Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets

John H. Cochrane* and Jesús Saá-Requejo.†‡§

January 26, 1999

Abstract

One often wants to value a risky payoff by reference to prices of other assets rather than by exploiting full-fledged economic models. However, this approach breaks down if one cannot find a perfect replicating portfolio. We impose weak economic restrictions to derive usefully tight bounds on asset prices in this situation. The bounds assume that investors would want to buy assets with high Sharpe ratios – “good deals” – as well as pure arbitrage opportunities. We show how to calculate the price bounds in one-period, multiperiod and continuous time contexts. We show that the multiperiod problem can be solved recursively as a sequence of one-period problems. We calculate bounds in option pricing examples including infrequent trading and an option written on a nontraded event, and we use the bounds to explore the economic significance of option pricing predictions. We find that much variation in S&P500 index option prices over time and across strike prices fits within the bounds.

*University of Chicago, Federal Reserve Bank of Chicago and NBER.
†University of Chicago
‡Address correspondence to John Cochrane, Graduate School of Business, University of Chicago, 1101 E. 58th St., Chicago IL 60637. (773) 702 3059, john.cochrane@gsb.uchicago.edu.
§We thank David Backus, George Constantinides, Kent Daniel, Douglas Diamond, Andrea Eisfeldt, Lars Hansen, Ken Singelton, Steve Ross, many seminar participants and especially Yacine Aït-Sahalia for useful comments. This research was partially supported by the University of Chicago Graduate School of Business and by a grant from the NSF administered by the NBER.
1 Introduction

The fundamental question of financial economics is how to value uncertain payoffs. For many applications in economics and finance a *relative pricing* approach is appropriate. In these applications we are only interested in the value of a specific payoff, we take as given the prices of other assets without questioning their fundamental economic determinants, and we want to make as few economic assumptions as possible.

Option pricing is the classic case: we want to know the value of an option *given* the price of the underlying stock. The theory of Black and Scholes (1973) and Merton (1973b) is a great success of this approach. Even though an option payoff is quite different from that of a stock or bond, they showed how continuous dynamic trading can complete a market. Therefore, the option payoff can be perfectly replicated by continuous trading in the stock and bond, and the option’s value can be determined *given* that of the stock and bond. Via its role in option pricing theory, the relative method is used in many economic applications of finance theory, such as the real-option value of irreversible investment (for example, Abel and Eberly 1996, Dixit and Pindyck 1994). Ross’ (1976b) Arbitrage Pricing Theory tries to determine the expected rate of return of a portfolio given the expected returns of “factor” portfolios, and without preference assumptions. Even apparently economics-based theories such as the Capital Asset Pricing Model are typically applied in a relative way, since one determines expected returns on assets, portfolios or investment projects, taking the market expected return as given. A relative approach is, appropriately, used for many applications of asset-pricing theory to corporate finance. For example, one examines the returns on “like” securities to determine the cost of capital for a specific project.

Alas, a purely preference-free approach often breaks down. One may not be able to trade continuously; there may be state variables (e.g. stochastic stock volatility and interest rate) that do not correspond to traded assets; the event on which an option or real payoff depends may not be a traded asset or it may be so thinly traded that it is not useful for hedging. In fact, if options really could be perfectly and costlessly replicated by other liquid assets, it is unlikely that options would be traded in the first place.

We use a *little* economics, a slight strengthening of no-arbitrage and law of one price arguments, to greatly restrict the range of values of a risky payoff in these situations, without
having to fall back on completely specified economic models such as the consumption-based asset pricing model.

The basic idea is most simply explained in a one-period environment. We want to learn about the value of a focus payoff \(x_{t+1}^f \), taking as given the prices \(p_t \) of a set of basis payoffs or hedging assets \(x_{t+1} \).

A discount factor or marginal utility growth rate \(m_{t+1} \) generates the value \(p_t \) of any payoff \(x_{t+1} \) by

\[
p = E(mx) .
\]

Here and below we suppress time subscripts unless they are necessary for clarity. The payoff, value, and discount factor can be real or nominal. The existence of such a discount factor or marginal utility has a portfolio interpretation: it is equivalent to the law of one price that any two ways of constructing the same payoff have the same value. Thus, if the focus payoff \(x^f \) can be perfectly replicated from the basis asset payoffs \(x \), we have enough information to determine its value exactly. When replication is less than perfect, however, the existence of a discount factor or law of one price says nothing about the value of the focus asset, and we need more discount factor restrictions.

The more we can restrict the discount factor, the more we can learn about asset values. We require that the discount factor price a set of basis assets, that it is nonnegative, and we impose an upper bound on its volatility. Thus, the lower good-deal bound solves

\[
\underline{C} = \min_{\{m\}} E(mx^f) \quad s.t. \quad p = E(mx); \ m \geq 0; \ \sigma(m) \leq h/R^f ,
\]

where

\[
\begin{align*}
\underline{C} & = \text{lower good-deal bound}, \\
m & = \text{discount factor}, \\
x^f & = \text{focus payoff to be valued, e.g. } x^f = \max(S_T - K, 0) \text{ for a call option,} \\
p, x & = \text{price and payoffs of basis assets (vectors), e.g. stock and bond,} \\
h & = \text{prespecified volatility bound}, \\
R^f & = \text{risk free interest rate}, \\
E, \sigma & = \text{conditional mean and variance},
\end{align*}
\]
and the upper good-deal bound \bar{C} solves the corresponding maximum.

"Value" means how much a particular investor with marginal utility growth m would be willing to pay for a marginal quantity of the payoff. This sense of value makes no assumptions about whether the focus payoff is traded or not, or whether the investor already holds some of it or not. However, this sense of value is not the equilibrium price of a heretofore untraded security after agents buy all they want of it.

The first constraint, $p = E(mx)$ enforces the relative-pricing idea that we take as given the prices of a set of basis assets. We use the prices of these assets to learn about the discount factor, not vice versa.

The second constraint $m \geq 0$ is a classic and weak characterization of marginal utility. (The distinction between $m > 0$ and $m \geq 0$ is unimportant for our results.) This assumption also has a portfolio interpretation (Ross 1976c, Hansen and Richard 1987): it is equivalent to the absence of arbitrage opportunities, which means that if a payoff is nonnegative in every state of nature, its value must also be nonnegative. If we know, perhaps by a risk-attitude survey, that an investor will take part in any arbitrage opportunity, then we know that his marginal utility is nonnegative. The above problem with the first two constraints leads to well-known arbitrage bounds on the value.

The volatility constraint $\sigma(m) \leq h/R^f$ is our innovation. We intend it as a similar weak restriction on marginal utility, a natural next step when absence of arbitrage alone does not give precise enough answers. It also has a portfolio interpretation. Hansen and Jagannathan (1991) show that a discount factor volatility restriction is equivalent to an upper limit on the Sharpe ratio of mean excess return to standard deviation. Precisely, they show that

$$E(mR^e) = 0 \quad \text{if and only if} \quad \frac{|E(R^e)|}{\sigma(R^e)} \leq \frac{\sigma(m)}{E(m)},$$

and we have $E(m) = 1/R^f$ if there is a riskfree rate. Therefore, if we know, perhaps by a risk-attitude survey, that an investor will take part at the margin in any portfolio that delivers Sharpe ratio greater than h, then we know that his marginal utility satisfies $\sigma(m) \leq h/R^f$. We call the bounds on value calculated with this additional constraint good deal bounds because they assume that investors would want to trade any good deals – large Sharpe ratios – as well as pure arbitrage opportunities.
There is a long tradition in finance that regards high Sharpe ratios as “good deals” that are unlikely to survive, since investors would quickly grab them up. Ross (1976) bounds APT residuals by assuming that no portfolio can have more than twice the market Sharpe ratio, which Shanken (1992) calls “approximate arbitrage.” MacKinlay (1995) criticizes Fama and French (1993) by noting what seem like excessively high Sharpe ratios. Ledoit (1995) calls a high Sharpe ratio a “δ arbitrage” and rules it out.

The discount factor volatility constraint is also a way of imposing weak or robust predictions of economic models. One may not wish to impose the full structure of an economic asset pricing model, for example a utility function and a specification of the joint distribution of consumption and asset payoffs. Still, a wide range of such models imply that marginal rates of substitution are not outrageously volatile, as well as positive. Furthermore, the standard deviation of the discount factor, while a weak prediction of a such a model, may be more robust to model and data specification errors than are the covariances of payoffs with the discount factor by which such models generate values.

Similarly, the CAPM specifies that the market portfolio is mean-variance efficient. If we view the CAPM theory and market proxy for the wealth portfolio as approximations, then we believe that the market portfolio shouldn’t be too inefficient: Sharpe ratios of other portfolios should not be dramatically higher than that of the market portfolio. On the other hand, if the market return is even slightly inefficient, covariances with the market return can generate arbitrarily large pricing errors (Kandel and Stambaugh 1995).

Finally, the volatility constraint is an easy way to prune unreasonable discount factors within the arbitrage bounds. For example, the lower arbitrage bound \(C = 0 \) for a call option requires marginal utility that is zero for all states of nature in which the option finishes in the money. The upper arbitrage bound \(C = S \) requires a discount factor that is only non-zero in the two states of nature with the most extreme stock prices. Though non-negative, these discount factors are unlikely characterizations of anyone’s marginal utility. These discount factors vary a great deal across states of nature, and have a high variance. The volatility constraint weeds out some of these arbitrage-free but still “unreasonable” discount factors and their corresponding option prices.

As a simple example, consider a call option on the S&P500 index with strike price \(K = \)
$100, three months to expiration, and no intermediate trading. Figure 1 presents the upper and lower good-deal bounds for this case.

[Insert Figure 1 here]

We use parameter values $E(R) = 13\%$, $\sigma(R) = 16\%$ for the stock index return and an riskfree rate $R^f = 5\%$. (We report all parameters at annual frequency and adjust to the appropriate time horizon in the calculations.) To calibrate the discount factor volatility constraint, we assume that the investor would take any opportunity with Sharpe ratio twice that of the S&P500, $h = 2 \times E(R - R^f)/\sigma(R) = 1.0$. Since most fund managers seem desperate for average returns a few percent above the S&P500 index, this value seems conservative. This value doubles the already troubling equity premium puzzle; it implies that the standard deviation of marginal utility growth $\sigma(m) = h/R^f$ is equal to its mean, $E(m) = 1/R^f$, and nearly 100% per year. However, this is the central parameter that a user must input to the calculation; it is easy to change it, and our contribution is to show how to calculate good-deal bounds for whatever value of this limit that the user thinks is appropriate, not to advocate a specific value.

The figure includes the lower arbitrage bounds $C \geq 0$, $C \geq K/R^f$. The upper arbitrage bound states that $C \leq S$, but this 45° line is too far up to fit on the vertical scale and still see anything else. As in many practical situations, the arbitrage bounds are so wide that they are of little use.

The upper good-deal bound is much tighter than the upper arbitrage bound. For example, if the stock price is $95, the entire range of option prices between the upper bound of $2 and the upper arbitrage bound of $95 is ruled out. The lower good-deal bound is the same as the lower arbitrage bound for stock prices less than about $90 and greater than about $110. In between $90 and $110, the good-deal bound improves on the lower arbitrage bound.

The width of the bounds is larger, about $1, at the money than it is far in the money or out of the money. Options are hardest to hedge at the money, because the nonlinearity of the option payoff as a function of stock price is greatest here. Therefore, the residual – option payoff less best approximate hedge – is largest in this region. However, the width of the bounds is a much larger fraction of the call option value for out of the money options on the
left hand side of the graph. In this sense, as well as when translated to implied volatilities, the bounds are wider for out-of-the-money options.

Though one is naturally inclined to look for small bounds, large bounds can be as interesting as small bounds, and maybe more so. Small bounds confirm that replication arguments are good approximations. Large bounds warn us that replication arguments are poor approximations, that assumptions about unmeasured market prices of risk are important to the answer, and that further discount factor restrictions would be useful to restrict the range of values.

Figure 1 includes the Black-Scholes option value for reference, although it does not apply to this example since the investor cannot trade continuously. The good-deal bounds converge to Black-Scholes as the rebalancing interval is made more frequent, but they converge to a line that differs from the Black-Scholes value as the volatility bound is lowered while maintaining a fixed trading interval. Still, it is nice to see that the good-deal bounds include the Black-Scholes value and have the same general shape, since the Black-Scholes value is often an excellent approximation to observed option prices.

Not all values outside the good-deal bounds imply high Sharpe ratios or arbitrage opportunities. Such values might be generated by a positive but highly volatile discount factor, and generated by *another* less volatile but sometimes negative discount factor, but no discount factor generates these values that is *simultaneously* nonnegative and respects the volatility constraint.

It makes sense to define bounds as we do, and to rule out these values—to intersect discount factor restrictions \(m > 0, \sigma(m) \leq h/Rf \) rather than to intersect the value regions (no-arbitrage, limited Sharpe ratio) formed from each discount factor restriction simultaneously. If we know that an investor will invest in any arbitrage opportunity or take any Sharpe ratio greater than \(h \), then we know that his marginal utility satisfies both restrictions. He would find a utility-improving trade for values outside the good-deal bounds, even though those values may not imply a high Sharpe ratio, an arbitrage opportunity, or any other simple portfolio interpretation. Simple portfolio interpretations, while historically important, are likely to fall by the wayside as we add more discount factor restrictions or intersect simple ones. Furthermore, our method for extending the problem to handle multiple periods requires
a non-negative discount factor, so again we must impose both constraints.

On the other hand, in many applications the good deal region is only very slightly smaller than the intersection of a limited Sharpe ratio region and the arbitrage-free region, and we have analytic formulas for these two regions. The difference gets smaller as the time interval gets shorter, and disappears entirely in the continuous time limit. Therefore, intersecting the limited Sharpe ratio and arbitrage free regions may be a convenient approximation for many applications.

