The Sensitivity of Tests of the Intertemporal Allocation of Consumption to Near-Rational Alternatives

John H. Cochrane

Stable URL: http://links.jstor.org/sici?sici=0002-8282%28198906%2979%3A3%3C319%3ATSROT%3E2.0.CO%3B2-P

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aea.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
The Sensitivity of Tests of the Intertemporal Allocation of Consumption to Near-Rational Alternatives

By JOHN H. COCHRANE*

Suppose a consumer sets consumption equal to income each period, rather than follow the optimal permanent income decision rule. How much utility does he lose? This paper finds that the answer is typically less than 10¢ – $1 per quarter in environments specified by popular tests on aggregate data, and concludes that the theory does not make predictions in those environments that are robust to small costs of information, transactions, etc.

The theory of the intertemporal allocation of consumption is at the heart of macroeconomics and finance. Many studies have tested the theory using aggregate data, in particular as tests of the permanent income hypothesis and the consumption-based capital asset-pricing model, and they often reject the versions of the theory that they specify. However, it is not clear whether these statistical rejections imply a robust rejection of the basic theory (in favor of, say, “liquidity constraints”) or whether they are driven by the many simplifying assumptions of tractable and empirically useful models. The tests have also been criticized (among other reasons) for exploiting “too-fine” predictions of the theory, for example, that all individuals adjust their consumption on a weekly or monthly basis in response to announcements of government statistics or changes in prospective returns on the stock market.

As one way to address and quantify these doubts, this paper presents calculations of the utility cost to consumers of following alternative decision rules in the environments specified by the tests. For example, one calculation finds the utility loss suffered by an individual who sets consumption equal to income in each period rather than following the optimal decision rule specified by the permanent income hypothesis in the environment of Marjorie Flavin’s (1981) test.

These utility costs are typically less than 10¢ to $1 per quarter (or 3¢ to 30¢ per month), meaning that a steady stream of 10¢ to $1 per quarter would compensate the consumer for the utility loss he incurs by following the alternative decision rule. The utility costs are small because cyclical changes in consumption are small, and because the utility costs of deviations from an optimum are an order of magnitude smaller than the deviation itself. For example, the standard deviation of the growth rate of quarterly real per capita nondurable consumption in postwar U.S. data is 0.86 percentage points, and its level in 1986 was about $3,500 per year, implying a change of about $7.50 each quarter. Now suppose the representative consumer makes a mistake, and consumes $7.50 too little this quarter and \((1 + r) \times 7.50\) too much next quarter, thereby washing out the phenomenon of cyclical consumption changes. A simple calculation given below shows that this “mistake” implies at most a 6.5¢ utility loss if the consumer’s relative risk-aversion coefficient is 1 and a 65¢ utility loss if his relative risk aversion coefficient is 10.

Why do we care about the utility costs of alternative decision rules? Suboptimal decision rules that cost a trivial amount of utility or profit are called near-rational. Near-

*Department of Economics, University of Chicago, 1126 E. 59th St., Chicago IL 60637. I am grateful to George Akerlof, Martin Eichenbaum, Elizabeth Fama, Lars Hansen, the participants of the University of Chicago money workshop and especially to the two anonymous referees for many helpful comments. This research was supported in part by the National Science Foundation, under grant no. SES-8809912.
rational behavior can be most easily interpreted as small mistakes: people do not literally maximize, they follow heuristic decision processes that we model by maximization (this view is extensively articulated by Herbert Simon, for example, in Simon, 1978). Their actual decisions may deviate from the optimal decision rules if the utility costs of doing so are trivial. Using this interpretation, George Akerlof and Janet Yellen (1985a,b and 1987) argued for the principle that the predictions of a theory should be robust to near-rational behavior, and Akerlof (1979) applied this principle in the same way as in this paper to show that large deviations from optimal money holdings carry trivial costs.

In a second interpretation, the small mistakes are made by economists in modeling the world rather than by the agents we study. Empirically useful forms of economic theory gloss over many complexities of the decision problems that consumers actually face. There are small costs of transactions, information acquisition, decision, attention, etc., as well as the (hopefully) small effects of modeling simplifications to one consumption good, simple forms for the distributions of stochastic processes, simple depreciation schedules for durable goods, etc. We cannot know precisely what effect including these small corrections would have on the predictions of the theory until we work out a theory that includes them, which seems a hopeless task. But we can use the range of alternate decision rules that cost the consumer (say) $1 per quarter of utility in our model environment as a guide to the range of behavior we might expect the theory to predict if a small (fixed) cost of $1 per quarter were properly included.

More precisely, suppose we calculate the achieved level of utility as a function of decision rule parameters. Then we can use this (indirect) utility function to measure the model's economic power to predict decision rule parameters, just as we use the likelihood function to measure its statistical power to measure those parameters. The range of alternative decision rule parameters that generate utility within (say) $1 of the optimum is the range against which the theory has little economic power, just as the range of alternative decision rule parameters within a given fraction of the maximum likelihood is the range against which the theory has little statistical power.

It may happen that a test can statistically reject the optimal decision rule in favor of alternatives with small utility costs, or that the likelihood function is more curved than the utility function. This situation indicates that a statistical rejection might be driven by modeling simplifications rather than by a failure of the basic theory. Though macroeconomics is often accused of not having enough data to statistically reject any model, such a situation indicates the opposite: that tests are able to statistically distinguish alternatives that are not well-distinguished economically.

One limitation of this interpretation of utility loss calculations is that we should not expect near-rational decision rules to persist if there are institutions that can remove them. For example, consumers might be able to sign over their income streams to a firm, which then makes their consumption decisions for them and collects the surpluses available from reducing many consumers' small mistakes, or from reducing their small information costs if there are increasing returns in the activities corresponding to those costs. Pension plans, Christmas clubs, and mutual funds may in part perform these services for the problems of life-cycle and intra-year consumption allocations and for portfolio decisions. However, I know of no institutions that make cyclical allocations for the consumer—changes in consumption in response to changes in aggregate income or rates of return—which are the focus of the empirical literature and of this paper.

For this reason, propositions derived from dynamic optimization by firms alone (for example, Cochrane, 1988a) may be less sensitive to near-rational criticism. A suboptimal decision that costs IBM .1 percent of its profits is a small mistake from the firm's viewpoint, but quite valuable to a manager if he can improve the decision and capture some of the increased profit. Also, a firm that does not optimize can be taken over by a better set of managers, but there is no
analogy to the market for corporate control at the level of the individual consumer.\(^1\)

The body of this paper takes two approaches to argue that the range of decision rules that cost less than about $1 per quarter in the environments specified by popular tests of the intertemporal allocation of consumption is in fact large, and encompasses alternative decision rules that are economically extreme and that can account for statistically significant rejections. Section I shows that first-order deviations from an optimum carry only second-order utility losses, so there are always alternative decision rules for which the ratio of utility losses to the magnitude of the deviation are as small as one likes. Section II calculates the exact utility losses of following a variety of specific alternative decision rules in environments that are typical of tests in the empirical literature.

I. Near-Rationality and the Intertemporal Allocation of Consumption

One reason to suspect that the costs of many alternative decision rules are small is that first-order "mistakes" in decisions have second-order consequences for utility, or that there are always decisions close to the optimal one for which the ratio of utility losses to the deviation from the optimum can be made as small as one wishes. These points have been most recently popularized by Akrelof and Yellen in essentially static contexts. This section extends them to the dynamic and stochastic case considered by the theory of the intertemporal allocation of consumption. (See also Stephen Jones and James Stock, 1987, and Daniel Nelson, 1988).

