Inflating our troubles away?

Comments on “Inflating away the public debt? An empirical assessment”

by Jens Hilscher Alon Aviv and Ricardo Reis

John H. Cochrane

April 22, 2017

1Hoover Institution, Stanford University. A written version of these comments is on my webpage, http://faculty.chicagobooth.edu/john.cochrane/
\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \frac{u'(c_{t+j})}{u'(c_t)} s_{t+j} = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}
\]

\[
\sum_{j=0}^{\infty} Q_t^{(j)} B_{t-1}^j \frac{1}{P_t} = \ldots = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}
\]

Real value of government debt = present value of real primary surplus.

Long term debt

- Buffers fiscal shocks \(\{s_t\}\) to \(Q\), future \(P\).
- Buffers discount rate shocks \(\{R_t\}\).
- Allows slow, expected inflation to devalue debt.
Expected inflation can devalue long-term debt

- A rise in $E_1 P_{1+j}$ can devalue debt sold before 1, → lower s_j.

\[
\frac{B^{(j)}_0}{P_j} = s_j
\]
Federal debt due on or before each maturity in 2012
Inflation and US fiscal problems

“The goal of this paper is to quantify the likelihood of inflation significantly eroding the real value of U.S. debt.”
“....significantly improving the US long-term fiscal position.”

\[
b_t = \frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{1}{R_j} s_{t+j}
\]

\[
b = \frac{s}{Y} \frac{1}{r - g} \rightarrow \frac{s}{Y} = (r - g) \frac{b}{Y}
\]

<table>
<thead>
<tr>
<th></th>
<th>% of GDP</th>
<th>2017 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt service</td>
<td>< 0.5% - 1%</td>
<td>$95b - $190b</td>
</tr>
<tr>
<td>CBO deficits</td>
<td>3% (2017) - 5% (2027)</td>
<td>$550b - $950b</td>
</tr>
<tr>
<td>Kotlikoff fiscal gap</td>
<td>10.5%</td>
<td>$2,000b</td>
</tr>
</tbody>
</table>

▶ Social security, medicare, medicaid, pensions, credit guarantees.
▶ Inflation sensitivity?
US fiscal problems

\[b_t = E_t \sum_{j=0}^{\infty} \frac{1}{R_j^j} (\tau Y_{t+j} - G_{t+j}) \]

\[b + PV(G) = \frac{\tau Y}{r - g} \]

How does the equation hold?

- Massive cuts in growth rate of G. (Expected?)
- Massive negative returns. (*Future* default, inflation. Unexpected!)
- More \(g \! : \! r - g \) from 2% to 1% doubles \(PV(\tau Y) = PV(G) \! !
- More \(\tau \)? (20% → 30% of \(Y \), plus state & local)

\[\frac{d}{d \log \tau} \left(\frac{Y}{r - g} \right) = 1 + \frac{d \log Y}{d \log \tau} + \frac{1}{r - g} \frac{dg}{d \log \tau} \]

“Present value Laffer curve.” \(1/(r - g) \rightarrow tiny growth elasticity ruins the present value of tax receipts."
US fiscal dangers...and inflation

\[b_t = E_t \sum_{j=0}^{\infty} \frac{1}{R_j} (\tau Y_{t+j} - G_{t+j}) \]

\[b + PV(G) = \frac{\tau Y}{r - g} \]

How does the equation fall apart?

- Less g! \(r - g \) from 1% to 2% halves \(PV(\tau Y) = PV(G) \)!
- More r!

\[\frac{s}{Y} = (r - g) \frac{b}{Y} \]

- r to 5%, \(b/Y=1, s/Y = 5\% \text{GDP} = $1 Triillion.\)
- “Not so bad r”. \(r = \delta + \gamma (g - n) \). \(\gamma = 1 \), lose g benefit.
- “Bad r”. Lose faith in s, credit spread, r with no g, debt crisis.

A message from the paper. (Inflation?)

- Long term debt, rising r raises debt service right away.
- Large inflation does not change surpluses much \(\Leftrightarrow \) surplus crisis resolved by inflation produces larger inflation.