Good-deal bounds should be useful in many situations in which a relative pricing approach is appropriate but perfect replication is not possible. A few examples: 1) A trader can use the bounds as buy and sell points in the search for “good deals” in asset markets (with the usual warning question of why the market leaves good deals undiscovered). 2) A bank or other institution that markets or synthesizes non-traded securities can use good-deal bounds as bid and ask prices. 3) Good-deal bounds can be used as economic measures of the accuracy of option pricing formulas. Arbitrage-based formulas predict no error, so that “measurement errors” in prices must be tacked on to the models. The bounds can tell us which option prices should lie close to arbitrage-based formulas, and which can lie far from the predictions of those formulas, using an economic measure of distance. 4) Option pricing techniques are increasingly applied to “real options” in capital budgeting, investment with irreversibilities and policy questions. A relative pricing approach is appropriate, but the focus payoffs typically cannot be perfectly replicated. 5) Option pricing formulas are often used in risk assessment, to quantify the exposure of a position or institution to various risk factors. It is useful to assess such risks when perfect replication is impossible, and to quantify the importance of market price of risk assumptions.

Section 2 shows how to calculate good-deal bounds in single period, multiple period and continuous time contexts. We find a recursive solution to the multiperiod problem, i.e. we show that the lower bound today solves the one-period problem with the lower bound tomorrow as payoff. This formulation makes the multiperiod problem computationally feasible. In continuous time, it leads to a partial differential equation for the bounds. This is our central theoretical contribution, and it makes the technique relevant for serious option-pricing applications, which are all inherently dynamic. In particular, we can handle continuous trading environments in which market incompleteness comes from non-traded state variables or
options written on non-tradeable events.

In section 3, we explore several applications, in part to emphasize that the bounds are practical and easily computable and in part for the economic interest of the answers. We show the calculations behind the simple Black-Scholes example of Figure 1; we show how to bound option deltas (derivative of option price with respect to stock price); we calculate option price bounds when other options are used as hedge assets; we calculate multiperiod bounds using a discrete multinomial model, and we compare the results to index option prices; we calculate bounds on an option subject to “basis risk” – an option on a nontraded underlying security or event that is imperfectly correlated with basis asset payoffs. Cochrane and Saá-Requejo (1999) present a more extended application to option pricing in continuous time with stochastic interest rate and stock volatility.

2 Calculating good-deal bounds

2.1 One period

We start with the simplest situation. There is one period and no intermediate trading until the payoff x^c is realized. Throughout, we assume that all of the basis payoffs is riskless, so we can write $E(m) = 1/R$. It is convenient to express the volatility constraint as a second moment. Thus, our problem (2) becomes

$$C = \min_{\{m\}} E(m x^c) \quad s.t. \quad p = E(mx), \quad E\left(m^2\right) \leq A^2, \quad m \geq 0, \quad (3)$$

where $A^2 \equiv (1+h^2)/R^2$. We presume a statistical model for the distribution of the payoffs x, so that we can calculate moments. All expectations and probabilities refer to the true measure. For any solution to exist, of course, one must pick a sufficiently large bound A to price the basis assets,

$$A^2 \geq \min_m E\left(m^2\right) \quad s.t. \quad E(mx) = p, \quad m \geq 0.$$

The problem has two inequality constraints. Hence we find a solution by trying all the combinations of binding and nonbinding constraints, in order of their ease of calculation, as follows: 1) We assume the volatility constraint binds and the positivity constraint is slack. This is the easiest case, since we have analytic formulas for the bounds and discount
factor in this case. If the resulting discount factor \(m \) is nonnegative, this is the solution. If not, 2) we assume that the volatility constraint is slack and the positivity constraint binds. This configuration delivers the arbitrage bound on value. We find the minimum variance discount factor that generates the arbitrage bound. If this discount factor satisfies the volatility constraint, this is the solution. If not, 3) we solve the problem with both constraints binding. Next we show how to handle each case.

2.1.1 Volatility constraint binds, positivity constraint is slack

If the positivity constraint is slack, the problem reduces to

\[
C = \min_{\{m\}} E(m \ x^c) \quad \text{s.t.} \quad p = E(m \ x) \quad , \quad E \left(m^2 \right) \leq A^2. \tag{4}
\]

Rather than solve this problem directly with Lagrange multipliers on the constraints, we set up orthogonal decompositions of the focus payoff \(x^c \) and discount factor \(m \). The solution then pops out. (The solution strategy is due to Hansen and Jagannathan 1991. This problem is dual to theirs.) Figure 2 describes the idea. \(X \equiv \{ c' x, \ c \in R^N \} \) denotes the space of payoffs of portfolios of the basis assets\(^1\). Though graphed as a line, \(X \) is typically an infinite-dimensional space. We know all prices in \(X \), but the payoff \(x^c \) that we wish to value does not lie in \(X \).

[Insert Figure 2 here]

We orthogonally decompose the focus payoff \(x^c \) into an approximate hedge \(\hat{x}^c \) and a residual \(w \), by projection (OLS regression).

\[
x^c = \hat{x}^c + w, \quad \hat{x}^c \equiv \text{proj}(x^c|X) = E(x^c x') E(xx')^{-1} x, \quad w \equiv x^c - \hat{x}^c. \tag{5}
\]

By construction \(E(w \hat{x}^c) = 0 \), \(E(w \ x) = 0 \). As is standard in thinking about OLS regressions, Figure 2 represents \(E(w \ x) = 0 \) by plotting \(w \) at right angles to the \(X \) plane.

\(^1\)Since we need second moments, they had better be defined. With \(y \equiv [x' \ x^c]' \), we assume \(Eyy' < \infty \), i.e. \(y \) is in \(L^2 \), the space of all random variables with finite second moments. We assume that redundant assets have been pruned from the specification so \(Eyy' \) is nonsingular. We also limit consideration to discount factors \(m \in L^2 \). Hansen and Jagannathan (1991) discuss these technical assumptions.
Discount factors m generate the prices of payoffs x in X by an inner product $p = E(mx)$. All points on the dashed line marked m in Figure 2 have the same inner product $E(mx)$ with vectors $x \in X$ and hence generate the same prices on X. Such discount factors can be represented as $x^* = \text{proj}(m|X)$ plus orthogonal components. This fact allows us to impose the pricing constraint. Formally,

Lemma 1. A discount factor m prices the basis assets, $p = E(mx)$, if and only if it is of the form

$$m = x^* + vw + \epsilon,$$

where

$$x^* = p'E(xx')^{-1}x$$

satisfies $p = E(x^*x)$ by construction, v is an arbitrary number, ϵ is any random variable with $E(\epsilon x) = 0, E(\epsilon w) = 0$, and w is the residual defined in equation (5).

Proofs are in the appendix. We will quickly see that we want to choose $\epsilon = 0$, so we are reduced to choosing a single number v rather than choosing a random variable m.

Since second moment defines distance in Figure 2, the set of discount factors that satisfies the volatility constraint $E(m^2) \leq A^2$ lies inside the circle shown around the origin. This restricted range of discount factors will produce a restricted range of values for the residual w and hence for the focus payoff x^c. The maximum and minimum values will be generated when we pick v to exactly satisfy the volatility constraint. A little more formally,

Proposition 1 The discount factor that generates the lower bound is

$$m = x^* - vw$$

and the bound is

$$\underline{C} = E(x^*x^c) - vE(w^2)$$

where

$$v = \sqrt{\frac{A^2 - E(x^*x^2)}{E(w^2)}}.$$

The upper bound is given by $\overline{v} = -v$.

10
The first term in equation (9) is the value of the approximate hedge portfolio,

$$E(x^c x^c) = E(x^c \hat{x}^c) = E(m \hat{x}^c)$$

(11)

for any discount factor m that prices basis assets. (Here and below we use the fact that $E(xy) = E[x \text{ proj}(y | X)]$.) The second term is the lowest possible value of the residual w consistent with the discount factor volatility bound:

$$\nu E(w^2) = E(\nu w w) = E[(x^* + \nu w)w] = E(\nu w).$$

The bounds are tighter if the volatility constraint A is smaller, if the residual is smaller, or if the approximate hedge is better. To see this precisely, we can write the size of the bounds as

$$C - \underline{C} = 2 \sqrt{A^2 - E(x^*)^2} \sqrt{E(w^2)} = 2 \sqrt{E(x^c)^2} \sqrt{A^2 - E(x^*)^2} \sqrt{1 - R^2}$$

(12)

where

$$R^2 = \frac{E(\hat{x}^c)^2}{E(x^c)^2} = 1 - \frac{E(w^2)}{E(x^c)^2}.$$

In the first expression, we relate the size of the bounds to the size of the residual $\sqrt{E(w^2)}$ directly. In the second expression, we show that a higher R^2 of a regression of the focus asset on the basis assets leads to tighter bounds. Some of the discount factor volatility is “used up” in pricing the basis assets. Only that portion of the volatility bound A in excess of the discount factor volatility $E(x^*)^2$ required to price the basis assets can be applied to the price of the residual.

For calculations it is useful to substitute the definitions of x^* and w in equation (9) to obtain

$$\underline{C} = p' E(xx')^{-1} E(xx^c) - \sqrt{A^2 - p' E(xx')^{-1} p \sqrt{E(x^c)^2} - E(x^c x') E(xx')^{-1} E(x x^c)}.$$
(13)

The upper bound \overline{C} is the same formula with a $+$ sign in front of the square root. This formula is much less pretty, but it shows explicitly how to calculate the price bound from a statistical model for the second moments of x, x^c.

Using (8), we check the assumption that the discount factor is in fact positive in every state of nature. If so, this is the good-deal bound. If not, we proceed to the next step.
2.1.2 Both constraints bind

Next we show how to find the bounds in a one period model when both constraints bind. Though this is the third step in the procedure, it is easiest to describe this case first. In the geometry of Figure 2, it is not necessarily true that the $E(m^2) \leq A^2$ set lies inside the $m \geq 0$ set. If it does for some states of nature and not for others, then both constraints bind.

Introducing Lagrange multipliers, the problem is

$$
C = \min_{\{m>0\}} \max_{\{\lambda, \delta > 0\}} E(m x^c) + \lambda' \left[E(mx) - p \right] + \frac{\delta}{2} \left[E(m^2) - A^2 \right]
$$

The first order conditions to this problem yield a discount factor that is a truncated linear combination of the payoffs,

$$
m = \max \left(\frac{x^c + \lambda' x}{\delta}, 0 \right) = \left[\frac{x^c + \lambda' x}{\delta} \right]^+. \quad (14)
$$

The last equality defines the $[\cdot]^+$ notation for truncation. To derive this expression, take partial derivatives with respect to m in each state. We could plug expression (14) into the constraints, and solve numerically for Lagrange multipliers λ and δ that enforce the constraints. Alas, this procedure requires the solution of a system of nonlinear equations in (λ, δ), which is often a numerically difficult or unstable problem.

Hansen, Heaton and Luttmer (1995) show how to recast the problem as a maximization, which is numerically much easier. Interchanging min and max,

$$
C = \max_{\{\lambda, \delta > 0\}} \min_{\{m>0\}} E(m x^c) + \lambda' \left[E(mx) - p \right] + \frac{\delta}{2} \left[E(m^2) - A^2 \right]. \quad (15)
$$

The inner minimization yields the same first order conditions (14). Plugging those first-order conditions into the outer maximization of (15) and simplifying, we obtain

$$
C = \max_{\{\lambda, \delta > 0\}} \left\{ -\frac{\delta}{2} \left[\frac{x^c + \lambda' x}{\delta} \right]^+ \right\} - \lambda' p - \frac{\delta}{2} A^2. \quad (16)
$$

We search numerically over (λ, δ) to find the solution to this problem. The upper bound is found by replacing max with min and replacing $\delta > 0$ with $\delta < 0$.

12
2.1.3 Positivity binds, volatility is slack

If the volatility constraint is slack and the positivity constraint binds, the problem reduces to

$$C = \min_{\{m\}} E(m \ x^c) \quad s.t. \quad p = E(mx), \ m > 0.$$

These are the arbitrage bounds. One can often deduce the arbitrage bounds for specific problems without explicitly solving a minimization. It is a linear program otherwise. It remains however to check whether the discount factor volatility constraint can be satisfied at the arbitrage bound.

Denote the lower arbitrage bound by C_I. The minimum variance (second moment) discount factor that generates the arbitrage bound C_I solves

$$E(m^2)_{\min} = \min_{\{m\}} E(m^2) \quad s.t. \quad P \begin{bmatrix} C_I \\ m \end{bmatrix} = E \left(m \begin{bmatrix} x \\ x^c \end{bmatrix} \right), \ m > 0.$$

Using the same conjugate method, this problem is equivalent to

$$E(m^2)_{\min} = \max_{\{\nu, \mu\}} -E \left\{ [-(\nu x^c + \nu^T x)]^{+2} \right\} - 2
\nu^T \textbf{p} - 2\mu C_I.$$

Again, we search numerically for (ν, μ) to solve this problem. If $E(m^2)_{\min} \leq A$, C_I is the solution to the good-deal bound; if not we proceed with the case that both constraints are binding described above.

2.2 Multiple periods – a recursive solution

Consider the same problem, but allow one intermediate period at which the investor can change his portfolio of the basis assets. To keep the notation simple, we do not include intermediate payoffs, but this is a simple extension. Using time periods 1 and 2 for the rebalancing date and final date respectively, the objective function for the lower bound is

$$C_0 = \min_{\{m_1, m_2\}} E_0(m_1 m_2 x_2^c)$$

where $E_t(\cdot) = E(\cdot | I_t)$ denotes conditional expectation.

