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Chapter 1

Preface

These notes compactly summarize some of the theory and background for
investments classes. They are not a complete treatment, but focus on areas
in which I feel the textbooks and other materials leave gaps. I also tried to
write them as compactly as possible rather than develop things slowly as
in textbooks.

Please let me know about any typos or other comments. The latest
version of this document is always available on the class website.

3



4 CHAPTER 1. PREFACE



Chapter 2

Notation and return
definitions

Don’t get hung up on notation. Understanding the concepts is the
important thing here. Don’t memorize these formulas. If you understand
the concepts, you can invent your own notation and get it right. If you
don’t understand the concepts, no amount of staring at superscripts and
subscripts is going to help.

Time notation Where necessary, I’ll use time subscripts to denote
when things happen. For example, the price at the end of 1996 is P1996.
More generally, the price at time t is Pt, the interest rate at time t is Rt

etc. When I want to be excruciatingly clear about the timing of a return,
I’ll denote the rate of return from time t to time t+ 1 as Rt→t+1. “Today”
is often “time 0.”

Returns I use capital R to denote a gross return, e.g.

R =
$back

$paid
.

For a stock that pays a dividend D, the gross return is

Rt+1 =
Pt+1 +Dt+1

Pt
=
$backt+1
$paidt

(for example, 1.10)

R is a number like 1.10 for a 10% return.

Several other units for returns are convenient. The net return is

rt+1 = Rt+1 − 1 (For example, 0.10).
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6 CHAPTER 2. NOTATION AND RETURN DEFINITIONS

The percent return is

100× rt+1 (For example, 10%)

The log or continuously compounded return is

rt = lnRt (For example, ln(1.10) = 0.09531 or 9.531%)

The real return corrects for inflation,

Rrealt+1 =
Goods backt+1
Goods paidt

.

The consumer price index is defined as

CPIt ≡
$t

Goodst
; Πt+1 ≡

CPIt+1
CPIt

Thus, we can use CPI data to find real returns as follows.

Rrealt+1 =
$t+1 × Goodst+1

$t+1

$t × Goodst
$t

=
$t+1

1
CPIt+1

$t
1

CPIt

= Rnomialt+1

CPIt
CPIt+1

=
Rnominalt+1

Πt+1
.

I.e., divide the gross nominal return by the gross inflation rate to get the
gross real return.

You’re probably used to subtracting inflation from nominal returns. This
is exactly true for log returns. Since

ln(A/B) = lnA− lnB,

we have
lnRrealt+1 = lnR

nomial
t+1 − lnΠt+1.

For example, 10%-5% = 5%. It is approximately true that you can subtract
net returns this way,

Rnominalt+1

Πt+1
=

¡
1 + rnomial

¢
1 + π

≈ 1 + rnom − π.

The approximation is ok for low inflation (10%) or less, but really bad for
100% or more inflation.

Using the same idea as for real returns, you can find dollar returns of
international securities. Suppose you have a German security, that pays a
gross Euro return

RDM
t+1 =

E backt+1
E paidt
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Then change the units to dollar returns just like you did for real returns.
The exchange rate is defined as

e
$/DM
t =

$t
Et

.

Thus,

R$t+1 =
$t+1
$t

=
Et+1

Et
× $t+1/Et+1

$t/Et
= RE

t+1 ×
e
$/E
t+1

e
$/E
t

.

Compound returns Suppose you hold an instrument that pays 10%
per year for 10 years. What do you get for a $1 investment? The answer
is not $2, since you get “interest on the interest.” The right answer is the
compound return. Denote

Vt = value at time t

Then

V1 = RV0 = (1 + r)V0

V2 = R× (RV0) = R2V0

VT = RTV0

Thus, RT is the compound return.

As you can see, it’s not obvious what the answer to 10 years at 10% is.
Here is why log returns are so convenient. Logs have the property that

ln (ab) = ln a+ ln b; ln
¡
a2
¢
= 2 ln a.

Thus

lnV1 = lnR+ lnV0

lnVT = T lnR+ lnV0

Thus the compound log return is T times the one-period log return.

More generally, log returns are really handy for multi-period problems.
The T period return is

R1R2...RT

while the T period log return is

ln(R1R2...RT ) = ln(R1) + ln(R2) + ... ln(RT )
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Continuously compounded or log returns are also convenient because
you can subtract rather than divide to get exact real returns or exchange
rate conversions.