The basic idea is most simply expressed in the context of the constrained maximization of a differentiable function \(f(x)\)

\[
\begin{align*}
\max_{\bar{x}} & \quad f(\bar{x}) \quad \text{s.t.} \quad p'_1 \bar{x} = w_1, \\
p'_2 \bar{x} = w_2, \ldots, p'_M \bar{x} = w_M,
\end{align*}
\]

where \(\bar{x}\) is a vector of choice variables. The first-order conditions are

\[Df(\bar{x}^*) = df(\bar{x}^*)/d\bar{x} = \sum_{i=1}^{M} \lambda_i p_i,\]

where \(\bar{x}^*\) denotes an optimum and \(\lambda_i\) are Lagrange multipliers. Consider a deviation \(\bar{x}^+ = \bar{x}^* + \Delta \bar{x}\) that satisfies the budget constraints, so \(p'_i \Delta \bar{x} = 0 \quad i = 1, \ldots, M\). The effect of this deviation on the objective is

\[
\begin{align*}
f(\bar{x}^+) &= f(\bar{x}^*) + 1/2 \Delta \bar{x}' D^2 f \Delta \bar{x} \\
&\quad + O(\lvert \Delta \bar{x} \rvert^3).
\end{align*}
\]

In words, (1) feasible first-order deviations in choice variables have second-order consequences. The definition of derivative and limit in (2) imply that (2) there are suboptimal feasible choices \(\bar{x}^+ = \bar{x}^* + \Delta \bar{x}\) for which the ratio of the size of the utility losses to the size of the deviation are as small as one wishes. Formally stated, for all \(\varepsilon > 0\), there is a \(\delta\) such that any \(\Delta \bar{x}\) that satisfies the constraints \(p'_i \Delta \bar{x} = 0 \quad i = 1, 2, \ldots, M\), and is smaller than \(\delta\), \(0 < |\Delta \bar{x}| < \delta\), has a ratio of utility losses to magnitude of deviation smaller than the given \(\varepsilon\),

\[
\frac{f(\bar{x}^*) - f(\bar{x}^* + \Delta \bar{x})}{|\Delta \bar{x}|} < \varepsilon.
\]

It is not necessary to consider only deviations from the precise optimum, as a version of the second statement holds near rather than precisely at the optimum: if \(f\) is twice differentiable, we can always choose a point near the optimum and a deviation from that point so that the ratio of losses to the deviation is arbitrarily small. This is shown in the Appendix.

\(^1\)An economic theory of the contracting problems that prevent the emergence of markets in the ownership of people or other institutions that could remove the small surpluses of cyclical mis-allocation is beyond the scope of this paper. Beyond the obvious agency questions and the unobservability of utility (as compared to earnings), the fact that cyclical allocations ($7.50 this quarter, $7.50 less the next) are so small compared to other elements of individual consumption decisions is probably part of the reason that we do not observe such institutions.
A simple and typical version of the consumer’s problem is:

\[
\begin{align*}
\text{(4)} & \quad \max_{\{c_0, c_1, \ldots\}} \quad U(c_0, c_1, \ldots) = E \sum_{t=0}^{\infty} \beta^t u(c_t) \\
\text{(5) s.t.} & \quad 1) \quad k_{t+1} = R_t k_t + y_t - c_t, \\
& \quad 2) \quad \lim_{t \to \infty} \left(\prod_{l=0}^{t-1} R_l \right)^{-1} k_t = 0 \text{ a.s.} \\
& \quad 3) \quad k_0 \text{ given,}
\end{align*}
\]

where \(c_t \) = consumption, \(y_t \) = an endowment stream, \(k_t \) = nonhuman wealth at the beginning of period \(t \) (decisions at time \(t \) affect \(k_{t+1} \), not \(k_t \)) and \(R_t \) is the ex post real interest rate between time \(t \) and time \(t+1 \) (when stochastic, \(R_t \) is not known until the beginning of \(t+1 \)). The second constraint rules out borrowing a dollar and rolling over the debt forever; it allows the period-to-period budget constraint given in (5) to be written in present value form

\[
(6) \quad k_0 = \sum_{t=0}^{\infty} \left(\prod_{l=0}^{t-1} R_l \right)^{-1} (c_t - y_t) \text{ a.s.}
\]

Let \(s^t \) denote the state of the economy at date \(t \). For example, \(s^t \) can be a list of the current and past values of all relevant shocks. Then, the consumer chooses a consumption plan \{ \(c^1(s^1), c^2(s^2), \ldots \) \} (the list extends over all dates and states) to maximize (4). The plan specifies how much to consume at each date \(t \) in each possible state \(s^t \) at that date.²

When finitely many states \(s_t \) can happen each period and the problem has a finite horizon \(T \), the consumption plan has a finite number of elements (one for each date-state combination), and the budget constraint specifies a terminal condition for each of a finite number of states at the last date, so the consumer’s dynamic, stochastic problem (4)–(5) is isomorphic to the static problem of (1)–(3). Denote the optimal consumption plan

\[
\{ c^*_1(s^1), c^*_2(s^2), \ldots c^*_T(s^T) \}
\]

where the list extends over all dates and states. Equations (2)–(4) apply directly, so (1) deviations to an alternate plan

\[
\{ c^+_1(s^1), c^+_2(s^2), \ldots c^+_T(s^T) \}
\]

have only second-order effects on expected utility, and (2) there is always an alternate plan for which the ratio of losses to the deviation is as small as one wishes, where “small” is defined with the Euclidean norm.

To make the same statements in an infinite-period or continuous-state context, in which the consumption plan has an infinite number of elements, consider a deviation that satisfies the budget constraint. Let \(\{ c^*_t \} \) and \(\{ c^+_t \} \) denote the optimal and alternative plans, where \(\{ c^+_t \} \) satisfies the budget constraints in (5)–(6). Define the difference between the two plans \(\Delta c_t = c^+_t - c^*_t \), so the budget constraint (6) implies

\[
\sum_{t=0}^{\infty} \left(\prod_{l=0}^{t-1} R_l \right)^{-1} \Delta c_t = 0 \text{ a.s.}
\]

Now consider suboptimal rules of the form \(c^*_t + \alpha \Delta c_t \). If \(c^*_t \) is an optimum and \(u \) is differentiable, we must have

\[
\frac{d}{d\alpha} \left[E \sum_{t=0}^{\infty} \beta^t u(c^*_t + \alpha \Delta c_t) \right]_{\alpha = 0} = E \sum_{t=0}^{\infty} \beta^t u'(c^*_t) \Delta c_t = 0.
\]

The familiar statement of the Euler equation follows from particular choices for \(\Delta c_t \). For example, \(\Delta c_t = 0 \), except \(\Delta c_t = 1 \) at \(t \) in state \(s^t \), and \(\Delta c_{t+1} = R_t \) at time \(t+1 \) in
states followings \(s^t \) yields

\[
u'(c_t^t) = \beta E \left[R_t u'(c_{t+1}^t) \right] s^t.
\]

(7) implies directly that (1) first-order deviations \(c^* + \alpha \Delta c_t \), that respect the budget constraint have second-order consequences. Alternatively, (2) there are suboptimal consumption plans \(c_t^* + \alpha \Delta c_t \) for which the ratio of losses to deviations is as small as one wishes. Formally, the definition of a derivative in (7) states that for any \(\epsilon > 0 \) there is an \(\alpha > 0 \) such that the ratio of losses to the size of the deviation, measured by \(\alpha \), is smaller than the chosen \(\epsilon \),

\[
\frac{U(\{c_t^*\}) - U(\{c_t^* + \alpha \Delta c_t\})}{|\alpha|} < \epsilon.
\]

The only real difference between this statement and the corresponding one for the finite date and state case is that the size of deviations is measured by \(\alpha \), instead of by the Euclidean norm of (3).