Next, the constraints. The discount factors m_1 and m_2 must price the basis assets, so we require

$$p_0 = E_0(m_1 p_1)$$

$$p_1 = E_1(m_2 x_2)$$

for all information sets I_1,
We generalize the discount factor volatility constraint to the requirement that the volatility in each period respect a bound\(^2\),

\[
E_0(m_1^2) \leq A_0^2; \ E_1(m_2^2) \leq A_1^2. \tag{18}
\]

The volatility constraints may be functions of information (state), and thus allow time-varying risk premia. Finally, we require discount factors to be nonnegative

\[m_1 \geq 0, m_2 \geq 0.\]

Now we can state the two period problem and its recursive solution.

Proposition 2 The two-period problem

\[
\begin{align*}
C_0 &= \min_{\{m_1,m_2\}} \ E_0(m_1m_2 x_2^c) \text{ s.t.} \\
p_0 &= E_0(m_1p_1), \ E_0(m_1^2) \leq A_0^2, \ m_1 \geq 0, \\
p_1 &= E_1(m_2x_2), \ E_1(m_2^2) \leq A_1^2 \ \forall I_1, \ m_2 \geq 0
\end{align*}
\]

has the same solution as the sequence of one-period problems

\[
\begin{align*}
C_1 &= \min_{\{m_2\}} \ E_1(m_2 x_2^c) \text{ s.t. } p_1 = E_1(m_2x_2), \ E_1(m_2^2) \leq A_1^2, \ m_2 \geq 0 \\
C_0 &= \min_{\{m_1\}} \ E_0(m_1C_1) \text{ s.t. } p_0 = E_0(m_1p_1), \ E_0(m_1^2) \leq A_0^2, \ m_1 \geq 0.
\end{align*}
\]

The proof is in the appendix. Basically, since \(m_1 \geq 0\) and the constraint sets on \(m_1\) and \(m_2\) do not affect each other, the solution to the two-period problem \(\min E_0(m_1E_1(m_2x^c))\) must minimize \(E_1(m_2x^c)\) in each state of nature at time 1. If \(m_1 < 0\) were possible we would

\(^2\)An alternative constraint might be that the two-period Sharpe ratio is below a given value,

\[
E_0 \left[(m_1m_2)^2 \right] \leq A^2. \tag{17}
\]

This constraint does not lead to a recursive solution. The constraint (18) implies a constraint of the form (17),

\[
E_0 \left[(m_1m_2)^2 \right] = E_0 \left[m_1^2 E_1 (m_2^2) \right] \leq E_0 \left(m_1^2 A_1^2 \right) \leq A_0^2 A_1^2,
\]

but the converse is not true. Therefore, individual constraints give sharper bounds than a two-period constraint.

The Sharpe ratio scales with the square root of the time period. An appropriate numerical value for the bound using a six-month trading interval is the square root of the appropriate value for a one-year trading interval.
want to maximize $E_t(m_2x^c)$ in some states of nature; the $m_1 \geq 0$ assumption rules this out.

Since the bounds are not prices or payoffs of traded securities, it is not initially obvious that
one can compute the date 0 bound using the date 1 bound as a “payoff,” but the proposition
verifies that it is correct to do so.

The recursive statement extends in an obvious way to multiple periods. To compute
multiperiod bounds, we can now work backward: for a payoff at T, compute one period
bounds as before at $T - 1$. Then, compute bounds at $T - 2$ using the $T - 1$ bounds as
payoffs, and so forth.

2.3 Continuous time

Notation

Passing to continuous time is conceptually straightforward, but the notation is unavoid-
ably a bit different.

Consider an asset with price S_t that gives a stream of payoffs or dividends $D_t dt$. A
discount factor is a process Λ_t that generates the price by

$$S_t \Lambda_t = E_t \int_{s=0}^{\infty} \Lambda_{t+s} D_{t+s} ds. \quad (22)$$

The continuous time and discrete time discount factor concepts are related by $m_{t+1} =
\Lambda_{t+1}/\Lambda_t$. Again, we suppress time subscripts where they are not necessary, e.g. we write
$\Lambda = \Lambda_t$.

Using (22) at t and $t + \Delta t$, we can find the continuous time equivalent to $p = E(mx)$,

$$0 = \frac{E_t [d(\Lambda S)]}{\Lambda S} + \frac{D}{S} dt. \quad (23)$$

If there is an instantaneously riskfree rate r_t, (a security with price one that pays $D_t =
r_t$, or a money market account whose value grows at $dB/B = r_t dt$) then equation (23) implies

$$E_t \left(\frac{d\Lambda}{\Lambda} \right) = -r_t dt.$$

This equation is the continuous-time counterpart to $R^f = 1/E(m)$.

Equation (23) implies

$$E_t \frac{dS}{S} + \left(\frac{D}{S} - r \right) dt = -E_t \left(\frac{d\Lambda}{\Lambda} \frac{dS}{S} \right). \quad (24)$$
This equation is the continuous-time counterpart to \(E(R^c) = -\text{cov}(m, R^c)/E(m) \) for excess returns \(R^c \). Thus, a security with diffusion \(dz \) should have an expected excess return equal to
\[
- \frac{1}{dt} E_t \left(\frac{d\Lambda}{\Lambda} dz \right).
\]
This quantity is the “market price” of the risk \(dz \), and this equation allows us to translate between market price of risk restrictions and discount factor restrictions.

The continuous time equivalent to the link between Sharpe ratios and discount factor volatility \(|E(R^c)|/\sigma(R^c) \leq \sigma(m)/E(m) \), can be found from (23) as
\[
\frac{\bar{\mu}_S - r}{\sigma_S^2} dt \leq E_t \frac{d\Lambda^2}{\Lambda^2}
\]
where \(\bar{\mu}_S \equiv E_t(dS/S) + D/S \, dt \) is the conditional expected return and \(\sigma_S^2 \equiv E_t(dS^2/S^2) \) is the conditional variance of return.

Statistical model

We need a statistical model, the equivalent of the moments of the basis and focus assets \(E(x), E(xx'), E(x^c) \), etc. in the discrete time formulas. The statistical model must describe the conditional moments at every point in time. We model the price processes of an \(n_S \)-dimensional vector of basis assets by a diffusion,
\[
\frac{dS}{S} = \mu_S(S, V, t)dt + \sigma_S(S, V, t)dz
\]
where \(z \) is a \(n_S \)-dimensional vector of independent Brownian motions, and \(E(dz \, dz') = I \).

The basis assets may pay dividends at rate \(D(S, V, t)dt \). \(V \) represents an \(n_V \)-dimensional vector of additional state variables that follow
\[
dV = \mu_V(S, V, t)dt + \sigma_{Vz}(S, V, t)dz + \sigma_{Vw}(S, V, t)dw
\]
where \(dw \) is an \(n_V \)-dimensional vector of Brownian increments orthogonal to \(dz : E(dw \, dw') = I \; E(dw \, dz') = 0 \). We again assume that there is an instantaneously risk free rate \(r(S, V, t)dt \). This

3Rather than complicate the notation, understand division to operate element by element on vectors, e.g.,
\[
dS/S = \left[\begin{array}{c} dS_1/S_1 \\ dS_2/S_2 \\ \vdots \end{array} \right].
\]
When explicit enumeration of arguments is not necessary, we write \(dS \) for \(S(t) \) and \(\mu_S \) and \(\sigma_S \) for \(\mu_S(S, V, t) \) and \(\sigma_S(S, V, t) \). We assume that all diffusion parameters, \(\mu_S(S, V, t) \), \(\sigma_S(S, V, t) \), \(\mu_V(S, V, t) \), \(\sigma_V(S, V, t) \), etc. are continuous in all their arguments. We assume that all variance-covariance matrices such as \(\sigma_S(S, V, t)\sigma_S(S, V, t)' \), \(\sigma_V(S, V, t)\sigma_V(S, V, t)' \) are non-singular for all \(S \in \mathcal{R}^{n_S} \), \(V \in \mathcal{R}^{n_V} \), \(t \in [0, T] \).
assumption is not essential, but it simplifies the algebra and presentation. When r varies stochastically, it is one of the state variables in V.

The problem

We want to value an asset that pays continuous dividends at rate $x_c(S, V, t)dt$ and with a terminal payment $x_T(S, V, T)$. We might not be able to perfectly hedge or replicate this asset for two reasons: The risks associated with n_V non-traded shocks cannot be hedged, and the payoff x_c may depend on the non-traded variables V.

The problem is now to choose a discount factor process to minimize the asset value

$$
C_t = \min_{\{\Lambda_s, t < s \leq T\}} \mathbb{E}_t \int_t^T \frac{\Lambda_s}{\Lambda_t} x_c^s ds + \mathbb{E}_t \left(\frac{\Lambda_T}{\Lambda_t} x_T^c \right)
$$

subject to the constraints that 1) the discount factor prices the basis assets S, r at each moment in time, 2) the instantaneous volatility of the discount factor process is less than a prespecified value A^2 (or, more generally, less than a process $A(S, V, t)^2$ at each moment in time) and 3) the discount factor is positive $\Lambda_s > 0$, $t \leq s \leq T$. The upper bound follows by replacing min with max. Since there are no jumps in news variables, we add to our list of economic assumptions on the discount factor that it also follows a diffusion process without jumps.

Differential statements

The problem can be solved recursively, by proposition 2. Thus, we can study how to move one step back in time,

$$
C_t \Lambda_t = \min_{\{\Lambda_s\}} \mathbb{E}_t \int_t^{t + \Delta t} \Lambda_s x_c^s ds + \mathbb{E}_t (\Lambda_{t + \Delta t} C_{t + \Delta t})
$$
or, for small time intervals,

$$
C_t \Lambda_t = \min_{\{\Delta \Lambda\}} \mathbb{E}_t \{ x_c \Delta t + (C_t + \Delta C) (\Lambda_t + \Delta \Lambda) \}.
$$

Letting $\Delta t \to 0$, we can write the objective in differential form,

$$
0 = \frac{x_c}{C} dt + \min_{\{d \Lambda\}} \frac{\mathbb{E}_t [d (\Lambda C)]}{\Lambda C},
$$

subject to the constraints. We can also write (28) as

$$
E_t \frac{dC}{C} + \frac{x_c}{C} dt - r^f dt = - \min_{\{d \Lambda\}} E_t \left(\frac{d \Lambda \frac{dC}{C}}{\Lambda \frac{dC}{C}} \right).
$$
Since the second and third terms on the left hand side are fixed, the condition sensibly tells us to find the lowest value C by maximizing the drift $E_t dC$ at each date.

Constraints

Now we express the constraints. As in the discrete time case, we orthogonalize the discount factor and then the solution pops out.

Lemma 2. Λ_t is a discount factor driven by dz, dw that prices the basis assets S, r if and only if it can be represented as

$$\frac{d\Lambda}{\Lambda} = \frac{d\Lambda^*}{\Lambda^*} - vd w$$

where

$$\frac{d\Lambda^*}{\Lambda^*} \equiv -rt - \tilde{\mu}_s \Sigma_S^{-1} \sigma_s dz;$$

$$\tilde{\mu}_s \equiv \mu_S + \frac{D}{S} - r; \quad \Sigma_S = \sigma_S \sigma_S^t.$$

and v is an arbitrary\(^4\) $1 \times n_V$ matrix.

This proposition is the obvious continuous-time counterpart to lemma 1, and has the same geometric interpretation as in Figure 2. We can let $d\Lambda/\Lambda$ load on additional shocks, orthogonal to both V and S, with no effect on its ability to price focus or basis assets. For this reason the proposition qualifies “driven by dz, dw”. However, our minimization or maximization of asset values will again put such loading to zero. (This proposition and proof are similar to Proposition 3.1 in He and Pearson 1992.)

The volatility constraint is

$$\frac{1}{dt} E_t \frac{d\Lambda^2}{\Lambda^2} \leq A^2$$

and hence, using (29),

$$vv' \leq A^2 - \frac{1}{dt} E_t \frac{d\Lambda^2}{\Lambda^2} = A^2 - \tilde{\mu}_s \Sigma_S^{-1} \tilde{\mu}_s.$$

(30)

By expressing the constraints via (29) and (30), we have again reduced the problem of choosing the stochastic process for Λ to the choice of loadings v on the noises dw with unknown values, subject to a quadratic constraint on vv'. Since we are picking differentials

\(^4\)We require $E \left[\exp \left(\frac{1}{2} \int_0^T |\tilde{\mu}_s \Sigma_S^{-1} \sigma_s|^2 dt \right) \right] < \infty$ and $E \left[\exp \left(\frac{1}{2} \int_0^T |v|^2 dt \right) \right] < \infty$, to ensure that the stochastic integrals that describe the dynamics of Λ are well-defined.

18
and have ruled out jumps, the positivity constraint on the choice of $d\Lambda$ is slack so long as $\Lambda > 0$.

Using equation (29), v is the vector of market prices of risks of the dw shocks:

$$ -\frac{1}{dt} E \left(\frac{d\Lambda}{\Lambda} dw \right) = v. $$

Thus, the problem is equivalent to: find at each date the assignment of market prices of risk to the dw shocks that minimizes (maximizes) the focus payoff value, subject to the constraint that the total (sum of squared) market price of risk is bounded by A^2.

Solutions: a differential characterization

At each moment, the bound calculation is now exactly the same as in the one period discrete time case with a slack positivity constraint. However, except for the moment just before the terminal date, the focus payoff is the next period’s lower bound. Thus, we obtain a lower bound at each moment that depends on the distribution of the lower bound at the next moment. These results must be strung together in order to obtain the lower bound at each moment in terms of the underlying assumed stochastic properties of the focus and basis assets.

To be specific, we assume that the lower bound C follows a diffusion process, so we write

$$ \frac{dC}{C} = \mu_C(S, V, t)dt + \sigma_{Cz}(S, V, t)dz + \sigma_{Cw}(S, V, t)dw. \tag{31} $$

σ_{Cz} and σ_{Cw} capture the stochastic evolution of the bound over the next instant. Therefore, a differential or moment-to-moment characterization of the bound will tell us μ_C in terms of σ_{Cz} and σ_{Cw}.