Rreal =
Rnominal

Π
⇒ ln(Rreal) = lnRnominal − lnΠ.

Within period compounding This is best explained by example.
Suppose a bond that pays 10% is compounded semiannually, i.e. two pay-
ments of 5% are made at 6 month intervals. Then the total annual gross
return is

compounded semi-annually: (1.05) (1.05) = 1.1025 = 10.25%

What if it is compounded quarterly? Then you get

compounded quarterly: (1.025)
4
= 1.1038 = 10.38%

Continuing this way,

compounded N times:
³
1 +

r

N

´N
What if you go all the way and compound continuously? Then you get

lim
N→∞

³
1 +

r

N

´N
= 1 + r +

1

2
r2 +

1

3× 2r
3... = er.

Well, if the gross return is R = er, then we can find the continuously
compounded or log return as r = lnR. For example a stated rate of 10%,
continuously compounded, is really a gross return of e0.10 = 1.1051709 =
10.517%. Conversely, given a gross return of 10.517%, you can express it as
a continuously compounded return of 10%.

Both kinds of compounding What is the three year return of a
security that pays a stated rate R, compounded semiannually? Well, again
with r = R− 1, it must be ³

1 +
r

2

´2×3
.

Similarly, the continuously compounded T year return is

erT .



Chapter 3

Probability and statistics

3.1 Probability

3.1.1 Random variables

We model stock returns as random variables. A random variable can take
on one of many values, with an associated probability. For example, the
gross return on a stock might be one of four values.

R =

Value Probability
1.1 1/5
1.05 1/5
1.00 2/5
0.00 1/5

Each value is a possible realization of the random variable. Of course, stock
returns can typically take on a much wider range of values, but the idea
is the same. Many finance texts distinguish the random variable from its
realization by using R̃ for the random variable and R for the realization. I
don’t.

The distribution of the random variable is a listing of the values it can
take on along with their probabilities. For example, the distribution of
return in the above example is

9



10 CHAPTER 3. PROBABILITY AND STATISTICS

(Real statisticians call this the density and reserve the word distribution
for the cumulative distribution, a plot of values vs. the probability that the
random variable is at or below that value.)

A deeper way to think of a random variable is a function. It maps
“states of the world” into real numbers. The above example might really
be

R =

Value State of the world Probability
1.1 New product works, competitor burns down 1/5
1.05 New product works, competitor ok. 1/5
1.00 Only old products work. 2/5
0.00 Factory burns down, no insurance. 1/5

The probability really describes the external events that define the state of
the world. However, we usually can’t name those events, so we just think
about the probability that the stock return takes on various values.

In the end, all random variables have a discrete number of values, as in
this example. Stock prices are only listed to 1/8 dollar, all payments are
rounded to the nearest cent, computers can’t distinguish numbers less than
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10−300 or so apart. However, we often think of continuous random variables,
that can be any real number. Corresponding to the discrete probabilities
above, we now have a continuous probability density, usually denoted f (R).
The density tells you the probability per unit of R; f (R0)∆R tells you the
probability that the random variable R lies between R0 and R0 +∆R.

A common assumption is that returns (or log returns) are normally
distributed. This means that the density is given by a specific function,

f (R) =
1√
2πσ

exp

"
−(R− μ)

2

2σ2

#
.

The graph of this function looks like this:

μ

σ

About 30% (really 31.73%) of the probability of a normal distribution is
more than one standard deviation from the mean and about 5% is more than
two standard deviations from the mean (really 4.55%, the 5% probability
line is at 1.96 standard deviations). That means that there is only one
chance in 20 of seeing a value more than two standard deviations from
the mean of a normal distribution. Stock returns have “fat tails” in that
they are slightly more likely to take on extreme values than the normal
distribution would predict.
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3.1.2 Moments

Rather than plot whole distributions, we usually summarize the behavior
of a random variable by a few moments such as the mean and variance.

I’ll denote the values that R can take on as Ri with associated proba-
bilities πi. Then the mean is defined as

Mean: E (R) =
X

possible values i

πiRi.

The mean is a measure of central tendency, it tells you where R is “on
average.” A high mean stock return is obviously a good thing!