This formulation differs slightly from that in Akerlof and Yellen (1987). They consider a static maximizer whose objective was the one-period maximization \(f(x_t, a_t) \). They describe uncertainty by the evolution of \(a_t \) over time, and their central result is that "inertial behavior"—not changing \(x_t \) in response to a change in \(a_t \)—has second-order effects, by the envelope theorem. Here I consider an intertemporal maximizer, and the central proposition is that plans \(\{x_t^*\} \) near \(\{x_t^*\} \) have second-order costs, which follow directly from the first-order conditions.

Akerlof and Yellen (1985b) and Steven Goldman and Kenneth Kletzer (1982) present some general equilibrium considerations regarding near-rational decisions. These papers show that if individual consumers’ "near-rational" decision rules are continuous in prices and if there are no perfect substitutes (no risk-neutral consumers in an intertemporal context), then competitive equilibria still exist, displacements of order \(\epsilon \) in individuals’ demand curves have effects of order \(\epsilon \) on prices, (and hence an indirect effect on utility of order \(\epsilon \)), and that a fully optimizing consumer cannot improve his utility by more than order \(\epsilon^2 \) by taking advantage of his fellows’ near-rationality. Nonetheless, the precise relation between Simon-style heuristic decision rules, optimal decision rules in the presence of small costs, near-rational demand curve shifts, and near-rational shifts in the quantity decision rules of the social planner (which are the only kinds of shifts considered in this paper) is not yet clear, and is an important topic for future research.

II. Calculations of Utility Losses

"Second order" does not necessarily mean small: \(100 \epsilon^2 \) is larger than \(.01 \epsilon \) for a range of \(\epsilon \). This section computes the actual utility costs of some economically interesting alternatives.

Utility costs depend on the consumer’s environment (how much income he has, how variable that income is, and how rates of return vary over time), on the consumer’s preferences (how he values deviations), and on the alternative decision rules we consider. The environments, preferences, and alternatives in the empirical literature that test the theory of the intertemporal allocation of consumption using aggregate data are similar, so there is some hope that the calculations in typical environments below are reasonable approximations to the utility loss of a wide variety of similar tests.

Many studies only test for misallocation of nondurable consumption ($2,308 1982 dollars per capita in 1947, $3,484 in 1985), but they use broad definitions of income, up to and including GNP ($7,330 1982 dollars per capita in 1947, $14,823 in 1985). If we specify the time-series process for income and ask the consumer for the optimal level of consumption in a model like (4)–(5) we get a total consumption series, which averages about the same value as the income series. To produce a consumption series whose level is comparable to that of nondurable consumption, the calculations assume an income process whose average value is $3,000 per year, and whose time-series properties are the same as GNP (we can interpret this as a constant fraction of GNP
devoted to nondurable consumption). Utility costs scale fairly well with income, so the costs in tests that use broader consumption aggregates are easy to extrapolate from calculations that assume $3,000 per year.

Most tests specify either a quadratic or constant relative risk-aversion utility function, and either specify or estimate a risk-aversion coefficient between 1 and 10, and occasionally as high as 30. The calculations in this paper use those utility functions. Other forms for the utility function could raise (or lower) the costs of deviations. 3

The alternatives in each case are motivated by the alternatives that typical tests have claimed to find in each environment. Parts A–C study economically interesting alternatives, including excess sensitivity and smoothness in the face of income shocks and slow reactions to changes in interest rates. Part D studies the costs of tolerating predictable Euler errors, which is typically the basis for statistical rejection.

A. A Simple Upper Bound

Consider a small increase Δc_i in consumption at date t, balanced by future reductions in consumption. By taking Δc_i as the standard deviation of aggregate consumption, we will produce a cost per quarter of "mistakes" that would swamp the variation in aggregate consumption, and hence void any predictions the theory can make. This calculation can also be interpreted as an upper bound for the costs of following "reasonable" alternate rules, since alternatives cannot deviate from the optimum by more than one standard deviation if they hope to be a plausible description of the data.

By the first-order conditions for optimization, this perturbation has no first-order effects. Its second-order effects must be greater than the second-order effects of changing c_i alone, which are

$$\Delta U \equiv 1/2 u''(c_i)(\Delta c_i)^2.$$

Converting to dollars by dividing by the marginal utility of consumption,

$$\text{(8) Dollar Loss} = \frac{\Delta U}{u'(c_i)}$$

$$\equiv \frac{1}{2} \frac{c_i u''(c_i) \Delta c_i}{u'(c_i)}\Delta c_i$$

$$= \frac{1}{2} \gamma \frac{\Delta c_i}{c_i} \Delta c_i,$$

where γ is the relative risk-aversion coefficient.

Equation (8) is a lower bound for the effects of the perturbation, because it ignores the second-order effects of the future changes in consumption needed to restore the budget constraint. We can derive upper bounds for the total effect of the perturbation by considering specific patterns of future consumption change. For example, if the consumer reestablishes the budget constraint at $t + 1$ by $\Delta c_{t+1} = -R_i \Delta c_t$, the dollar value of the change in utility due to the change at $t + 1$ is

$$\text{(9) } \frac{\Delta U}{u'(c_i)} \equiv \frac{1}{2} \beta u''(c_{t+1})(\Delta c_{t+1})^2$$

$$\equiv \frac{1}{2} \gamma \frac{\Delta c_i}{c_i} \Delta c_i,$$

where the last approximation is for $R_i \equiv 1/\beta$ and near 1, and $c_i \equiv c_{t+1}$. Then, the change in utility from the total perturbation is less than the sum of the second-order effects due to the change at time t, (8), and the change
Table 1—Upper Bound for Utility Loss from a Perturbation Δc

<table>
<thead>
<tr>
<th>$\Delta c/c$</th>
<th>Δc</th>
<th>Risk-Aversion Coefficient γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>.86 percent</td>
<td>$5.00</td>
<td>4.3¢, 22¢, 43¢</td>
</tr>
<tr>
<td>.86 percent</td>
<td>$7.50</td>
<td>6.5¢, 32¢, 65¢</td>
</tr>
</tbody>
</table>

Losses are computed as $\gamma \Delta c/c \Delta c$ (see equation (10)). The assumed values for c and Δc are motivated by the following ($cnd =$ real nondurable consumption per capita):

$.86 \text{ percent} = \text{Standard deviation of quarterly percent growth of } cnd$

$\$5 = .86 \text{ percent} \times cnd \text{ per quarter in 1947 (}577)$

$\$6.05 = \text{Standard deviation of } cnd,$

cnd_{t-1}

$\$6.43 = .86 \text{ percent} \times \$3,000$

$\text{per year} /4$

$\$7.50 = .86 \text{ percent} \times cnd \text{ per quarter in 1986 (}871)$

at time $t + 1$, (9)

$$\frac{1}{2} \frac{\Delta c_t}{\gamma c_t} \Delta c_t \leq \Delta U \leq \frac{\Delta c_t}{u'(c_t)} \Delta c_t.$$ (10)

This equation captures much of the intuition of the calculations that follow: even if “mistakes” Δc are as large as the standard deviation of consumption, that standard deviation is on the order of 10 per capita and $\Delta c/c$ is about 1 percent, so utility costs are less than 10¢ with risk aversion $\gamma = 1$ and less than $\$1$ with $\gamma = 10$.