Proposition 3 The lower bound discount factor Λ_t follows

$$ \frac{d\Lambda}{\Lambda} = \frac{d\Lambda^*}{\Lambda^*} - v dw \tag{32} $$

and μ_C, σ_{Cz} and σ_{Cw} satisfy the restriction

$$ \mu_C + \frac{x^c}{C} - r = -\frac{1}{dt} E_t \left(\frac{d\Lambda^*}{\Lambda^*} \sigma_{Cz} dz \right) + v \sigma'_{Cw} \tag{33} $$

where

$$ v = \sqrt{A^2 - \frac{1}{dt} E_t \frac{d\Lambda^{*2}}{\Lambda^{*2}} \frac{\sigma_{Cw}}{\sqrt{\sigma_{Cw}^2 \sigma'_{Cw}}} } \tag{34} $$

The upper bound process C_t and discount factor Λ_t have the same representation with $\tau = -v$.

The statement and proof of this proposition are straightforward analogues to proposition 1 and have the same geometric interpretation as shown in Figure 2. \(d\Lambda^*/\Lambda^* \) is the combination of basis asset shocks that prices the basis assets by construction, in analogy to \(x^* \). The term \(\sigma_{Cw}dw \) corresponds to the error \(w \), and \(\sigma_{Cw}\sigma'_{Cw} \) corresponds to \(\mathbb{E}(w^2) \). The proposition looks a little different because now we choose a vector \(v \) rather than a number. We could define a residual \(\sigma_{Cw}dw \) and then the problem would reduce to choosing a number, the loading of \(d\Lambda \) on this residual. It is not convenient to do so in this case since \(\sigma_{Cw} \) potentially changes over time.

As in the discrete-time case, we can plug in the definition of \(\Lambda^* \) to obtain explicit, if less intuitive, expressions for the optimal discount factor and the resulting lower bound,

\[
\frac{d\Lambda}{\Lambda} = -rdt + \tilde{\mu}_S\Sigma^{-1}_S\sigma_S dz - \sqrt{A^2 - \tilde{\mu}_S^2\Sigma^{-1}_S\tilde{\mu}_S} \frac{\sigma_{Cw}}{\sqrt{\sigma_{Cw}\sigma'_{Cw}}} dw
\]

(35)

\[
\mu_C + \frac{x^c}{C} - r = \tilde{\mu}_S\Sigma^{-1}_S\sigma_S\sigma_C + \sqrt{A^2 - \tilde{\mu}_S^2\Sigma^{-1}_S\tilde{\mu}_S} \sqrt{\sigma_{Cw}\sigma'_{Cw}}.
\]

(36)

A partial differential equation for the bounds

We have now a differential characterization of the lower bound and the discount factor that generates the lower bound. We have to chain together those differential characterizations.

First, we find a partial differential equation for the bounds. We hypothesize a solution \(C(S,V,t) \). We use Ito’s lemma to derive expressions for \(\mu_C \) and \(\sigma_{C^2}, \sigma_{Cw} \) in terms of the partial derivatives of \(C(S,V,t) \). We substitute these expressions into restriction (36). The mechanics are relegated to the algebraic Appendix, Cochrane and Saá-Requejo (1998). The result is ugly, but straightforward to evaluate numerically, and analytically in special cases. It expresses the time derivative \(\partial C/\partial t \) in terms of derivatives with respect to state variables, and thus can be used to work back from a terminal period.

Proposition 4 The lower bound \(C(S,V,t) \) is the solution to the partial differential equation

\[
x^c - rC + \frac{\partial C}{\partial t} + \frac{1}{2} \sum_{i,j} \frac{\partial^2 C}{\partial S_i \partial S_j} S_i S_j \sigma_S \sigma'_S + \frac{1}{2} \sum_{i,j} \frac{\partial^2 C}{\partial V_i \partial V_j} (\sigma_{V,z_i} \sigma'_{V,z_j} + \sigma_{V,w_j} \sigma'_{V,w_j}) + \sum_{i,j} \frac{\partial^2 C}{\partial S_i \partial V_j} S_i \sigma_S \sigma'_{V,z_j} =
\]

20
\[
\left(\frac{D}{S} - r\right) \left(SC_s \right) + \left(\bar{\mu}_S \Sigma_S^{-1} \sigma_s \sigma'_V - \mu'_V \right) \mathcal{C}_V + \sqrt{A^2 - \bar{\mu}_S \Sigma_S^{-1} \bar{\mu}_S} \int \mathcal{C}'_V \sigma_{Vw} \sigma'_V \mathcal{C}_V
\]

subject to the boundary conditions provided by the focus asset payoff \(x_T \). \(\mathcal{C}_V \) denotes the vector with typical element \(\partial C / \partial V_j \) and \(SC_s \) denotes the vector with typical element \(S_t \partial C / \partial S_t \). Replacing + with − before the square root gives the partial differential equation satisfied by the upper bound.

Note that the drift of the basis assets \(\mu_S \) enters into the partial differential equations for the bounds. Again, actual and not just risk-neutral probabilities matter.

A special case in which we know the discount factor

In general, the \(\Lambda \) process depends on the parameters \(\sigma_{\mathcal{C}w} \). Hence, without solving the above partial differential equation we do not know how to spread the loading of \(d\Lambda \) across the multiple sources of risk \(dw \) whose risk prices we do not observe. Equivalently, we do not know how to optimally spread the total market price of risk across the elements of \(dw \). Thus, in general we cannot use an integration approach to find the bound; i.e., we cannot characterize \(\Lambda \) enough to simply calculate

\[
C_t = E_t \int_{s=t}^{T} \Lambda \Lambda x_s^c ds + E_t \left(\frac{\Lambda}{\Lambda} x_T^c \right).
\]

However, if there is only one shock \(dw \), then we don’t have to worry about how the loading of \(d\Lambda \) spreads across multiple sources of risk. \(v \) can be determined simply by the volatility constraint. In this special case, \(dw \) and \(\sigma_{\mathcal{C}w} \) are scalars. Hence equation (32) simplifies as follows

Proposition 5
In the special case that there is only one extra noise \(dw \) driving the \(V \) process, we can find the optimum discount factor \(\Lambda \) directly as

\[
\frac{d\Lambda}{\Lambda} = - r dt - \bar{\mu}_S \Sigma_S^{-1} \sigma_s dz - \sqrt{A^2 - \bar{\mu}_S \Sigma_S^{-1} \bar{\mu}_S} dw.
\]

In some applications, the loading of \(d\Lambda \) on multiple shocks \(dw \) may be constant over time. In such cases, one can again construct the discount factor and solve for bounds by (possibly numerical) integration, avoiding the solution of a partial differential equation.
3 Applications

3.1 Black-Scholes with no intermediate trading

We start by calculating bounds on call option values in the Black-Scholes setup with no trading until expiration. The results were presented in Figure 1. The call option payoff is

\[x^c = \max(S_T - K, 0) \]

where \(S_T \) = stock price at expiration, \(K \) = strike price. The hedge assets are the underlying stock with current price \(S \) and a riskfree bond with return \(R_f \). The stock return \(R = S_T/S \) is lognormally distributed. We use the lognormal density to calculate all the first and second moments of the stock and option payoffs. For example,

\[E(x^c) = S \int_{K/S}^\infty \left(R - \frac{K}{S} \right) f(R) dR \]

The derivation and expression of these moments are long and unenlightening, so we relegate them to the algebraic Appendix, Cochrane and Saá-Requejo (1998). With these moments in hand, we follow the procedure described in section 2.1.

3.2 Options as hedge assets

The Black-Scholes setup is famous for historical reasons, and because it delivers a closed-form solution with continuous trading. However, other assets may provide better approximate hedges in an incomplete market. In particular, options with different strike prices have payoffs more similar to that of the option at hand, so they may provide sharper information about an option’s value than does the underlying stock. Therefore, we examine how one can fill in option prices across strikes with no dynamic hedging.

Mechanically, we just include other options with observed prices in the payoff space \(X \) along with the underlying stock and a riskfree bond, and we use integrals against the lognormal density to calculate the required moments. We again relegate the lengthy evaluation of the integrals to the algebraic Appendix, Cochrane and Saá-Requejo (1998).

Figure 3 shows good-deal bounds as a function of strike price, using the same three month horizon and parameters as before. The black squares plot the prices of three options...
whose prices are observed. The curves give bounds on the value of an additional option. The arbitrage bounds ($m > 0$ constraint) in this case state that the option price must be a concave function of strike price, and must obey the standard call arbitrage bounds.

[Insert Figure 3 here]

The good-deal bounds improve on the arbitrage bounds throughout. Their small size gives some justification to the common practice of drawing a smooth line through observed option prices, but it also warns that small differences in how one draws such a line can have a dramatic effect on the Sharpe ratios of option-based portfolios. The good-deal bounds are much tighter than arbitrage bounds beyond the last trade options, where concavity places fewer restrictions on value. Overall, the bounds are much tighter than those of Figure 1, verifying the intuition that other options are a better approximate hedge for a given option than is the underlying security.

3.3 Deltas

Option pricing theory is used extensively to quantify risk exposure, by measuring how much an option value would change if an underlying state variable such as the stock price changed. This sensitivity is known as the option’s “delta.” Here we expect (at best) a range for deltas rather than a number. (Deltas are also used to construct hedges, but are less interesting for that purpose in an incomplete markets context. For example, we already know how to construct a hedge that minimizes the variance of residual risk, $\hat{x} = \text{proj}(x^c|X).$)

Suppose we observe an option price, which we write as $C(S,V,K,T)$ with $S =$ stock price, $V =$ additional state variables (if any), $K =$ strike price and $T =$ time to expiration. We want to know, how would the option price change if the stock price changed a bit, $C(S + \Delta S,V,K,T)$? Alas, our methods give bounds on the prices of other securities, such as $C(S,V,K + \Delta K,T)$, not the same security in a different state of the world.

To infer prices in a different state from the prices of other securities, we assume that the option value is homogenous of degree one in the stock price and strike price, S and K:

$$C(\alpha S,V,\alpha K,T) = \alpha C(S,V,K,T).$$
This assumption basically says that the units (dollars or cents) of the underlying price are irrelevant. Merton (1973b) shows that this assumption holds when the distribution of returns is independent of the level of the asset price. Homogeneity implies

$$\frac{\partial C}{\partial S} S + \frac{\partial C}{\partial K} K = C.$$

Hence we can evaluate deltas with

$$\frac{\partial C}{\partial S} = \frac{C}{S} - \frac{\partial C}{\partial K} \frac{K}{S}.$$ \hspace{1cm} (37)

To calculate a derivative, we have to start at a point with a known or hypothesized option value. (Otherwise all we know is that the value is in a bound now and in another bound at $t + \Delta t$; the time and hence state derivative can be infinite.) We calculate bounds at the black squares at which option prices are observed. At such a point, the maximum and minimum slopes of the bounds $\partial C/\partial K$ and $\partial C/\partial K$ determine maximum and minimum deltas via equation (37).

[Insert Figure 4 here]

Figure 4 presents a graph of upper and lower delta bounds computed in this way, using the same setup as Figure 3. Since the slopes of the good-deal bounds are smaller than those of the arbitrage bounds at all of the observed option prices, the good-deal delta bounds are tighter than delta bounds based on arbitrage bounds alone. In this numerical example, the gain is not that large for the central option value, since the slopes of the good-deal bounds in Figure 3 were not that much less than the slopes of the arbitrage bounds. The gain is quite large for the first and last option, where arbitrage bounds widen.

In sum, the good-deal bounds can be used in this way to quantify risk-exposure, and to assess the uncertainty in risk-exposure calculations that assume market prices for untraded risks.

3.4 A multiperiod multinomial approach to index options

So far we have used the Black-Scholes lognormal environment to understand how our bounds work in a well-understood setup. Here we pursue a more serious application to S&P500 index
option pricing. We calculate bounds on a three-month index call option. We use a weekly trading interval, so we iterate the bound calculation back 12 times from expiration. The lack of continuous hedging is still the source of market incompleteness. We model the stock return as a freely specified multinomial rather than a lognormal. Discrete but frequent trading and multinomial statistical models give a convenient and commonly used environment for the numerical application of option-pricing techniques. We again choose a discount factor volatility target equal to twice the market Sharpe ratio.

Modeling the return distribution

The actual stock index return distribution features fatter tails than the lognormal distribution. Therefore, we use a kernel estimate of the empirical return distribution. We set up a grid of return values R_i at the weekly hedging interval with associated probability values π_i. Since we are not pricing by arbitrage, this distribution need not be binomial or generated by a binomial tree. Instead, we use a large number of grid points to accurately capture the empirical return distribution. We use return data R_t to assign probabilities π_i via a Gaussian kernel,

$$\pi_i = k \times \sum_{t=1}^{T} e^{-\left(\frac{R_i-R_t}{w}\right)^2}$$

for each i, where w is a weight chosen visually at 0.01 and k is a constant chosen so that the probabilities sum to one. This procedure assumes that the return data R_t at each date t are drawn from the same unconditional distribution. This assumption is more reasonable for excess or real returns than for nominal returns, so we use for R_t the S&P500 return less the Treasury bill rate plus the constant 5% interest rate that we use in the option pricing calculations. We use the full CRSP daily S&P500 data sample, July 1962-December 1996.

Figure 5 presents the resulting distribution of weekly returns. Each triangle represents one grid point of the multinomial distribution. The plus signs plot tail values of the actual return data; their height on the graph is arbitrary. You can see the fat tails of the distribution, driven by the occasional spectacular outlier returns, especially crashes.

[Insert Figure 5 here]

We assume that this multinomial is the conditional return distribution and that it is independent over time. We checked that the long horizon distributions implied by chaining
together empirical distributions as in Figure 5 are not bad approximations to the actual long-horizon distributions. Adding conditioning information (stochastic volatility, serial correlation in returns, etc.) is an important extension, which will allow for variation in the bounds over time, but will add state variables.