The variance is defined as

Variance: σ2 (R) = E
h
(R−E (R))2

i
=
X
i

πi [Ri −E (R)]2

Since squares of negative as well as positive numbers are positive, variance
tells you how far away from the mean R typically is. It measures the spread
of the distribution. High variance is not a good thing; it will be one of our
measures of risk.

The covariance is

Covariance: cov
¡
Ra, Rb

¢
= E

£
(Ra −E (Ra))

¡
Rb −E

¡
Rb
¢¢¤

=
X
i

πi [R
a
i −E (Ra)]

£
Rb
i −E

¡
Rb
¢¤

It measures the tendency of two returns to move together. It’s positive if
they typically move in the same direction, negative if one tends to go down
when the other goes up, and zero if there is no tendency for one to be high
or low when the other is high.

The size of the covariance depends on the units of measurement. For
example, if we measure one return in cents, the covariance goes up by a
factor of 100, even though the tendency of the two returns to move together
hasn’t changed. The correlation coefficient resolves this problem.

Correlation: corr
¡
Ra, Rb

¢
= ρ =

cov
¡
Ra, Rb

¢
σ (Ra)σ (Rb)

.

The correlation coefficient is always between -1 and 1.

For continuously valued random variables, the sums become integrals.
For example, the mean is

E (R) =

Z
R f (R) dR.
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The normal distribution defined above has the property that the mean
equals the parameter μ, and the variance equals the parameter σ2. (To
show this, you have to do the integral.)

3.1.3 Moments of combinations

We will soon have to do a lot of manipulation of random variables. For ex-
ample, we soon will want to know what is the mean and standard deviation
of a portfolio of two returns. The basic results are

1) Constants come out of expectations and expectations of sums are
equal to sums of expectations. If c and d are numbers,

E (cRa) = cE (Ra)

E
¡
Ra +Rb

¢
= E (Ra) +E

¡
Rb
¢

or, more generally,

E
¡
cRa + dRb

¢
= cE (Ra) + dE

¡
Rb
¢
.

2) Variance of sums works like taking a square,

var
¡
cRa + dRb

¢
= c2var (Ra) + d2var

¡
Rb
¢
+ 2cd cov

¡
Ra, Rb

¢
.

3) Covariances work linearly

cov
¡
cRa, dRb

¢
= cd cov

¡
Ra, Rb

¢
To derive any of these or related rules, just go back to the definitions.

For example,

E (cRa) =
X
i

πicR
a
i = c

X
i

πiR
a
i = cE (Ra) .

3.1.4 Normal distributions.

Normal distributions have an extra property. Linear combinations of nor-
mally distributed random variables are again normally distributed. Pre-
cisely, if Ra and Rb are normally distributed, and

Rp = cRa + dRb

then, Rp is also normally distributed with the mean and variance given
above.
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3.1.5 Lognormal distributions

A variable R is lognormally distributed if r ≡ ln(R) is normally distributed.
This is a nice model for stock and bond returns since you can never lose
more than all your money; we can never see R < 0. A lognormal captures
that fact. A normal distribution always includes events in which R <
0. Lognormal returns are like log returns, useful for handling multiperiod
problems.

Since R = elnR = er by definition, wouldn’t it be nice if E(R) = eE(r)?
Of course, that isn’t true because E[f(x)] 6= f [E(x)] . But something close
to it is true. By working out the integral definition of mean and variance,
you can show that

E(R) = eE(r)+σ
2(r)/2.

The variance is a little trickier. R2 = e2r so this is also lognormally dis-
tributed. Then

σ2(R) = e2E(r)+σ
2(r)

h
eσ

2(r) − 1
i
.

(To show this,

σ2(R) = E(R2)−E(R)2 = e2E(r)+2σ
2(r) − e2E(r)+σ

2(r). )

As a linear combination of normals is normal, a product of lognormals
(raised to powers) is lognormal. For example,

R1R2 = er1+r2 ;

since r1 and r2 are normal so is r1 + r2, and therefore R1R2 is lognormal.

3.2 Statistics

3.2.1 Sample mean and variance

What if you don’t know the probabilities? Then you have to estimate them
from a sample. Similarly, if you don’t know the mean, variance, regression
coefficient, etc., you have to estimate them as well. That’s what statistics
is all about.