Table 1 presents some evaluations of equation (10). There is a body of evidence that nondurable consumption is essentially a random walk (see John Campbell and Angus Deaton, 1987, or Cochrane and Argia Sbordone, 1988), so Table 1 takes $\Delta c/c$ as the standard deviation of quarterly growth rates of nondurable per capita consumption, and c as its level in 1947 and 1985. The utility losses range from 4¢ to 1.94 per quarter for values of the risk-aversion coefficient γ between 1 and 30.

The essence of these calculations can also be found (in a completely different context) in Robert Lucas (1987). Lucas calculated that the utility gain available from eliminating “cycles” in consumption was small compared to increases in the “trend,” which implies that the utility costs of “misbehaving” over the cycle are similarly small.

B. “Excess Sensitivity” and “Excess Smoothness” Tests of the Permanent Income Hypothesis

Following Flavin (1981), consider an environment designed to represent detrended time-series. Labor income is treated as an endowment, and is given exogenously by

$$y_t = (1 - \rho) \bar{y} + \rho y_{t-1} + \epsilon_t$$ (11)

ϵ_t, i.i.d., $E(\epsilon_t) = 0, \text{var}(\epsilon_t) = \sigma^2$.

The consumer maximizes a quadratic utility...
function

\[U = -1/2E \sum_{t=0}^{\infty} \beta^t (c_t - \bar{c})^2. \]

He can borrow and lend freely at a constant interest rate \(R = (1 + r) \) equal to the discount rate, \(\beta = 1/(1 + r) \), so the budget constraint is

\[\lim_{t \to \infty} \beta^t k_{t+1} = 0 \text{ a.s.,} \]

where \(k_t \) is accumulated capital or nonhuman wealth. The consumer’s optimal decision rule is\(^5\)

\[c_t = rk_t + r\beta \sum_{j=0}^{\infty} \beta^j E_t(y_{t+j}). \]

For the AR (1) income process (11), this decision rule becomes

\[c_t = rk_t + \hat{\gamma} + m^* (y_t - \bar{\gamma}); \]

\[m^* = \frac{r}{1 + r - \rho}. \]

In summary, we can characterize the evolution of optimal consumption over time by the system

\[y_t = (1 - \rho) \hat{\gamma} + \rho y_{t-1} + \epsilon_t, \]

\[c_t^* = rk_t^* + \hat{\gamma} + m^* (y_t - \bar{\gamma}), \]

\[k_{t+1}^* = (1 + r)k_t^* + y_t - c_t^* \]

\[= k_t^* + (1 - m^*) (y_t - \bar{\gamma}). \]

\(^5\)To derive the consumer’s optimal decision rule, express the budget constraint in present value form:

\[k_t + \beta \sum_{j=0}^{\infty} \beta^j y_{t+j} = \beta \sum_{j=0}^{\infty} \beta^j c_{t+j} \text{ a.s.} \]

The first-order conditions are \(c_t = E_t (c_{t+j}) \). Substitute these in the expected value of the budget constraint to obtain the decision rule:

\[k_t + \beta \sum_{j=0}^{\infty} \beta^j E_t (y_{t+j}) = \beta \sum_{j=0}^{\infty} \beta^j c_{t+j} = c_t / r. \]

Lars Hansen (1987) derives similar decision rules in more general versions of this model.

(The asterisks on consumption and capital stock distinguish them from suboptimal versions that follow).

Flavin and following authors aimed their tests at the alternative hypothesis that consumption is too sensitive to current income \(y_t \). We can generate “excessively sensitive” consumption with decision rules with higher than optimum marginal propensities to consume

\[y_t = (1 - \rho) \hat{\gamma} + \rho y_{t-1} + \epsilon_t, \]

\[c_t = rk_t + \hat{\gamma} + m^+ (y_t - \bar{\gamma}), \]

\[k_{t+1}^+ = (1 + r)k_t^+ + y_t - c_t^+ \]

\[= k_t^+ + (1 - m^+) (y_t - \bar{\gamma}), \]

where \(m^+ \neq m^* \).

These alternate decision rules respect the budget constraints. By iterating the capital accumulation rule in (13), capital accumulation follows

\[k_{t+n} = k_t^+ + (1 - m^+) \sum_{j=0}^{n-1} (y_{t+j} - \bar{\gamma}). \]

Since the present value of income is finite, it follows that \(\lim_{n \to \infty} \beta^nk_{n+1}^+ = 0 \text{ a.s.} \)

In this model it is possible to calculate the level of expected utility the consumer achieves by following any decision rule of the form (13). The calculation is presented in the Appendix. The result is that the loss of time 0 expected utility (\(\Delta U \)) suffered by a consumer who follows marginal propensity \(m^+ \) instead of the optimal \(m^* \) is

\[\Delta U = \frac{(1 + r)^2 \sigma^2}{2r(1 + r - \rho^2)} (m^+ - m^*)^2. \]

To convert this time 0 utility loss to dollars per quarter (the perpetuity of x dollars each quarter that would compensate the suboptimizing consumer), divide the utility loss

\(^6\)We could also vary the coefficient on the \(k_t \) term in the consumption decision rule, to \(r^+ \) instead of \(r \). As long as \(|1 + r - r^+| < 1/\beta \) the budget constraint will be satisfied.
Table 2 — Utility Loss from Excess Sensitivity

<table>
<thead>
<tr>
<th>$937.50 (4)</th>
<th>$1125 (2)</th>
<th>$1500 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^+ = 0.0</td>
<td>m^+ = 0.2</td>
<td>m^+ = 0.4</td>
</tr>
<tr>
<td>4.1c</td>
<td>2.1c</td>
<td>0.01 percent</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m^+ = 0.6</td>
<td>m^+ = 0.8</td>
<td>m^+ = 1.0</td>
</tr>
<tr>
<td>16.4c</td>
<td>37.0c</td>
<td>65.7c</td>
</tr>
<tr>
<td>18.5c</td>
<td>32.9c</td>
<td>16.4c</td>
</tr>
</tbody>
</table>

The column marked "$/q" gives the dollar per quarter utility cost of following the indicated marginal propensity to consume, or $/q = r k_c + \bar{y} + m^+ (\gamma_c - \bar{y})$, calculated by equation (15). The column marked "$/pv" gives the time 0 dollar utility cost as a percent of the time 0 present value of income, equation (16). The local risk-aversion coefficient corresponding to each bliss point is $1/(\bar{c}/c - 1)$. The parameters are interest rate $r = .012$ (5 percent per year), AR(1) coefficient on income $\rho = .95$, standard error of income $\sigma_\epsilon = 6.43$. Initial = mean income $\gamma_0 = \bar{y} = 3000/4$. The optimal mpc is $m^* = r/(1 + r - \rho) = .2$.