Calculating bounds

We set up a grid of stock prices \(\{S_j\} \). This grid may be finer or coarser than the return distribution grid. At each date, we represent the lower (upper) bound function \(C(S,t) \) by its value on the grid of stock prices. To evaluate moments, we interpolate \(C(S,t) \) on the stock price grid. For example, suppose we know \(C(S,t+\Delta t) \) and we wish to find \(C(S,t) \). Start at stock price grid index \(j \), time \(t \). For each element of the return grid \(R_t \), we find the corresponding value of the stock price at time \(t+\Delta t \), \(S_j R_t \). By linear interpolation, we find the bound at this point, \(C(S_j R_t, t+\Delta t) \). Now, by summing over states \(i \) weighted by the associated probabilities, we can find all the required moments for the time-\(t \) bound calculation.

The discount factor is the choice variable, and it is now a vector with one element for every point on the return grid. At each stock price gridpoint, we first compute the price bounds assuming that only the volatility constraint binds. If the resulting discount factor is positive (at every point on the return grid), this is the solution and the positivity constraint is slack. If not, we compute arbitrage bounds\(^5\), and we compute the minimum second moment

\[^5\text{Ritchken (1985) gives a solution for the arbitrage bounds in a multinomial environment, the solution to the linear programming problem}
\]

\[
\min_{\{m\}} E(mx^2) \quad \text{s.t.} \quad p = E(mx), \quad m \geq 0.
\]

The upper bound has nonzero discount factor in the smallest (1) and largest (N) return states,

\[m_1 = \frac{1}{\pi_1 R_1} \frac{R_N - R_1}{R_N - R_1}; \quad m_N = \frac{1}{\pi_N R_N} \frac{R^f - R_N}{R^f - R_N}.
\]

The lower bound discount factor is only nonzero in the two states \((i,j)\) with return just above and below the riskfree rate,

\[m_i = \frac{1}{\pi_i R_i} \frac{R_j - R_i}{R_j - R_i}; \quad m_j = \frac{1}{\pi_j R_j} \frac{R_i - R_j}{R_i - R_j}.
\]

These discount factors are not unique; other discount factors can also generate the arbitrage bounds. Therefore, to test whether this arbitrage bound solution is the solution to the good-deal bound, we use these discount factors to compute the arbitrage bound, and then we search for the minimum variance discount factor that generates the arbitrage bound.
discount factor needed to attain the arbitrage bounds. If that second moment is less than its bound A^2, the arbitrage bounds are the solution and the discount factor volatility constraint is slack. If not, we compute the bounds with both volatility and positivity constraints binding as described above.

Results

Figure 6 presents bounds, translated to implied volatilities. The middle line imposes zero market price, or risk-neutral valuation, of the residual risk by simply setting $v = 0$ in the bound formula (9). The upper bound and zero-residual-risk-price calculations show a pronounced volatility smile. This smile is driven by the fat tails in the return distribution. However, the lower bound does not show much if any smile, and it reduces to the lower arbitrage bound past a certain point. Therefore, a robust volatility smile depends on tighter bounds on market prices of residual risk than we have imposed, or more frequent than weekly rebalancing.

[Insert Figure 6 and Figure 7 here. They should be close enough together that readers can compare them.]

While interpreting these results, keep in mind that implied volatility is a highly nonlinear function, and very small price changes for far from the money options translate to very large changes in implied volatility. For example, at a stock price of 142, where the lower good-deal bound meets the lower arbitrage bound, option prices are driven by the probability of a $42/142 = 30\%$ decline in stock prices. At this stock price, the Black-Scholes price with 15% volatility is only 1.79×10^{-6} dollars above the arbitrage bound! Even the upper good-deal bound is only 1.5×10^{-6} above the arbitrage bound. Furthermore, the results in this range are driven by the extreme tail estimates in the probability distribution, and so are subject to substantial sampling uncertainty. One more crash in the sample could double these option values.

To compare these bounds with actual options prices, Figure 7 presents data on daily closing CBOE S&P500 index option prices for three months in 1996.6

6We present volatility curves for the end of March, June, September and December, when the fullest set of options across strike prices is available. We convert put prices to call equivalent using put-call parity,
The data show the well-known volatility smile: implied volatilities (prices) are higher for farther in-the-money calls and equivalent out-of-the money puts on the right hand side of the graph. This rise in volatility is a little steeper than that predicted by our calculation of the bounds, but not by much. (Note that the horizontal scale on Figure 6 extends farther to the left than that of Figure 7, so you only see one side of the predicted smile.) The calculation replicates the implied volatilities of the far from the money options. Since the lower bound is never below 15% and the option data goes as low as 10% the puzzle in the data is the low implied volatility of the near-money options.

There is some variability across strike prices (graphed as variability across stock prices) for any given date, and the variation between puts and calls (not shown) is about the same. This variability is much smaller than the size of the bounds. One is tempted to conclude that variability across strikes is economically unimportant. To take this conclusion seriously however, we should consider hedging each option with all the other options, but also take seriously the illiquidity and bid/ask spread of all the other options, especially those far from the money.

There is also a certain amount of variability across time: the curves shift up or down by about 3-4 points of implied volatility. This is also less than the size of the bounds. This observation suggests that an important fraction of observed variation in implied volatility over time may simply be due to variation within good-deal bounds that is difficult to profitably hedge away, not due to variation in the conditional variance of stock returns. In this case, the ability to hedge one option with another will not change the picture, since the whole curve wanders up or down.

We have of course conducted many more experiments than we have space to show. As the time to expiration increases, the predicted implied volatility curves flatten out, and the region in which the lower bound lies above the arbitrage bound increases. For shorter times to expiration, the predicted volatility smiles steepen, but the bounds become wider. With a monthly hedging interval, the upper bound is about the same but the lower bound is looser. The monthly interval also produces a steeper volatility smile to the right and a shallower one

$C = P + S - K/R^t$. We choose the interest rate each month between 1 and 5%, to best match put and call implied volatility curves. To conform with the other figures, we transform (implied) call prices with a common stock price S^* and varying strikes K to call prices with a common strike price $K^* = 100$ and varying stock price $S = S^*K^*/K$ by assuming linear homogeneity, $C(S^*K^*/K, K^*) = K^*/K \times C(S^*, K)$.

28
to the left. The monthly return distribution has larger crashes and smaller positive outliers. This fact suggests that one may better match empirical volatility smiles if one calibrates the weekly return distribution to more accurately reflect the implied three-month distribution.

3.5 Basis risk and real options

Suppose we want to value a European call option on an event V that is not a traded asset, but is correlated with a traded asset that can be used as an approximate hedge. There is an unavoidable “basis risk” between the option and the securities that can be used to hedge the option, even if we can trade continuously. This situation is common with real options, nonfinancial options (options on airplane purchases), and in the application of option pricing techniques to real investments. For example V could represent the price of a nondurable good, and one wants to value the right to build an investment project that can produce one unit of the good at cost K. Even purely financial options are increasingly written on events that are not traded assets, such as catastrophe insurance options. For options on traded but illiquid underlying assets, it is often better to hedge an option with an imperfectly correlated but more liquid asset.

The terminal payoff is

$$x_T^c = \max(V_T - K, 0).$$

We model the joint evolution of the traded asset S and the event V on which the option is written as

$$\frac{dS}{S} = \mu_S dt + \sigma_S dz,$$
$$\frac{dV}{V} = \mu_V dt + \sigma_V dz + \sigma_{Vw} dw,$$

$$E(dz^2) = E(dw^2) = 1, E(dzdw) = 0.$$

There is also a constant riskfree rate r.

Since the setup is so close to the Black-Scholes setup, we can give closed form solutions to the good-deal bounds in this case.

$$C \text{ or } \overline{C} = V_0e^{rT} \phi \left(d + \frac{1}{2} \sigma_V \sqrt{T} \right) - Ke^{-rT} \phi \left(d - \frac{1}{2} \sigma_V \sqrt{T} \right)$$ (38)
where \(\phi(\cdot) \) denotes the left tail of the normal distribution and

\[
\sigma_V^2 \equiv E_t \frac{dV^2}{V^2} = \sigma_{V_z}^2 + \sigma_{V_w}^2
\]

\[
d \equiv \frac{\ln(V_0/K) + (\eta + r)T}{\sigma_V \sqrt{T}}
\]

\[
\eta \equiv \left[h_v - h_S \left(\rho - a \sqrt{\frac{A^2}{h_S^2} - 1} - \rho^2 \right) \right] \sigma_V
\]

\[
h_S \equiv \frac{\mu_S - r}{\sigma_S}; \quad h_v \equiv \frac{\mu_V - r}{\sigma_V}
\]

\[
\rho \equiv \text{corr} \left(\frac{dV}{V}, \frac{dS}{S} \right) = \frac{\sigma_{V_z}}{\sigma_V}
\]

\[
a = \begin{cases}
+1 \text{ upper bound} \\
-1 \text{ lower bound}
\end{cases}
\]

This expression is exactly the Black-Scholes formula with the addition of the \(\eta \) term. The Black-Scholes formula appears as a special case, \(\eta = 0 \) when \(V = S \). \(\mu_V \) enters the formula because the event \(V \) may not grow at the same rate as the asset \(S \). Obviously, the correlation \(\rho \) between \(V \) shocks and asset shocks enters the formula, and as this correlation declines, the bounds widen. The bounds also widen as the volatility constraint \(A \) becomes larger relative to the asset Sharpe ratios \(h_S \).

We derive equation (38) by applying the discount factor integration technique described in proposition 5. Applying that proposition, the lower bound is generated by the discount factor

\[
\frac{d\Lambda}{\Lambda} = -rdt - h_S dz - \sqrt{A^2 - h_S^2} dw
\]

and the bound is then given by

\[
C_t = E_t \left[\frac{\Lambda_T}{\Lambda} \max(V_T - K) \right]
\]

The upper bound is generated with a + in front of the square root. \(S_T, V_T \) and \(\Lambda_T \) are jointly lognormally distributed, so the double integral defining the expectation is straightforward to perform. Once again, we relegate the algebra to the algebra Appendix, Cochrane and Saá-Requejo (1998).

As a numerical example, we once again consider a call option with three months to expiration and strike value 100. To keep the example as simple as possible, we specify that \(V \) has the same drift and volatility as the stock index (\(\mu_V = \mu_S, \sigma_V = \sigma_S \)). We specify the
correlation between dV and the stock index $\rho = 0.9$, and we again use a discount factor volatility bound equivalent to twice the market Sharpe ratio. Figure 8 presents the upper and lower price bounds.

[Insert Figure 8 here.]

As before, the dollar size of the bounds is smaller for out of the money options but the proportional size of the bounds shown in the figure is smaller for in the money options. The bounds are substantial, and wider above the Black-Scholes value than below it\footnote{We do not report implied volatilities, because the highly nonlinear implied volatility metric is not appropriate in this case. For example, the lower price bound can fall below the lower arbitrage bound, with no violation of arbitrage since the correlation is not perfect. We cannot even calculate implied volatilities of such prices.} with 10-30\% errors. The errors increase as time to expiration increases. The figure helps us to evaluate the common perception that Black-Scholes is a good approximation even when its assumptions are violated, as in this case.

4 Extensions

Picking the basis assets and volatility constraint

The size of the bounds is directly related to the size of the residual, or the R^2 in a regression of option payoffs on basis asset payoffs. It is therefore tempting to use lots of basis assets, but fishing for R^2 is dangerous, since it is hard to build a believable and stable model of the joint distribution of a large number of assets. This is not just an issue for econometricians: Large hedge-fund losses in the summer of 1998 were partly attributed to too-low estimates of the correlation between yield spreads on different bond classes (Henriques and Kahn 1998). Many basis assets can be more easily accommodated when a theoretical structure governs their joint distribution, as was the case when we used other options as basis assets.

The size of our bounds is also directly related to the difference between the maximum discount factor volatility and the volatility used up in pricing the basis assets, $A^2 - E(x^2)$. This fact suggests that one include high Sharpe ratio basis assets to obtain tighter bounds, even if those assets are not well correlated with the focus payoff. However, it may be better
to lower the volatility constraint A^2 instead. This procedure gives up whatever use the extra assets had as hedges, but it avoids the construction of a large joint distribution model.

For example, when pricing bond options one could use a volatility constraint equal to the market Sharpe ratio and exclude the market from the set of basis assets, rather than use a constraint equal to twice the market Sharpe ratio and build a model of the joint distribution of stocks and bonds. Similarly, we used a constraint of twice the market Sharpe ratio and ignored the possibility of high Sharpe ratio, low β strategies such as Fama and French’s (1993) value portfolio, rather than include them, model them, and use a perhaps more realistic constraint (given their presence) of four times the market Sharpe ratio.

Transactions costs

Specifying frictionless trading at discrete intervals is a crude way to handle transactions costs. Our one-period calculations could include explicit transactions costs, using Luttmer’s (1996) solution for Hansen-Jagannathan bounds with transactions costs. But this does not solve the central problem, namely to find the optimal times at which to trade in a continuous-time framework with transactions costs. For this reason, most of the literature on option pricing bounds with explicit transactions costs also considers two-period analysis or ad-hoc trading rules, for example Leland (1985), Constantinides (1998), Constantinides and Zariphopoulou (1997).

More discount factor restrictions

Adding further discount factor restrictions is a natural way to tighten the bounds.

Levy (1985) and Constantinides (1998) calculate option price bounds by assuming that the discount factor declines monotonically with a state variable. We have a related condition: the covariance between stock returns and the discount factor must be negative to generate positive expected returns (the pricing constraint). But global monotonicity is more stringent than covariance, and this constraint may tighten the bounds.