The average or sample mean is

R̄ =
1

T

TX
t=1

Rt
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where {R0, R1, ...Rt, ...RT } is a sample of data on a stock return. Just to
be confusing, many people use μ for sample as well as population mean.
Sometimes people use hats, μ̂ to distinguish estimates or sample quantities
from true population quantities.

Keep the sample mean and the true, or population mean separate in
your head. For example, the true probabilities that a coin will land heads
or tails is 1/2, so the mean of a bet on a coin toss ($1 for heads, -$1 for
tails) is 0. A sample of coin tosses might be {H,T,T,H,H}. In that sample,
the frequency of heads is 3/5 and tails 2/5, so the sample mean of a coin
toss bet is 1/5.

Obviously, as the sample gets bigger and bigger, the sample mean will
get closer and closer to the true or population mean. That property of the
sample mean (consistency) makes it a good estimator. But the sample and
population mean are not the same thing for any finite sample!

Also, sample means approach population means only if you are repeat-
edly doing the same thing, such as tossing the same coin. This may not
be true for stocks. If there are days when expected returns are high and
days when they are low, then the average return will not necessarily recover
either expected return.

The sample variance is

s2 = σ̂2 =
1

T − 1

TX
t=1

£
Rt − R̄

¤2
.

Sample values of the other moments are defined similarly, as obvious analogs
of their population definitions.

3.2.2 Variation of sample moments

The sample mean and sample variance vary from sample to sample. Let’s
flip a coin, with Heads = +1, Tails = -1. If I get {H,T,T,H,H}, the sample
mean is 1/5, but if I happened to get {T,T,H,T,T}, the sample mean would
be -3/5. The true, population mean, is zero of course. Thus the sample
mean, standard deviation, and other statistics are also random variables;
they vary from sample to sample. They are random variables that depend
on the whole sample, not just what happened one day, but they are random
variables nonetheless. The population mean and variance, by contrast are
just numbers.

We can then ask, “how much does the sample mean (or other statistic)
vary from sample to sample?” This is an interesting question. If a mutual
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fund manager tells you “my mean return for the last five years was 20% and
the S&P500 was 10%” you want to know if that was just due to chance, or
if it means that his true, population mean, which you are likely to earn in
the next 5 years, is also 10% more than the S&P500. In other words, was
the realization of the random variable called “my estimate of manager A’s
mean return” near the mean of the true or population mean of the random
variable “manager A’s return?”

Figuring out the variation of the sample mean is a good use of our
formulas for means and variances of sums. The sample mean is

R̄ =
1

T

TX
t=1

Rt.

Therefore,

E
¡
R̄
¢
=
1

T

TX
t=1

E (Rt) = E (R)

assuming all the R0ts are drawn from the same distribution (a crucially
important assumption). This verifies that the sample mean is unbiased.
On average, across many samples, the sample mean will reveal the true
mean.

The variance of the sample mean is

σ2
¡
R̄
¢
= σ2

Ã
1

T

TX
t=1

Rt

!
=

1

T 2

TX
t=1

σ2 (Rt) + (covariance terms)

If we assume that all the covariances are zero, we get the familiar formula

σ2
¡
R̄
¢
=

σ2 (R)

T
or

σ
¡
R̄
¢
=

σ (R)√
T

.

For stock returns, cov (Rt, Rt+1) = 0 is a pretty good assumption. It’s a
great assumption for coin tosses: seeing heads this time makes it no more
likely that you’ll see heads next time. For other variables, it isn’t such a
good assumption, so you shouldn’t use this formula.

You don’t know σ. Well, you can estimate the sampling variation of
the sample mean by using your estimate of σ, namely the sample standard
deviation. Using hats to denote estimates,

σ̂
¡
R̄
¢
=

σ̂ (R)√
T

.
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The classic use of this formula is to give a standard error or measure of
uncertainty of the sample mean, and to test whether the sample mean is
equal to some value, usually zero.

The test is usually based on a confidence interval. Assuming normal
distributions, the confidence interval for the mean is the sample mean plus
or minus 2 (well, 1.96) standard errors. The meaning of this interval is that
if the true mean was outside the interval, there would be less than a 5%
chance of seeing a sample mean as high (or low) as the one we actually see.

