opportunities for variety of network structures (supported in data).

6. Evidence of concurrent supplier and customer effects plus supplier momentum effects on returns.

7. Evidence of decreasing returns to centrality in manufacturing and increasing returns to centrality in logistics.
Thank you! Any questions?