Our bounds allow the worst case that marginal utility growth is perfectly correlated with a portfolio of basis and focus assets. In many cases one could credibly impose a sharper limit than $-1 \leq \rho \leq 1$ on this correlation to obtain tighter bounds.

Bernardo and Ledoit (1999) use the restriction $a \geq m \geq b$ to sharpen the no-arbitrage
restriction $\infty \geq m > 0$, and cleverly relate this bound taken alone to portfolio “gain/loss ratios.” This restriction is related to the volatility restriction: upper and lower bounds on m imply a bound on its variance, and by Chebyshev’s inequality a variance bound implies that the probability of m exceeding upper and lower bounds can be made vanishingly small. Our central proposition 2 that one can solve multiperiod problems recursively goes through in this case.

Bernardo and Ledoit also suggest that one impose $a \geq m/y \geq b$ where y is an explicit discount factor model such as the consumption-based model or CAPM, as a way of imposing a “weak implication” of that particular model. Limits on $\sigma(m/y)$ or $\sigma(m - y)$ might be technically easier to impose, especially in continuous time, but this idea can also be added.

Until one has recovered a true discount factor $m_{t+1} = \beta u'(c_{t+1})/u'(c_t)$, further restrictions will always tighten bounds. Also, and despite our extended motivation, one shouldn’t be too dogmatic about which weak restriction is best. By their nature, weak restrictions will admit values that are strange according to stronger or different restrictions. Therefore, the various restrictions are not competitors. One should impose as many discount factor restrictions as apply to a given situation, and, perhaps most importantly, with which one can still conveniently calculate bounds for a given application.

Multiple focus assets

We have emphasized a single focus asset. For some applications, such as examining the set of index options across strike price, it may make more sense to find a bound on the values (p_1, p_2, p_3, \ldots) of several focus payoffs simultaneously rather than consider each focus payoff in isolation.
5 References

Cochrane, John H. and Jesús Saá-Requejo, 1999, Good-deal option price bounds with stochastic volatility and stochastic interest rate,” manuscript, University of Chicago.

6 Proofs of lemmas and propositions

Proof of lemma 1.

If: \(E(wx) = E(\epsilon x) = 0 \) so \(E[(x^* + vw + \epsilon)x] = E(x^*x) = p \).

Only if: For any \(m \) that satisfies \(p = E(mx) \), we have \(proj(m|x) = E(mx')E(xx')^{-1}x \) by the OLS projection formula, and then \(proj(m|x) = p'E(xx')^{-1}x = x^* \) by the assumption that \(p = E(mx) \). Define a residual \(\delta = m - x^* \). By construction, \(E(\delta x) = 0 \). Thus, any discount factor \(m \) can be represented as \(m = x^* + \delta \). Projecting \(\delta \) on \(w \) and defining \(\epsilon \) as the residual again, we obtain \(m = x^* + vw + \epsilon \).

Proof of proposition 1.

We substitute for \(m \) from equation (6) to express the volatility constraint as

\[
E(m^2) = E(x^{*2}) + v^2 E(w^2) + E(\epsilon^2) \leq A^2
\]

and to express the objective as

\[
E[mx^c] = E(x^{*x^c}) + v E(wx^c) + E(\epsilon x^c) = E(x^{*x^c}) + v E(w^2). \tag{39}
\]

The problem now reduces to the choice of \(v \) and \(\epsilon \). Since \(\epsilon \) only appears in the inequality constraint, we choose \(\epsilon = 0 \) to weaken that constraint as much as possible. Now we have a linear objective subject to a quadratic constraint, and one parameter \(v \) to choose. So long as \(w \neq 0 \) so \(E(w^2) \neq 0 \), the volatility constraint binds and we simply pick \(v \) to satisfy the constraint, leading to equation (10). Equations (8) and (9) follow by substituting \(v \) into equation (6) and into the objective, equation (39).

The Sharpe ratio bound must be greater than or equal to that generated by the basis assets, \(A^2 \geq E(x^{*2}) = p'E(xx')^{-1}p \), of course, or there is no discount factor that even satisfies the constraints. If \(w = 0 \) then the volatility constraint does not bind. Any discount factor \(m \) that satisfies the pricing constraint produces the same price for \(x^c \), so \(C = C' = E(x^{*x^c}) \).

Proof of proposition 2.

Denote by \(\Omega_1 \) and \(\Omega_2(I_1) \) the constraint sets on \(m_1, m_2 \) defined by (19) and (20) respec-
tively. Using the law of iterated expectations, we can write

$$C_0 = \min_{\{m_1 \in \Omega_1\}} \min_{\{m_2 \in \Omega_2(t_1)\}} E_0 [m_1 E_1 (m_2 x^*_2)].$$

Suppose the solution to this problem gives $E_1 (m_2 x^*_2) > C_1$ in some state of nature at time 1. If this were true, one could lower $E_1 (m_2 x^*_2)$ in that state without violating any of the constraints, by definition of C_1. Since $m_1 > 0$, this action would lower $E_0 [m_1 E_1 (m_2 x^*_2)]$, contrary to the assumption that we started at a solution to the two-period problem.

Proof of lemma 2.

We verify that Λ satisfies the basic pricing equation (23), for the risk free rate and basis assets. Liberally using $E(dSdw) = 0$ and $E(dzd \omega) = 0$,

$$E_t \left(\frac{d \Lambda}{\Lambda} \right) = -r dt$$

$$E_t \left(\frac{d \Lambda}{\Lambda} \right) + \frac{D}{S} dt = E_t \left(\frac{dS}{S} \right) + E_t \left(\frac{d \Lambda^*}{\Lambda^*} \right) + E_t \left(\frac{d \Lambda^* dS}{\Lambda^* S} \right) + \frac{D}{S} dt =$$

$$= \left[\mu_S - r - \beta_S \Sigma_{-1} \sigma_S \sigma^*_S + \frac{D}{S} \right] dt = 0.$$ Only if holds by projection, as in lemma 1

Proof of proposition 3.

Substituting equation (29) into the problem (28) in order to impose the pricing constraint, the problem is

$$0 = \frac{x^c}{C} dt + E_t \left[\frac{d(\Lambda^* C)}{\Lambda^* C} \right] - \min_{\{v\}} v E_t \left(\frac{dC}{C} \right) \text{ s.t. } vv' \leq A^2 - \frac{1}{dt} E_t \left(\frac{d \Lambda^*}{\Lambda^*^2} \right).$$

Using equation (31) for dC/C in the last term, the problem is

$$0 = \frac{x^c}{C} + \frac{1}{dt} E_t \left[\frac{d(\Lambda^* C)}{\Lambda^* C} \right] - \min_{\{v\}} v \sigma_{\omega} \text{ s.t. } vv' \leq A^2 - \frac{1}{dt} E_t \left(\frac{d \Lambda^*}{\Lambda^*^2} \right).$$

This is a linear objective in v with a quadratic constraint. Therefore, as long as $\sigma_{\omega} \neq 0$, the constraint binds and the optimal v is given by (34). $\nu = -v$ gives the maximum since $\sigma_{\omega} \sigma_{\omega} > 0$. Plugging the optimal value for v in (40) gives

$$0 = \frac{x^c}{C} + \frac{1}{dt} E_t \left[\frac{d(\Lambda^* C)}{\Lambda^* C} \right] - v \sigma_{\omega}.$$
For clarity, and exploiting the fact that $d\Lambda^*$ does not load on dw, we write the middle term as

$$\frac{1}{dt} E_t \left[\frac{d (\Lambda^* C)}{\Lambda^* C} \right] = \mu_C - r + \frac{1}{dt} E_t \left(\frac{d \Lambda^*}{\Lambda^*} \sigma_C d\Lambda^* dz \right)$$

If $\sigma_C w = 0$, any v leads to the same price bound. In this case we can most simply take $v = 0.$
7 Figure captions

Figure 1. Option price bounds as a function of stock price. Options have three months to expiration and strike price $K = $100. The bounds assume no trading until expiration, and a discount factor volatility bound $h = 1.0$ corresponding to twice the market Sharpe ratio. The stock is lognormally distributed with parameters calibrated to an index option.

Figure 2. Notation and geometry. $X =$ space of portfolios of basis-asset payoffs. $x =$ basis asset payoffs. $x^f =$ focus asset payoff. $\hat{x}^f =$ best approximate hedge. $w =$ residual. The straight dashed line $m : p = E(mx)$ is the space of all discount factors that price the basis payoffs x. The solid straight line marked $m > 0$ is the space of all positive discount factors that price the basis assets. The dashed circle is the set of all random variables with second moment less than A^2.

Figure 3. Bounds on option values with three months to expiration, no intermediate trading. Options are hedged with stock, interest rate, and 3 options whose prices and strikes are marked with squares.

Figure 4. Bounds on option prices deltas $\partial C/\partial S$ with three months to expiration, no intermediate trading.

Figure 5. Multinomial return distribution fitted from CRSP S&P500 weekly return data. The plus signs mark return observations larger than +/- 5%, as measured on the x-axis. Their height is arbitrary.

Figure 6. Upper and lower good-deal bounds for S&P500 index options with 3 months to expiration and strike price $K = 100$. The stock return follows a multinomial distribution fitted to S&P500 return data. Each option is hedged with the index and a 5% riskfree rate. Hedge portfolios may be changed weekly.

Figure 7. Implied volatilities for CBOE S&P500 index put options with 3 months to expiration, 1996.

Figure 8. Good-deal bounds for a European call option written on an event V whose shocks are correlated 0.9 with the stock index shocks. Continuous trading is allowed. Three months to expiration, and other parameters match the index.
8 Algebra Appendix

8.1 Partial differential equation

Proof of proposition (4). We guess that the bound is a twice-differentiable function of the state variables,

\[C = C(S, V, t). \]

Then, we can use Itô’s lemma to relate the terms \(\mu_C, \sigma_C, \sigma_{Cw} \) in the law of motion for \(C \),

\[\frac{dC}{C} = \mu_C dt + \sigma_C dz + \sigma_{Cw} dw \]

to partial derivatives of the function \(C(S, V, t) \):

\[
dC = C_t dt + C_s^t dS + C_V^t dV + \frac{1}{2} \sum_{i,j} C_{s_i s_j} dS_i dS_j + \frac{1}{2} \sum_{i,j} C_{V_i V_j} dV_i dV_j + \sum_{i,j} C_{S_i V_j} dS_i dV_j
\]

where \(C_x \) denotes \(\frac{\partial C(S, V, t)}{\partial x} \). Substituting for the \(S \) and \(V \) processes from equations (25) and (26),

\[
dC = C_t dt + (SC_S)'(\mu_S dt + \sigma_S dz) + C_V'(\mu_V dt + \sigma_V dz + \sigma_{Vw} dw) + \frac{1}{2} \sum_{i,j=1}^{n_s} C_{s_i s_j} S_i S_j \sigma_{s_i} \sigma_{s_j}' + \frac{1}{2} \sum_{i,j=1}^{n_V} C_{V_i V_j} (\sigma_{V_z} \sigma_{V_j}' + \sigma_{V_{wj}} \sigma_{V_j}'_{wj}) + \sum_{i=1}^{n_s} \sum_{j=1}^{n_V} C_{S_i V_j} S_i \sigma_{S_i} \sigma_{V_j}'
\]

where \((SC_S)\) indicates element by element multiplication, and \(\sigma_{V_j} \) denotes the \(j \)-th row of \(\sigma_{V_z} \), etc. Therefore, we can write \(\mu_C \) and \(\sigma_C, \sigma_{Cw} \) in terms of derivatives of the \(C(\cdot) \) function,

\[
C\mu_C = C_t + (SC_S)'\mu_S + C_V'\mu_V + \frac{1}{2} \sum_{i,j} C_{s_i s_j} S_i S_j \sigma_{s_i} \sigma_{s_j}' + \frac{1}{2} \sum_{i,j} C_{V_i V_j} (\sigma_{V_z} \sigma_{V_j}' + \sigma_{V_{wj}} \sigma_{V_j}'_{wj}) + \sum_{i,j} C_{S_i V_j} S_i \sigma_{S_i} \sigma_{V_j}'
\]

and

\[
C\sigma_C = (SC_S)'\sigma_S + C_V'\sigma_V \sigma_{Cw} = C_V'\sigma_{Vw}
\]
We recover the terms needed in equation (36)

\[C^2 \sigma_{C_{w}} \sigma'_{C_{w}} = C'_{V} \sigma_{V_{w}} \sigma'_{V_{w}} C_{V} \]

and

\[C \sigma_{C_{z}} \sigma'_{S} \Sigma_{S}^{-1} \tilde{\mu}_{S} = [(SC_{S})' \sigma_{S} + C'_{V} \sigma_{V_{z}}] \sigma'_{S} \Sigma_{S}^{-1} \tilde{\mu}_{S} \]

\[= (SC_{S})' \tilde{\mu}_{S} + C'_{V} \sigma_{V_{z}} \sigma'_{S} \Sigma_{S}^{-1} \tilde{\mu}_{S}. \]

Plugging these expressions in restriction (36) and simplifying, we obtain the partial differential equation given in proposition (4).