Now that we have computers, there is an easier method. We can just
calculate the probability that the sample mean comes out at its actual
value (or larger) given the null hypothesis, i.e., calculate the area under
the distribution of the sample mean past the sample mean we happen to
see, given an assumption (hypothesis) about what the true mean is. This
is called the p-value or probability value.

p value = area here

sample mean 
this time

hypothesis: the true
sample mean is here.

distribution of 
sample mean

Usually, tests are run using the t-distribution. When you take account
of sampling variation in σ̂, you can show that the ratio

√
T
R̄−E (R)

σ̂

is not a normal distribution with mean zero and variance 1, but a t distri-
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bution.

3.3 Regressions

We will run regressions, for example of a return on the market return,

Rt = α+ βRm,t + �t; t = 1, 2...T

and sometimes multiple regressions of returns on the returns of several
portfolios

Rt = α+ βRm,t + γRp,t + �t; t = 1, 2...T.

The generic form is usually written

yt = α+ β1x1t + β2x2t + ...+ �t; t = 1, 2, ...T

Both textbooks and regression packages give standard formulas for es-
timates of the regression coefficients βi and standard errors with which
you can construct hypothesis tests. All of these numbers are based on as-
sumptions, most of which are wrong for any given regression. Hence, it’s
important to know what the assumptions are and which complications you
have to correct for.

Several important facts about regressions:

1) The population value of a single regression coefficient is1

β =
cov (y, x)

var (x)
.

2) The regression recovers the true β (precisely, the estimate of β is un-
biased) only if the error term is uncorrelated with the right hand variables.
For example, suppose you run a regression

sales = α+ β advertising expenses + �.

1If you forgot why, start with

yt = α+ βxt + �t

and the usual assumption that errors are uncorrelated with right hand variables E(εt) =
0, E(εtxt) = 0. Multiply both sides by xt − E (xt) and take expectations, which gives
you

cov (xt, yt) = βvar (xt) .
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Discounts also help sales, so discounts are part of the error term. If adver-
tising campaigns happen at the same time as discounts, then the coefficient
on advertising will pick up the effects of discounts on sales.

3) In a multiple regression, β1 captures the effect on y of only movements
in x1 that are not correlated with movements in x2. If you run a regression
of price of shoes on sales of right shoes and left shoes, the coefficient on
right shoes only captures what happens to price when right shoe sales go
up and left shoe sales don’t. I.e., it doesn’t mean much.

3.3.1 Regression formulas with matrices

Here are the standard regression formulas in matrix notation.

The linear regression model is

Y = Xβ + ε⎡⎢⎢⎢⎣
y1
y2
...
yT

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

x11 x12
x21 x22
...

...
xT1 xT2

⎤⎥⎥⎥⎦
∙
β1
β2

¸
+

⎡⎢⎢⎢⎣
ε1
ε2
...
εT

⎤⎥⎥⎥⎦
If there is a constant in the regression, the first column of X is all 1s.

OLS regressions

The OLS estimate is

β̂ = (X 0X)−1X 0Y

(It is usually a bad practice to program it this way, i.e. beta = inv(X’*X)*X’*Y,
since inversion is not that stable. In matlab, the command beta = X\Y
does the same thing but it is better numerically.)

Standard errors measure the variability of β̂ over samples, i.e., if you
redraw all the data and run the experiment over and over again. The
standard formula is

σ2(β̂) = (X 0X)−1σ2ε (3.1)

This formula holds IF the errors all have the same variance and are uncor-
related with each other.

We usually estimate this quantity by first finding the errors

e = Y −Xβ̂
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and forming

s2 = var(e)

σ2(β̂) = (X 0X)−1s2

(Some books like to use 1/(T −K) where K is the number of right hand
variables to form s2.) With the errors, we can also calculate the

R2 =
var(Xβ)

var(Y )
= 1− var(e)

var(Y )
.

What appends if the errors have different variances or are correlated
with each other? Remember how we derive the mean and variance of β̂

σ2(β̂) = σ2
£
(X 0X)−1X 0Y

¤
= σ2

£
(X 0X)−1X 0 (Xβ + ε)

¤
= σ2

£
(X 0X)−1X 0ε

¤
= E

£
(X 0X)−1X 0εε0X(X 0X)−1

¤
The last line uses the assumption E(ε) = 0 and the formula var(Ax) =
Acov(x, x0)A0. Let

Ω = E(εε0).