Table 2 presents some evaluations of utility losses, (15) and (16). I used the following parameters, designed to evaluate a test using aggregate nondurable consumption data: 1) the real interest rate is 5 percent per year; 2) $\rho = .95$ from an OLS autoregression of detrended quarterly per capita real GNP; 3) $\bar{y} = 3000/4$, conformable to the level of nondurable consumption, as explained above; 4) $\sigma_\epsilon = 120/4 \times 3000/14000 = 6.43$. σ_ϵ from the GNP autoregression was 120. I divided this by 4 quarters/year so the units are quarterly consumption, and multiplied by nondurable consumption/GNP so the units are comparable to nondurable consumption. 5) $k_0 = 0$. Other k_0 simply increase both the optimal and alternative consumption by rk_0 in each period.

Table 2 presents utility costs for several values of the bliss point \bar{c}: 937.50, 1125, and 1500, or $5/4$, $3/2$, and 2 times initial income and initial consumption of 750. The choice of bliss point has no effect on the utility loss (14) because the utility function is quadratic, but it affects the dollar value of that loss by changing the marginal utility of a dollar.

Though it is the only parameter governing the shape of the quadratic utility function, the bliss point \bar{c} has not been a focus of empirical work as has the coefficient of risk aversion, so it is less clear what range of values is reasonable. Many studies do not
report their estimated bliss point when it is identifiable, and the implied bliss points of many studies are negative or less than consumption (see Arthur Lewbel, 1987). Since quadratic utility is usually justified as a local approximation to a more reasonable utility function, we can assess how reasonable a bliss point \(\bar{c} \) is by calculating the local coefficient of relative risk aversion. This is

\[
\gamma(c, \bar{c}) = \frac{-cu''(c)}{u'(c)} = \frac{c}{(\bar{c} - c)} = \frac{1}{\bar{c}/c - 1},
\]

so it is controlled by the ratio of the bliss point to consumption. This formula is also the coefficient of risk aversion to time 0 gambles, defined as \((k_0 + \bar{y}/r)V'(k_0)/V'(k_0)\). This can be verified from the formula for the value function \(V(k)\) in the Appendix. Table 2 includes a calculation of this quantity for each choice of bliss point. Table 2 stops at a bliss point of 1.25 times initial consumption and initial income, corresponding to a relative risk-aversion coefficient of 4 at initial consumption. In simulations of the model with lower bliss points (say, 1.1 times initial consumption for \(\gamma = 10\)), consumption typically exceeded the bliss point within a few periods, suggesting that the linear quadratic model approximation is not useful in this range, because its results will depend too heavily on past bliss point behavior.

The costs in Table 2 are less than 65¢ per quarter, or .09 percent of time zero wealth, and are mostly on the order of 1–10¢ per quarter or .01 percent of time 0 wealth. Figure 1 provides some intuition for the small size of the costs by contrasting a simulation of too-sensitive consumption \((m^+ = 1)\) with the optimal consumption path \((m^* = .2)\). I included the origin of the vertical axis to emphasize that even with this extreme overreaction to current income, the level of consumption is not that affected. Since the consumer values deviations of the level of consumption from its optimal path, high frequency deviations cost very little.

For comparison, Flavin's point estimate of the excess marginal propensity was .355, so the corresponding costs are about those of the \(m = m^* + .355 \approx .6\) row of Table 2, or between 2¢ and 9¢ per quarter and less than .01 percent of time 0 income.\(^7\)

N. Gregory Mankiw and Matthew Shapiro (1985), Campbell and Deaton (1987), and Kenneth West (1988) criticized Flavin and her followers for using detrended data rather than assuming a process for income with a unit root. In the simplest case income follows a pure random walk,

\[
y_t = y_{t-1} + \varepsilon_t,
\]

in which case the optimal consumption and capital stock evolve according to

\[
c_t^* = r k_t^* + y_t
\]

\[
k_{t+1}^* = (1 + r) k_t^* + y_t - c_t^* = k_t^*.
\]

Campbell and Deaton and West test models of this type and find that aggregate consumption is “too smooth.”

\(^7\)Assessing whether this alternative could generate Flavin’s statistical rejection is a little more subtle. Though Flavin’s estimate of \(m - m^*\) was nearly 2 standard errors away from 0, the weight of Flavin’s statistical evidence came from combined excess sensitivity to eight lags of income rather than from contemporaneous income alone, and from the predictive power of all eight lags of income for consumption changes. However, the excess smoothness alternative considered here generates about the same predictability of consumption changes \((R^2)\) as is found in a replication of Flavin’s regression of consumption changes on eight lags of income, which is a more precise indication that this alternative can account for the statistical rejection.
We could capture "excess smoothness" by the same kind of alternate decision rules as in equation (13), with alternate marginal propensities $m^+ < 1$. However, this choice produces an alternative decision rule with several undesirable properties when income follows a random walk. When income y_t follows a stationary process, y_t stays near its unconditional mean \bar{y}, so variation in m in the decision rule $c_t = rk_t + \bar{y} + m(y_t - \bar{y})$ has a bounded effect on consumption. When y_t is a random walk, however, $y_t - \bar{y}$ gets unboundedly large, so varying m has a big effect on consumption. Furthermore, since the spectral density of $(y_t - \bar{y})$ is concentrated at low frequencies, the excess smoothness that these alternate decision rules capture is not the economically interesting high frequency or period-to-period failure to adjust, but a low frequency failure to adjust.

A way to capture excess smoothness that avoids these problems is to let the consumer respond to a long moving average of past income rather than to today's income alone:

$$c_t^+ = rk_t^+ + \frac{1}{N+1} \sum_{j=0}^{N} y_{t-j}.$$

Table 3 presents the utility loss from following this "too-smooth" decision rule, and the calculation of utility losses is detailed in the Appendix. Even when the consumer smooths the last ten years of income to determine current consumption, the utility loss is less than $1.28 per quarter.

For comparison, Campbell and Deaton (Table 6) report point estimates for the ratio of the actual to predicted innovation variance of $(\Delta c_t/y_{t-1})$ between .456 with a standard error of .20 and .747 with a standard error of .16, depending on which consumption variable they use and the number of included lags. Under the long-moving average alternative, the innovation in Δc_t is $\Delta y_t/(N+1)$, so the inverse of the square root of Campbell and Deaton's ratios, between $1/\sqrt{.456} = 1.48$ and $1/\sqrt{.747} = 1.16$, is roughly comparable to $(N+1)$. Hence, their finding of excess smoothness corresponds to a less than one-period moving average of income, and carries utility costs of .7¢ to 2.7¢ per quarter.\(^8\)

\(^8\)The weight of Campbell and Deaton's statistical evidence also came from predictability of Euler equation errors rather than rejection of the optimal innovation variance of $\Delta c_t/y$ in favor of these alternatives. The excess smoothness alternative generates predictable consumption changes (R^2) larger than those found by Campbell and Deaton, so it can also account for the statistical rejection.
C. Euler Equation Tests and Sensitivity to Interest Rate Changes

The second major category of tests of the intertemporal allocation of consumption are the Euler equation tests, following Robert Hall (1978) and Lars Hansen and Kenneth Singleton (1983). The first-order conditions or Euler equations for maximization of the consumer’s problem given in equations (4)–(5) are

\[u'(c_t) = \beta E_t (R_t u'(c_{t+1})). \]

Hence, if we define \(\delta_{t+1} \) by

\[u'(c_t) = \beta R_t u'(c_{t+1}) + \delta_{t+1}, \]

then \(E(\delta_{t+1}|\text{time } t \text{ information}) = 0 \), which is the basis of tests. Alternately, Hansen and Singleton show that we can define \(\delta_{t+1} \) by

\[\log u'(c_t) = \log \beta R_t + \log u'(c_{t+1}) + \delta_{t+1} + \text{constant}, \]

when \(u'(c) = c^{\gamma} \) and \(c_t, R_t \) are lognormally distributed.