8.2 Calculating bounds in the lognormal environment

8.2.1 Volatility constraint

The stock return \(R = S_{T}/S \) is lognormally distributed, with moments

\[E(\ln R) = \left(\mu - \frac{1}{2} \sigma^2 \right) T; \quad \text{and} \quad \sigma(\ln R) = \sigma \sqrt{T}. \]

The required moments are most easily summarized in a second moment matrix with \(x = [R \quad \log R]' \),

\[E \begin{bmatrix} x^2 & x^T x' \\ x^T x & xx' \end{bmatrix} = \begin{bmatrix} \alpha_2 - 2K \alpha_1 + K^2 \alpha_0 & \alpha_1 \\ \alpha_1 & e^{(2\mu+\sigma^2)T} \end{bmatrix}. \]

where

\[\alpha_0 = \int_{K/S}^{\infty} f(R) dR = N \left(\frac{\ln(K/S) - \mu T}{\sigma \sqrt{T}} + \frac{1}{2} \sigma \sqrt{T} \right) \]

\[\alpha_1 = \int_{K/S}^{\infty} R f(R) dR = e^{\mu T} N \left(\frac{\ln(K/S) - \mu T}{\sigma \sqrt{T}} - \frac{1}{2} \sigma \sqrt{T} \right) \]

\[\alpha_2 = \int_{K/S}^{\infty} R^2 f(R) dR = e^{(2\mu+\sigma^2)T} N \left(\frac{\ln(K/S) - \mu T}{\sigma \sqrt{T}} - \frac{3}{2} \sigma \sqrt{T} \right) \]

and \(N(\cdot) = 1 - \Phi(\cdot) \) is the right tail of the normal density. The right hand side of these expressions follow from standard properties of log-normal distributions with some tedious algebra. Plugging these formulas into (13) gives the bound with slack positivity constraint.
8.2.2 Checking \(m \geq 0 \).

To check that the discount factor produced by the analytic solution is positive, we express it as a portfolio of the stock bond and option. Then, since the interest rate and stock return are non-negative, the weights of the discount factor on each of the stock, bond, and option must be positive. I.e., in order for

\[
b \frac{S_T}{S} + cR_T + d(\max(S_T - K, 0)) \geq 0
\]

to hold as \(S_T \) ranges over \((0, \infty)\), we must have

\[
\begin{align*}
 c & \geq 0 \\
 b \frac{K}{S} + cR_T & \geq 0 \\
 \frac{b}{S} + d & \geq 0.
\end{align*}
\]

To find the weights of \(m \) on the stock bond and option, we substitute from the definition, with \(a = +1 \) for upper bound and \(a = -1 \) for lower bound. Start with

\[
m = x^* + aw
\]

From the definitions,

\[
\begin{align*}
x^* & = p' E(x x')^{-1} x \\
w & = x^c - x^c \\
\hat{x}^c & = E(x^c x') E(x x')^{-1} x
\end{align*}
\]

we can write

\[
m = p' E(x x')^{-1} x + a \nu (x^c - E(x^c x') E(x x')^{-1} x)
\]

and hence,

\[
m = (p' - a \nu E(x^c x')) E(x x')^{-1} x + a \nu x^c
\]

This expression gives \(m \) in terms of its weights on \(x \) and \(x^c \). We still need \(\nu \).

\[
\nu = \sqrt{\frac{A^2 - E(x^2)}{E(w^2)}}
\]

43
Which we evaluate using the definitions,

\[E(x^{a^2}) = p' E(\mathbf{xx'})^{-1} p \]

\[E(w^2) = E(x^{a^2}) - E(\hat{x}^{a^2}) = E(x^{a^2}) - E(x^{a'}x')E(\mathbf{xx'})^{-1}E(x^{a'}) \]

Now we can check whether (42) satisfies the restrictions of (41).

8.2.3 Positivity constraint

In the positivity case, we need to evaluate the second moment of a candidate discount factor, equation (16). We again evaluate integrals against the lognormal density for the stock return.

\[E \left\{ \left[-\frac{x^e + \lambda x}{\delta} \right]^{+2} \right\} = \int_0^\infty \max \left\{ -S \max \left(\frac{R - \frac{K}{S}}{\delta}, 0 \right) + \lambda_0 R^I + \lambda_1 R \right\}^2 f(R) dR. \]

Taking only the part of the integral where the outer max operator is positive, and breaking up the integral according to the value of the interior max, we obtain

\[\frac{1}{\delta^2} \int_{k}^{(\lambda_0 R^I - \frac{K}{S}) + (\lambda_1 + S) R} \left[\left(\lambda_0 R^I - K \right) + (\lambda_1 + S) R \right]^2 f(R) dR + \]

\[+ \frac{1}{\delta^2} \int_{k}^{(\lambda_0 R^I + \lambda_1 R)} \left[\lambda_0 R^I + \lambda_1 R \right]^2 f(R) dR. \]

Now we express the limits on the integrals as ranges for the random variable \(R \). Since one inverts < and > operators when multiplying by a negative number, the result depends on the signs of the terms multiplying \(R \) in the integrals. For the first integral we have

\[\left\{ \begin{array}{l}
\frac{\lambda_1 + S}{\delta} > 0 : \quad \frac{K}{S} < R < \frac{K - \lambda_0 R^I}{\lambda_1 + S} \\
\frac{\lambda_1 + S}{\delta} < 0 : \quad \max \left(\frac{K}{S}, \frac{K - \lambda_0 R^I}{\lambda_1 + S} \right) < R < \infty
\end{array} \right. \]

Similarly, the range for the second interval is

\[\left\{ \begin{array}{l}
\frac{\lambda_1}{\delta} > 0 : \quad 0 < R < \min \left(\frac{K}{S}, \frac{-\lambda_0 R^I}{\lambda_1} \right) \\
\frac{\lambda_1}{\delta} < 0 : \quad -\frac{\lambda_0 R^I}{\lambda_1} < R < \frac{K}{S}
\end{array} \right. \]

Given these ranges, we use the fact that for \(R \sim \mathcal{N}(\mu T, \sigma^2 T) \), we have

\[\int_a^b (c + dR)^2 f(R) dR = \]

\[= c^2 \left[\Phi (b) - \Phi (a) \right] + 2cd \left(\mu + \frac{\sigma^2}{2} \right) \left[\Phi \left(b - \sigma \sqrt{T} \right) - \Phi \left(a - \sigma \sqrt{T} \right) \right] + \]

\[+ d^2 \epsilon^2 (\mu + \sigma^2) \left[\Phi \left(b - 2\sigma \sqrt{T} \right) - \Phi \left(a - 2\sigma \sqrt{T} \right) \right] \]

44
where
\[a^* = \frac{\ln a - \mu T}{\sigma \sqrt{T}}, \quad b^* = \frac{\ln b - \mu T}{\sigma \sqrt{T}}. \]

Now we can evaluate the expectation in equation (16) for any value of \((\lambda, \delta)\), so we can search for \((\lambda, \delta)\) to minimize or maximize the option value.

8.2.4 Multiple option integrals

Using the integral against the lognormal density, we can find the cross moment between two call options with strikes \(K_i\) and \(K_j\),

\[E \left(x_i x_j^c \right) = S^2 \alpha_2(K_{\text{max}}) - (K_i + K_j) S \alpha_1(K_{\text{max}}) + K_i K_j \alpha_0(K_{\text{max}}) \]

where \(K_{\text{max}} = \max(K_i, K_j)\). We also use the lognormal density to evaluate analytically the objective for the bound with a positive discount factor, equation (16).

We are allowed to trade in \(N - 1\) options (\(N\) options when we include the option we are trying to price). Thus we write

\[E \left\{ \left[-\frac{x^c + \lambda' x}{\delta} \right]^2 \right\} = \int_0^\infty \max \left[-\frac{\sum_{i=1}^N \lambda_i S \max \left(R - \frac{K_i}{S}, 0 \right) + \lambda_{N+1} R' + \lambda_{N+2} R}{\delta}, 0 \right]^2 f(R) \, dR \]

where \(\lambda_i = 1\) if the index \(i\) refers to the option we are trying to price and where without loss of generality we assume that

\[K_1 < K_2 < \cdots < K_N. \]

Taking only the part of the integral where the outer max operator is positive,

\[E \left\{ \left[-\frac{x^c + \lambda' x}{\delta} \right]^2 \right\} = \int_{D < 0}^\infty \max \left[\frac{\sum_{i=1}^N \lambda_i S \max \left(R - \frac{K_i}{S}, 0 \right) + \lambda_{N+1} R' + \lambda_{N+2} R}{\delta} \right]^2 f(R) \, dR \]

where

\[D = \frac{\sum_{i=1}^N \lambda_i S \max \left(R - \frac{K_i}{S}, 0 \right) + \lambda_{N+1} R' + \lambda_{N+2} R}{\delta} \]

Now we break up the integral successively according to the value of the interior maximization, starting by that corresponding to the option with the largest strike

\[E \left\{ \left[-\frac{x^c + \lambda' x}{\delta} \right]^2 \right\} = \frac{1}{\delta^2} \int_{D < 0}^\infty \sum_{i=1}^N \lambda_i S \max \left(R - \frac{K_i}{S}, 0 \right) + \lambda_{N+1} R' + \lambda_{N+2} R \right]^2 f(R) \, dR \]
\[
\begin{align*}
&= \frac{1}{\delta^2} \int_{L_{(0, R)} \geq \frac{K_N}{\delta}} \left(\lambda_{N+1} R^I - \sum_{j=1}^{N} \lambda_j K_j \right) + \left(\lambda_{N+2} + \sum_{j=1}^{N} \lambda_j S \right) R^2 f(R) dR + \\
&+ \cdots + \frac{1}{\delta^2} \int_{L_i<0, R \geq \frac{K_i}{\delta}} \left(\lambda_{N+1} R^I - \sum_{j=1}^{i} \lambda_j K_j \right) + \left(\lambda_{N+2} + \sum_{j=1}^{i} \lambda_j S \right) R^2 f(R) dR + \\
&+ \cdots + \frac{1}{\delta^2} \int_{L_{(0, R)} \geq \frac{K_{i+1}}{\delta}} \left[\lambda_{N+1} R^I + \lambda_{N+2} R \right]^2 f(R) dR
\end{align*}
\]

where
\[
L_n = \frac{\left(\lambda_{N+1} R^I - \sum_{j=1}^{N} \lambda_j K_j \right) + \left(\lambda_{N+2} + \sum_{j=1}^{N} \lambda_j S \right) R}{\delta}
\]
\[
L_i = \frac{\left(\lambda_{N+1} R^I - \sum_{j=1}^{i} \lambda_j K_j \right) + \left(\lambda_{N+2} + \sum_{j=1}^{i} \lambda_j S \right) R}{\delta}
\]

We express the limits on the integrals as ranges for the random variable R. Again, the result depends on the signs of the terms multiplying R in the integrals. For the first integral we have
\[
\begin{align*}
\left\{ \begin{array}{l}
\lambda_{N+2} + \sum_{j=1}^{N} \lambda_j S > 0 : \\
\lambda_{N+2} + \sum_{j=1}^{N} \lambda_j S < 0 :
\end{array} \right.
\end{align*}
\]
\[
\frac{K_N}{\delta} < R < \frac{-\lambda_{N+1} R^I + \sum_{j=1}^{N} \lambda_j K_j}{\lambda_{N+2} + \sum_{j=1}^{N} \lambda_j S}
\]

Similarly, for the ith integral we have
\[
\begin{align*}
\left\{ \begin{array}{l}
\lambda_{N+2} + \sum_{j=1}^{i} \lambda_j S > 0 : \\
\lambda_{N+2} + \sum_{j=1}^{i} \lambda_j S < 0 :
\end{array} \right.
\end{align*}
\]
\[
\frac{K_i}{\delta} < R < \min \left(\frac{K_{i+1}}{\delta}, \frac{-\lambda_{N+1} R^I + \sum_{j=1}^{i} \lambda_j K_j}{\lambda_{N+2} + \sum_{j=1}^{i} \lambda_j S} \right)
\]

and finally for the last integral
\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{\lambda_{N+2}}{\delta} > 0 : \\
\frac{\lambda_{N+2}}{\delta} < 0 :
\end{array} \right.
\end{align*}
\]
\[
\frac{-\lambda_{N+1} R^I}{\lambda_{N+2}} < R < \frac{K_1}{\delta}
\]

Given these ranges, we can evaluate the expectation in equation (16) for any value of (λ, δ), so we can search for (λ, δ) to minimize or maximize the option value.

8.3 Basis risk

Restating the problem, there is a security that follows
\[
\frac{dS}{S} = \mu_s dt + \sigma_s dz
\]
There is also a riskfree rate r. An option is written on an underlying, nontraded event V whose value is imperfectly correlated with the traded security

$$\frac{dV}{V} = \mu_V dt + \sigma_{Vz}dz + \sigma_{Vw}dw.$$

The shocks are orthogonalized to

$$E(dz^2) = E(dw^2) = 1, E(dzdw) = 0.$$

We want to price a European call option on V, whose terminal payoff is

$$x^c_T = \max(V_T - K, 0).$$

We proceed by characterizing the discount factor process rather than solve a partial differential equation.

$$\frac{d\Lambda}{\Lambda} = -rdt - hdz + a\sqrt{A^2 - h^2}dw$$

where

$$h_S = \frac{\mu_S - r}{\sigma_S}$$

and $a = +1$ for the upper bound and $a = -1$ for the lower bound. The upper and lower price bounds are therefore given by

$$C_0 = E\left[\frac{\Lambda_T}{\Lambda_0}\max(V_T - K, 0)\right].$$

The simple form of the S, V and Λ processes mean that they are jointly lognormally distributed,

$$\frac{S_T}{S_0} = \exp\left[\left(\mu_S - \frac{1}{2}\sigma_S^2\right)T + \sigma_S\sqrt{T}\varepsilon_z\right]$$

$$\frac{V_T}{V_0} = \exp\left[\left(\mu_V - \frac{1}{2}\sigma_V^2\right)T + \sigma_{Vz}\sqrt{T}\varepsilon_z + \sigma_{Vw}\sqrt{T}\varepsilon_w\right]$$

$$\frac{\Lambda_T}{\Lambda_0} = \exp\left[\left(-r - \frac{1}{2}A^2\right)T - h_S\sqrt{T}\varepsilon_z + a\sqrt{A^2 - h_S^2}\sqrt{T}\varepsilon_w\right]$$

where ε_z and ε_w are independent normal (0,1) random variables, and

$$\sigma_V^2 = E_t\frac{dV^2}{V^2} = \sigma_{Vz}^2 + \sigma_{Vw}^2.$$

We can simply perform the integral defining the expectation. The option is in the money when

$$V_T = V_0e^{\left(\mu_V - \frac{1}{2}\sigma_V^2\right)T + \sigma_{Vz}\sqrt{T}\varepsilon_z + \sigma_{Vw}\sqrt{T}\varepsilon_w} > K$$