Euler equation tests are often used to test optimal responses to fluctuations in the conditional distribution of asset returns rather than optimal adjustment to income changes (in part because the models usually cannot be solved for optimal adjustments to income). Hence, in this section I examine the alternative to (18) that consumers fail to take optimal account of fluctuations in (real) rates of return. The next section evaluates the costs of violating the orthogonality condition \(E_t(\delta_{t+1}) = 0 \).

To create a time-varying returns series, I generated quarterly real interest rates by an AR(1),

\[R_t = \rho R_{t-1} + (1 - \rho) \bar{R} + \epsilon_t. \]

I picked the mean interest rate \(\bar{R} = 1 + .05/4 \) and its standard deviation \(\sigma_R = .05/4 \) to give a generous variation over time in interest rates. This variance is roughly the variance in ex ante returns that James Poterba and Lawrence Summers (1987) and I (Cochrane, 1988) argue is necessary to explain long horizon stock market data; it is also about the same as the variance of ex post real interest rates. A lower variance of interest rates will give rise to less variance in both optimal and alternate consumption paths, and so lower utility costs.

I assume that consumers perfectly foresee the path of interest rates. This makes the calculations simpler; by making only part of the variation predictable we would again get less variance in optimal and alternate consumption and lower costs. Then, the optimal consumption path satisfies the Euler equation

\[u'(c^*_t) = \beta R_t u'(c^*_{t+1}). \]

With constant relative risk-aversion utility \(u = (c^{1-\gamma} - 1)/(1 - \gamma) \), the Euler equation is

\[c^*_{t+1}/c^*_t = (\beta R_t)^{1/\gamma}. \]

For an alternate decision rule, suppose consumers react slowly to interest rate changes, by setting consumption growth proportional to a moving average of past interest rates. Define the alternative consumption rule \(c^+ \) by:

\[c^+_{t+1}/c^+_t = (\beta R^{ma}_t)^{1/\gamma}, \]

where

\[R^{ma}_t = \frac{1}{(N + 1)} \sum_{j=0}^{N} R_{t-j}. \]

Table 4 presents evaluations of the cost of following this alternative for various parameter values. I performed the calculations as follows: 1) I generated an interest rate path for 200 quarters using equation (19) and took a \((1 + N)\)-period moving average of the interest rate, as in equation (22); 2) starting with \(c^*_0 = c^+_0 = $750/\text{quarter} \), I generated optimal and alternative consumption paths by (20) and (21); 3) I multiplied the alternative path by a constant, so that the present value of the optimal and alternate paths is the same; 4) I evaluated the achieved utility of the optimal and alternate consumption
Table 4—Dollar Loss / Quarter from Smoothing Interest Rates

<table>
<thead>
<tr>
<th>Risk Aversion γ and Autocorrelation ρ</th>
<th>Moving Average of Past Interest Rates</th>
<th>1 Year</th>
<th>5 Years</th>
<th>10 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ = 2, ρ = .841</td>
<td>5¢</td>
<td>76¢</td>
<td>$1.45</td>
<td></td>
</tr>
<tr>
<td>γ = 5, ρ = .841</td>
<td>2¢</td>
<td>30¢</td>
<td>56¢</td>
<td></td>
</tr>
<tr>
<td>γ = 10, ρ = .841</td>
<td>1¢</td>
<td>15¢</td>
<td>28¢</td>
<td></td>
</tr>
<tr>
<td>γ = 5, ρ = 0</td>
<td>0</td>
<td>8¢</td>
<td>26¢</td>
<td></td>
</tr>
</tbody>
</table>

The entries are the dollar cost per quarter of using a moving average of past interest rates in the place of the one-period rate. To calculate the entries I 1) generated an interest rate path for 200 quarters and took an \(N + 1 \) period moving average of the interest rate; 2) generated optimal and alternative consumption paths; 3) multiplied the alternative path by a constant, so that the present value of the optimal and alternate paths is the same; 4) evaluated the achieved utility of each consumption series; 5) converted the utility losses to a dollar quarterly flow. I used the same interest rate path for each entry. The parameters are \(\bar{R} = 1.012 \) per quarter (1.05 per year), \(\sigma_R = .012 \) (.05 annual), \(c_0 = $750 \) per quarter ($3000/year), \(\beta = 1/(1.012) \) or \(1/(1.05) \) annual, \(\rho = .841 \) (corresponds to \(\rho = .5 \) annual).

series by

\[
U^* = \sum_{t=0}^{\infty} B^t c_t^*(1-\gamma) - 1, \\
U^+ = \sum_{t=0}^{\infty} B^t c_t^+ (1-\gamma) - 1; \\
\]

5) I converted the utility losses to a dollar quarterly flow by dividing the utility loss, \(\Delta U = U^* - U^+ \), by the marginal utility of a time 0 dollar, \(u'(c_t^*) \), and by the present value of a constant one-dollar flow,

\[
1 + \sum_{t=1}^{\infty} \prod_{j=0}^{t-1} R_j^{-1}.
\]

To maintain comparability, I used the same interest rate path for each value of the parameters. The parameters are \(\bar{R} = 1.012 \) per quarter (corresponding to 1.05 per year), \(\sigma_R = .012 \) (.05 annual), \(c_0 = $750 \) per quarter ($3000/year), \(\beta = 1/\bar{R} \), and \(\rho = .841 \) (.5 annual).\(^9\)

\(^9\)In more complex environments, for example, those that include stochastic interest rates, we can find utility costs as in the linear quadratic case, by solving a Bellman-like equation

\[
V(k_t, \text{shocks}_t) = u(c_t^*) + \beta E_t V(k_{t+1}, \text{shocks}_{t+1}),
\]

after we specify the alternative decision rule relating \(c_t^+ \) to \(k_t \), etc.

The costs in Table 4 rise the longer the moving average of interest rates used to define \(c_t^+ \), and the costs are higher for more persistent interest rate movements. Both allow the alternate path to drift further away from the optimal path. Raising the coefficient of risk aversion \(\gamma \) lowers the costs of deviating from the optimal path. This occurs because less risk-averse consumers adjust their consumption by greater amounts in response to given interest rate changes. Perfectly risk-neutral consumers would set consumption to \(+\infty\) every time \(R_t < 1/\beta \) and vice versa. The greater difference between optimal and alternative consumption paths for less risk-averse consumers more than offsets the lesser value placed on these differences.