47
\[\sigma_{Vz}\varepsilon_z + \sigma_{Vw}\varepsilon_w > \frac{\ln(K/V_0)}{\sqrt{T}} - \left(\mu_V - \frac{1}{2}\sigma_V^2 \right) \sqrt{T}. \]

With a double integral in sight, a change of variables is useful. Define new shocks

\[\delta_1 = \frac{\sigma_{Vw}\varepsilon_w + \sigma_{Vz}\varepsilon_z}{\sigma_V} \]
\[\delta_2 = \frac{\sigma_{Vz}\varepsilon_z - \sigma_{Vw}\varepsilon_w}{\sigma_V} \]

or, inverting

\[\varepsilon_w = \frac{\sigma_{Vw}\delta_1 + \sigma_{Vz}\delta_2}{\sigma_V} \]
\[\varepsilon_z = \frac{\sigma_{Vz}\delta_1 - \sigma_{Vw}\delta_2}{\sigma_V} \]

\(\delta_1 \) and \(\delta_2 \) are also independent normal \((0,1)\) variables. Then, the option is in the money when

\[\delta_1 > \frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2}\sigma_V^2 \right) T}{\sigma_V \sqrt{T}}. \]

Expressing the elements of the integrand in terms of the new shocks,

\[\frac{\Lambda_T}{\Lambda_0} = \exp\left[\left(-r - \frac{1}{2}A^2 \right) T - h_s\sqrt{T}\sigma_{Vz}\delta_1 - \sigma_{Vw}\delta_2 \right] \frac{\sigma_{Vw}\delta_1 + \sigma_{Vz}\delta_2}{\sigma_V} + a\sqrt{A^2 - h_s^2}\sqrt{T}\sigma_{Vw}\delta_1 + \sigma_{Vz}\delta_2 \]

\[
\frac{\Lambda_T}{\Lambda_0} = \exp\left[\left(-r - \frac{1}{2}A^2 \right) T + \sqrt{T}\left[-h_s\sigma_{Vz} + a\sqrt{A^2 - h_s^2}\sigma_{Vw}\delta_1 + \left[h_s\sigma_{Vw} + a\sqrt{A^2 - h_s^2}\sigma_{Vz}\right] \delta_2 \right] \right] \frac{\sigma_{Vw}\delta_1 + \sigma_{Vz}\delta_2}{\sigma_V} + a\sqrt{A^2 - h_s^2}\sqrt{T}\delta_1 + \frac{h_s\sigma_{Vw} + a\sqrt{A^2 - h_s^2}\sigma_{Vz}}{\sigma_V} \sqrt{T}\delta_2 \]

or,

\[\frac{\Lambda_T}{\Lambda_0} = \exp\left[\left(-r - \frac{1}{2}A^2 \right) T \right] \times \exp\left[\frac{-h_s\sigma_{Vz} + a\sqrt{A^2 - h_s^2}\sigma_{Vw}}{\sigma_V} \sqrt{T}\delta_1 + \frac{h_s\sigma_{Vw} + a\sqrt{A^2 - h_s^2}\sigma_{Vz}}{\sigma_V} \sqrt{T}\delta_2 \right] \]

with

\[b_1 = \frac{-h_s\sigma_{Vz} + a\sqrt{A^2 - h_s^2}\sigma_{Vw}}{\sigma_V} \]
\[b_2 = \frac{h_s\sigma_{Vw} + a\sqrt{A^2 - h_s^2}\sigma_{Vz}}{\sigma_V} \]
Note (or directly by looking at variance of A)

\[
\begin{align*}
 b_1^2 + b_2^2 &= \frac{1}{\sigma_V^2} \left[\left(-h_S \sigma_{Vz} + a \sqrt{A^2 - h_S^2 \sigma_{Vw}} \right)^2 + \left(h_S \sigma_{Vw} + a \sqrt{A^2 - h_S^2 \sigma_{Vz}} \right)^2 \right] \\
 &= \frac{1}{\sigma_V^2} \left[h_S^2 \sigma_{Vz}^2 + a^2 (A^2 - h_S^2) \sigma_{Vw}^2 + h_S^2 \sigma_{Vw}^2 + a^2 (A^2 - h_S^2) \sigma_{Vz}^2 \right] \\
 &= \frac{1}{\sigma_V^2} \left[h_S^2 \sigma_{Vz}^2 + (A^2 - h_S^2) \sigma_{Vz}^2 \right] \\
 &= A^2.
\end{align*}
\]

Now, the integral.

\[
\begin{align*}
 C &= \frac{1}{2\pi} e^{-\frac{(r-\frac{1}{2}A^2)_T}{2}} \int_{\xi_2 > \xi_1} e^{b_1 \sqrt{T} \xi_1 + b_2 \sqrt{T} \xi_2} \times e^{-\frac{1}{2} A_T^2} \\
 &= \frac{1}{2\pi} V_0 e^{\left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T} \int_{\xi_2} e^{b_2 \sqrt{T} \xi_2 - \frac{1}{2} \sigma_{\xi_2}^2} \int_{\xi_1} e^{\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}}} e^{\left(\sigma_V + b_1 \right) \sqrt{T} \xi_1 - \frac{1}{2} \sigma_1^2} \\
 &= \frac{1}{2\pi} K e^{-\frac{1}{2} A_T^2} \int_{\xi_2} e^{b_2 \sqrt{T} \xi_2 - \frac{1}{2} \sigma_{\xi_2}^2} \int_{\xi_1} \frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}} e^{\left(\sigma_V + b_1 \right) \sqrt{T} \xi_1 - \frac{1}{2} \sigma_1^2}.
\end{align*}
\]

The inner integrals are truncated lognormals. Use the fact that

\[
\frac{1}{\sqrt{2\pi}} \int_{\delta x > x} e^{\delta x - \frac{x^2}{2}} \, d\delta = \frac{1}{\sqrt{2\pi}} e^{\frac{b^2}{2}} \int_{\delta - b > x - b} e^{-\frac{(x-b)^2}{2}} \, d\delta = e^{\frac{b^2}{2}} N(x - b),
\]

where $N()$ denotes the area under the right tail of the normal distribution. Applying this fact,

\[
\begin{align*}
 C &= \frac{1}{\sqrt{2\pi}} V_0 e^{\left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T} e^{\frac{1}{2} \left(\sigma_V + b_1 \right)^2 T} \\
 &\times N \left(\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}} \right) \int_{\xi_2} e^{b_2 \sqrt{T} \xi_2 - \frac{1}{2} \sigma_{\xi_2}^2} \\
 &= \frac{1}{\sqrt{2\pi}} K e^{-\frac{1}{2} A_T^2} e^{\frac{b_2^2}{2} T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}} \right) \int_{\xi_2} e^{b_2 \sqrt{T} \xi_2 - \frac{1}{2} \sigma_{\xi_2}^2}.
\end{align*}
\]

Now we can perform the second integration. These are expectations of lognormals,

\[
\begin{align*}
 \frac{1}{\sqrt{2\pi}} \int e^{\delta x} e^{-\frac{x^2}{2}} \, d\delta &= 0, \\
 e^{\frac{b^2}{2}} \int e^{-\frac{(x-b)^2}{2}} \, d\delta &= e^{\frac{b^2}{2}}
\end{align*}
\]

49
so, finally

\begin{align*}
C &= V_0 e^{(\mu_V - r - \frac{1}{2} \sigma_V^2) T} e^{-\frac{1}{2} \left(\sigma_V^2 + (\sigma_V + b_1)^2 \right) T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}} - (\sigma_V + b_1) \sqrt{T} \right) - \\
&\quad - Ke^{(-r - \frac{1}{2} A^2) T} e^{\frac{1}{2} \left(\sigma_V^2 + (\sigma_V + b_1)^2 \right) T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 \right) T}{\sigma_V \sqrt{T}} - b_1 \sqrt{T} \right).
\end{align*}

Simplifying,

\begin{align*}
&- \left(A^2 + \sigma_V^2 \right) + b_2^2 + (\sigma_V + b_1)^2 \\
&= -A^2 - \sigma_V^2 + b_2^2 + \sigma_V^2 + b_1^2 + 2\sigma_V b_1 \\
&= 2\sigma_V b_1 = 2\sigma_V \left(-h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) = \\
&= -2h_s \sigma_{Vz} + 2a \sqrt{A^2 - h_s^2 \sigma_{Vw}}
\end{align*}

and

\begin{align*}
\sigma_V + b_1 &= \sigma_V + \frac{-h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}}}{\sigma_V} = \\
&= \frac{\sigma_V^2 - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}}}{\sigma_V}
\end{align*}

so,

\begin{align*}
C &= V_0 e^{(\mu_V - r - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}}) T} N \left(\frac{\ln(K/V_0) - \left(\mu_V + \frac{1}{2} \sigma_V^2 - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) T}{\sigma_V \sqrt{T}} \right) - \\
&\quad - Ke^{-r T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - \frac{1}{2} \sigma_V^2 - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) T}{\sigma_V \sqrt{T}} \right) - \\
&\quad - Ke^{-r T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) T}{\sigma_V \sqrt{T}} \right) - \\
&\quad - Ke^{-r T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) T}{\sigma_V \sqrt{T}} \right) - \\
&\quad - Ke^{-r T} N \left(\frac{\ln(K/V_0) - \left(\mu_V - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2 \sigma_{Vw}} \right) T}{\sigma_V \sqrt{T}} \right) + \frac{1}{2} \sigma_V \sqrt{T}.
\end{align*}
To further simplify, let

\[\eta = \mu_V - r - h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2} \sigma_{Vw} \]

\[= \mu_V - r + \sigma_V \frac{-h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2} \sigma_{Vw}}{\sigma_V} = \]

\[= \mu_V - r + \sigma_V \frac{-h_s \sigma_{Vz} + a \sqrt{A^2 - h_s^2} \sigma_{Vw}}{\sigma_V} = \]

\[\eta = \mu_V - r - \sigma_V A \left(\frac{h_s}{A} \rho - a \sqrt{1 - \frac{h_s^2}{A^2} 1 - \rho^2} \right) \]

\[\eta = \left[\frac{\mu_V - r}{\sigma_V} - \frac{\mu_s - r}{\sigma_s} \left(\rho - a \sqrt{1 - \frac{h_s^2}{A^2} 1 - \rho^2} \right) \right] \sigma_V \]

\[\eta = \left[h_v - h_s \left(\rho - a \sqrt{1 - \rho^2} \right) \right] \sigma_V \]

where

\[\rho = \frac{\sigma_{Vz}}{\sigma_V} = \text{corr} \left(\frac{dV}{V}, \frac{dS}{S} \right) \]

\[h_v = \frac{\mu_V - r}{\sigma_V}. \]

Then, we have

\[C = V_0 e^{\eta T} N \left(\frac{\ln(K/V_0) - (\eta + r) T}{\sigma_V \sqrt{T}} - \frac{1}{2} \sigma_V \sqrt{T} \right) - \]

\[-K e^{-r T} N \left(\frac{\ln(K/V_0) - (\eta + r) T}{\sigma_V \sqrt{T}} + \frac{1}{2} \sigma_V \sqrt{T} \right). \]

To convert from the right tail of the normal density \(N(.) \) to the left tail \(\phi(.) \), use

\[N(x) = \phi(-x). \]

\[C = V_0 e^{\eta T} \phi \left(\frac{\ln(V_0/K) + (\eta + r) T}{\sigma_V \sqrt{T}} + \frac{1}{2} \sigma_V \sqrt{T} \right) - \]

\[-K e^{-r T} \phi \left(\frac{\ln(V_0/K) + (\eta + r) T}{\sigma_V \sqrt{T}} - \frac{1}{2} \sigma_V \sqrt{T} \right). \]
Figure 1: Option price bounds as a function of stock price. Options have three months to expiration and strike price $K = $100. The bounds assume no trading until expiration, and a discount factor volatility bound $h = 1.0$ corresponding to twice the market Sharpe ratio. The stock is lognormally distributed with parameters calibrated to an index option.
Figure 2: Notation and geometry. $X =$ space of portfolios of basis-asset payoffs. $\mathbf{x} =$ basis asset payoffs. $x^c =$ focus asset payoff. $\hat{x}^c =$ best approximate hedge. $w =$ residual. The straight dashed line $m : p = E(mx)$ is the space of all discount factors that price the basis payoffs \mathbf{x}. The solid straight line marked $m > 0$. is the space of all positive discount factors that price the basis assets. The dashed circle is the set of all random variables with second moment less than A^2.
Figure 3: Bounds on option values with three months to expiration, no intermediate trading. Options are hedged with stock, interest rate, and 3 options whose prices and strikes are marked with squares.
Figure 4: Bounds on option prices deltas $\partial C/\partial S$ with three months to expiration, no intermediate trading.
Figure 5: Multinomial return distribution fitted from CRSP S&P500 weekly return data. The plus signs mark return observations larger than +/- 5%, as measured on the x-axis. Their height is arbitrary.
Figure 6: Upper and lower good-deal bounds for S&P500 index options with 3 months to expiration and strike price $K = 100$. The stock return follows a multinomial distribution fitted to S&P500 return data. Each option is hedged with the index and a 5% riskfree rate. Hedge portfolios may be changed weekly.
Figure 7: Implied volatilities for CBOE S&P500 index put options with 3 months to expiration, 1996.
Figure 8: Good-deal bounds for a European call option written on an event V whose shocks are correlated 0.9 with the stock index shocks. Continuous trading is allowed. Three months to expiration, and other parameters match the index.