D. Costs of Ignoring Information

In most studies, the strongest statistical evidence against the theory comes from predictability of Euler equation errors, rather than from a statistical rejection of the optimal decision rule in favor of a well-specified alternative as above. Evidence that \(E(\delta_{t+1} X_t) \) is not zero, where \(X_t \) is any variable observed at time \(t \), is the basis for rejection of the model. But consumers may rightly ignore information variables if the utility gained by using them to better adjust consumption does not outweigh the costs of
obtaining and processing the information. If this is so, evidence of forecastability of Euler errors is not evidence against the basic theory of intertemporal optimization, and the variable X loses its status as an instrument. This section presents calculations of the utility costs of tolerating such predictable Euler errors.

Start with the upper bound derived in Part A that the utility costs resulting from a perturbation Δc, are

$$\text{(23) \ Dollar \ Loss = } \frac{\Delta U}{u'(c_t)} \leq \frac{\Delta c}{c_t} \Delta c_t.$$ \n
Now, suppose that the Euler error is predictable using a variable or vector of variables X. We can approximate the utility costs—how much utility the consumer loses by not readjusting consumption in response to the information variables X.—by considering a perturbation from the optimum, Δc, in (23), equal to the standard error of the predictable change in consumption.

I will consider the case of constant interest rates, so that the standard deviation of consumption changes is equal to the standard deviations of the Euler error δ_{i+1}. (The standard deviation of forecastable returns is typically about the same or less than that of consumption, so this approximation is not misleading).

Table 5 presents some evaluation of (23) for different values of the predictability of consumption changes or growth rates, where an R^2 of 1.00 corresponds to the standard deviation of consumption changes ($\$6.43$) from Table 1. The top four rows of Table 5 give four different and equivalent measures of the assumed predictability of returns for their column. The top row gives the ratio of the standard deviation of predictable consumption growth or change to total consumption growth or change. The next row gives the corresponding R^2 (the square of the top row). This is the R^2 of a regression of consumption growth or change on the information variable X. The third row gives the standard error of the predictable component in growth rate units, and the fourth row in changes or dollar units. The table entries are calculated by (23), with Δc_t = the standard error of predictable change in dollars (fourth row) (or $\Delta c_t/c_t$ = the standard deviation of predictable growth, third row), $c_t = \$3000/4$ and γ as given in the first column. The entries are thus dollars per quarter utility losses from tolerating the given predictability of consumption changes or growth rates. Comparing to Table 1, the perturbations Δc_t here are simply fractions of the perturbations Δc_t in Table 1. Since utility losses are proportional to (Δc_t)2, they are linear in the assumed R^2 of a regression, and are equal to the losses of Table 1 at an R^2 of 1.00.
Typical values for R^2 of regressions that predict consumption growth or changes are below .1. I know of no study that claims an R^2 above .2. The column of Table 5 with $R^2 = .25$ shows that tolerating this overall predictability carries utility costs less than 1¢ to 14¢ per quarter for risk aversion $\gamma \leq 10$, and 40¢ per quarter for the extreme of $\gamma = 30$. The predictability of consumption due to an individual variable is typically smaller; if consumers ignore that variable and hence invalidate its use as an instrument, their utility costs are determined by the R^2 of that variable alone, and are therefore even lower than the 1¢–14¢ range.

III. Concluding Remarks

The calculations presented above suggest that in the majority of current tests of the intertemporal allocation of consumption on aggregate data, economically and statistically significant departures from the optimal decision rule have small utility costs, less than about $1 per quarter or 30¢ per month. This suggests that the theory of the intertemporal allocation of consumption, applied to a representative consumer with certain typical preferences and used to explain aggregate phenomena in a period of mild consumption volatility such as the postwar United States, does not generate predictions of behavior that are robust to small misspecifications by economists or small “mistakes” by consumers, in the sense that both economically and statistically extreme alternatives (for example, consumption proportional to income, or consumption growth that is predictable with an R^2 of .25) carry trivial utility costs.

In particular, the utility costs of deviations from an optimal path depend on the absolute deviation of the alternate path from the optimal path. Hence, high frequency deviations like lagged responses or failure to adjust consumption immediately in response to information announcements have especially low utility costs. But it is precisely the exact timing of the use of information and the exact timing of consumption changes that have been the focus of empirical work and the source of rejections since Hall (1978) and Hansen and Singleton (1983).

These observations are both good and bad news for macroeconomic applications of the theory. On one hand, they imply that the alternative behavior that typical tests search for and alternative behavior that can cause the tests to reject can be generated by small ($1 per quarter) costs of information acquisition or processing, transactions, etc., so finding those alternatives is not strong evidence against the basic theory that consumers intertemporally optimize. On the other hand, it implies that the theory as it stands provides few predictions about the relationship between aggregate consumption and asset price or aggregate quantity fluctuations that are robust to $1 "mistakes" or misspecifications.

However, I do not think that these calculations should be interpreted to say that actually solving models with a few stylized small costs of information, transactions, etc., holds the key to empirical success, since making the specified environment more “realistic” is a hopeless and endless task—there are always more small costs to be added.

These results are not a criticism of dynamic economic theory or its empirical application in general. Dynamic optimization by firms may be exempt because of firms’ larger size and different structure. Studies of consumption in microeconomic data sets, in which income and investment opportunities show orders of magnitude with greater variation over time and across individuals than in aggregate data, may well escape the criticism of this paper. Large utility costs could appear in studies that use aggregate data, if they include nonstandard utility functions with at least two orders of magnitude, greater risk aversion, other frequencies (life-cycle allocation instead of cyclical allocation or period-to-period orthogonality), or data sets from other times or countries with orders of magnitude greater variability in consumption. If a theory departs from the representative consumer setup of most current empirical work to a disaggregated framework in which the cyclical variation in consumption is due to only a few people, the costs of misbehavior to those people may be high. Nonetheless, the calculations and the existence of alternatives with arbitrarily small ratios of costs to deviations presented in this
paper suggest that similar calculations are a worthwhile robustness check in these other environments as well.

APPENDIX

Near-Rationality Near an Optimum. If the objective is twice differentiable, first-order deviations have second-order effects even if we do not start precisely at an optimum. The problem is

$$\max_{\{x\}} f(x).$$

Expand f about a point x^0 near x^*. Then

$$\Delta f \approx {f}'(x^0) \Delta x + \frac{1}{2} {f}''(x^0) \Delta x^2.$$ (A1)

We can expand the derivatives around the optimum x^* as well:

$${f}'(x^0) \equiv {f}'(x^*) + {f}''(x^*) (x^0 - x^*)$$

$${f}''(x^0) \equiv {f}''(x^*) + {f}'''(x^*) (x^0 - x^*)$$

so, keeping only second-order terms,

$$\Delta f \approx {f}''(x^*) (\Delta x (x^0 - x^*) + \Delta x^2).$$

For fixed x^0, deviations Δx have first-order losses, but the ratio of losses to deviations can be made arbitrarily small by choosing small enough regions for x^0 as well as small enough Δx.

$$\forall \epsilon > 0 \exists \delta, \nu \text{ s.t. } |x^0 - x^*| < \delta \text{ and } \Delta x < \nu \Rightarrow \Delta f/\Delta x < \epsilon.$$ (A5)

This point carries over to the consumer's problem.

Attained Expected Utility for Linear-Quadratic Problems. General Problem.

The general problem can be stated as: Find

$$U(X_t) = E_t \sum_{j=0}^{\infty} \beta^j X_{t+j} RX_{t+j},$$ (A1)

where X_t evolves according to

$$X_t = AX_{t-1} + \xi_t E_t(\xi_{t+1}) = 0;$$ (A2)

$$E_t(\xi_t, \xi_{t+1}) = \Sigma.$$ (A3)

X_t is a vector of state variables; the decision rule relating consumption to state variables has been substituted in to derive (A1) and (A2). Either substituting (A2) in (A1), or guessing a quadratic form and verifying it, we have

$$U(X_t) = X_t' P X_t + 1/r \text{Trace}(P \Sigma),$$ (A5)

where

$$P = \sum_{j=0}^{\infty} \beta^j A^j R A^j;$$ (A6)

or

$$PP = R + \beta A'PA.$$ (A4)

(See Thomas Sargent, 1987). Different decision rules will yield different values for A, and hence different achieved utilities $U(X_t)$.

Utility Losses from Excess Sensitivity. For the model in equations (11)-(12) with decision rules of the form (13), the attained level of utility is

$$U_t = -1/2 E_t \sum_{j=0}^{\infty} \beta^j (c_{t+j} - \bar{c})^2.$$ (A5)

Define the vector of state variables

$$X_t = [1 \ k_t \ z_t]'$$

where $z_t = y_t - \bar{y}$. Then, consumption is

$$c_t - \bar{c} = r k_t + \bar{y} - \bar{c} + m z_t = [(\bar{y} - \bar{c}) r m] X_t = F X_t.$$ (A5)

so we may write the objective (A5) in the form (A1) with

$$R = -1/2 F'$$

$$= -1/2 \begin{bmatrix} (\bar{y} - \bar{c}) r \bar{y} - \bar{c} & m^* (\bar{y} - \bar{c}) \\ r (\bar{y} - \bar{c}) & r \bar{y} + m^* r \\ m^* (\bar{y} - \bar{c}) & m^* r & r^2 \end{bmatrix}.$$ (A5)

X_t evolves as follows: using the laws of motion for income and capital,

$$z_t = \rho z_{t-1} + \xi_t$$

$$k_{t+1} = (1 + r) k_t + y_t - c_t = k_t + (1 - m^*) z_t,$$

we can write the law of motion for X_t in the form (A2) with

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & (1 - m) \\ 0 & 0 & \rho \end{bmatrix}, \quad \xi_t = \begin{bmatrix} 0 \\ 0 \\ \epsilon_t \end{bmatrix}.$$ (A5)

For this model, I will derive an analytic solution to (A4). From (A4), form

$$\text{Vec}(P) = \text{Vec}(R) + \beta \text{Vec}(A'PA),$$

where $\text{Vec}(\cdot)$ creates a vector by stacking the columns of a matrix. Using

$$\text{Vec}(AB) = (I \otimes A) \text{Vec}(B) = (B' \otimes I) \text{Vec}(A),$$

we have

$$\text{Vec}(P) = \text{Vec}(R) + \beta \text{Vec}(A' A') \text{Vec}(P).$$ (A6)
We cannot quite collect terms in $\text{Vec} \ P$ and invert because P is symmetric, so only the diagonal and one off diagonal side can be chosen independently. To remedy this problem, let M be a matrix that deletes redundant rows of $\text{Vec}(P)$, and let N be a matrix that takes $M \text{Vec}(P)$ and restores the redundant rows, so that $\text{Vec}(P) = N (M \text{Vec}(P))$. Then, from (A6),

$$M \text{Vec}(P) = M \text{Vec}(R) + \beta M (A' \otimes A') N M \text{Vec}(P)$$

so,

$$(A7) \quad (M \text{Vec} P) = (I - \beta M (A' \otimes A') N)^{-1} M \text{Vec}(R).$$

Equation (A7) can be used to calculate P and hence $U = X'PX + 1/r \text{ Trace } (P \Sigma)$ for a given $A, R, \text{ and } \Sigma$.

For the consumer's problem, denote the elements of P by

$$P = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}.$$

Then, (A7) becomes

$$\begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = 1/2 \begin{bmatrix} - (\bar{c} - \bar{y})^2 \\ r (\bar{c} - \bar{y}) \\ m (\bar{c} - \bar{y}) \\ - r^2 \\ - rm \\ - m^2 \end{bmatrix} + \beta \begin{bmatrix} a \\ b \\ (1 - m)b + \rho c \\ d \\ (1 - m)d + \rho e \\ (1 - m)^2 d + 2\rho (1 - m)e + \rho^2 f \end{bmatrix}.$$

Solving,

$$(A8) \quad \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} - (\bar{c} - \bar{y})^2/2(1 - \beta) \\ r (\bar{c} - \bar{y})/(2(1 - \beta)) \\ (\bar{c} - \bar{y})/2(1 - \beta \rho) \\ - r^2/2(1 - \beta) \\ - r/(1 - \beta \rho)^2 \\ -1/(2(1 - \beta \rho^2)) \\ (m^2 + r(1 - m)^2 + 2\rho m^*(1 - m)) \end{bmatrix}.$$

And using these, we can evaluate achieved utility $X'PX + 1/r \text{ Trace } (P \Sigma)$.

Since m only enters in f in (A8), utility losses from following a different m evaluated at $y_0 = \bar{y}$ or $z_0 = 0$ depend only on $1/r \text{ Trace } P \Sigma$. In turn,

$$1/r \text{ Trace } P \Sigma = \sigma^2 f/r =$$

$$- \frac{\sigma^2}{2r(1 - \beta \rho^2)} \left[m^2 + r(1 - m)^2 + 2\rho m^*(1 - m) \right].$$

Hence, the utility loss of using m rather than m^* is

$$\Delta U = - \frac{(1 + r)^2 \sigma^2}{2r(1 + r - \rho^2)} (m - m^*)^2,$$

which is equation (14) in the text.

Utility Losses from Consumption Equal to a Long Moving Average of Income. Income follows

$$y_t = y_{t-1} + \epsilon_t;$$

optimal and alternate consumption are

$$c_t^* = rk_t^* + y_t;$$

$$k_t^* = (1 + r)k_{t-1}^* + y_{t-1} - c_{t-1}^* = k_{t-1};$$

$$c_t^+ = rk_t^+ + \frac{1}{N+1} \sum_{j=0}^{N} y_{t-j};$$

$$k_t^+ = (1 + r)k_{t-1}^+ + y_{t-1} - c_{t-1};$$

Thus, we can take the state vector as

$$X_t = \left[1 \ k_t \ (y_t - \bar{y}) \ (y_{t-1} - \bar{y}) \ldots (y_{t-N} - \bar{y}) \right]' ;$$
the matrices A, F, and Σ are

$$A = \begin{bmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & N/(N+1) & -1/(N+1) & \ldots & -1/(N+1) \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\end{bmatrix}$$

$$F = \left[(\bar{y} - \bar{c}) \begin{array}{c} r \\
1/(N+1) \\
1/(N+1) \ldots (1/N+1) \end{array} \right]'$$

$$\Sigma = \begin{bmatrix}
0 & 0 & 0 & \ldots \\
0 & 0 & 0 & \ldots \\
0 & 0 & \sigma^2 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}$$

To calculate the entries of Table 4, I calculated P using (A3) and then Trace $P\Sigma$. By using a doubling algorithm, the entries in Table 4 include 2^{13} elements of the sum.

REFERENCES

Kocherlakota, Narayana R., “What Are the Preferences of the Representative Consumer?,” unpublished manuscript, North-
western University, 1988.