Then
σ2(β̂) = (X 0X)−1X 0ΩX(X 0X)−1 (3.2)

IF σ2(εt) are the same for all t and σ(εtεs) = 0 uncorrelated, then Ω is
diagonal

E(εε0) = Ω = σ2εI

Then the standard error formula is our usual friend (3.1) Otherwise use the
more general formula (3.2).

GLS regressions

GLS estimate. If Ω 6= σ2I, the following “GLS estimate” is more “effi-
cient.”

β̂GLS = (X
0Ω−1X)−1X 0Ω−1Y

The GLS procedure is: 1) run OLS to find ε 2) Use ε to estimate Ω 3) run
GLS.

The standard errors of the GLS estimate are

σ
³
β̂GLS

´
= (X 0Ω−1X)−1
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Why?

σ2(β̂GLS) = σ2
£
(X 0Ω−1X)−1X 0Ω−1Y

¤
= σ2

£
(X 0Ω−1X)−1X 0Ω−1 (Xβ + ε)

¤
= σ2

£
(X 0Ω−1X)−1X 0Ω−1ε

¤
= E

£
(X 0Ω−1X)−1X 0Ω−1εε0Ω−1X(X 0Ω−1X)−1

¤
(3.3)

OLS vs. GLS

When the errors don’t satisfy the OLS assumption Ω = σ2εI, GLS is
advocated by econometrics text books, because it’s more “efficient.” This
means that if all goes well, σ(β̂GLS) < σ(β̂OLS) for large T — the estimate
is closer to the true value.

However, in practice all may not go well. It is quite common in finance
to use OLS estimates anyway. OLS is still unbiased2 E(β̂OLS) = β. It is
potentially “inefficient,” but often squeezing the last drop of efficiency out
of the data is not that vital. On the other side, experience has proved that
putting an Ω−1 matrix in the middle can really screw things up, especially
if (as always) the model is pretty good but not perfect.

Just because we use OLS estimates does not mean that we use the OLS
standard error formula. If Ω 6= σ2εI, the OLS standard error formula is
biased, and often is too optimistic by a factor of 5-10 in typical finance
data sets. Thus, if you use OLS estimates, it’s vital to use the general
formula (3.2) or some equivalent procedure (Fama-MacBeth).

A typical example is a “panel data” regression taken over N companies
and T time periods. If the data are returns, errors are usually decently
uncorrelated over time, but if company i is unusually high at time t, com-
pany j is also likely to be unusually high. Thus, the errors are correlated
across companies. In corporate finance data sets, when the data might be
investment, cashflows, etc., the errors are likely to be correlated across time
as well.

2

β̂ =
¡
X0X

¢−1
X0Y

=
¡
X0X

¢−1
X0 (Xβ + ε)

E(β̂) = E
£
(X0X)−1 (Xβ + ε)

¤
= β +E

£
(X0X)−1X0ε

¤
Thus if the error is uncorrelated with the right hand variables E(Xε) = 0 we see that
OLS is unbiased (consistent when X is stochastic.)
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Don’t confuse OLS standard errors when Ω 6= σ2εI, (3.2), with Standard
error of GLS estimate (3.3) The first gives the (larger) standard errors of
the OLS estimate, the second gives the standard errors of the GLS estimate.

3.4 Time series

Time series is the name for the set of statistical tools and models we use
to think about asset prices, returns and so forth. A time series is a set
of repeated observations of a random variable. A repeated coin toss, or
the temperature in Chicago are other examples worth thinking about. We
denote a time series x1, x2...xt, ... meaning the observation at time 1, time
2, a representative time t, and so on.

Unconditional and Conditional Mean and Variance

Time series have a mean and variance, like any other random variable,
denoted E(xt) and σ2(xt). For example, the mean annual stock return is
about 8% with variance about 16%; the mean of a bet on a coin flip is zero.

Some time series move slowly over time; if they are high today it’s a
good bet they are high tomorrow; they decay slowly back after a shock.
Temperature, price/earnings ratios, and interest rates act this way. Other
time series are less predictable; the fact that they are high today doesn’t
give much information about whether they’ll be high tomorrow. Stock
returns and the series of coin flips are good examples. Other properties
may persist over time as well. The level of stock returns may not persist
much, but the variance does; if this week was very volatile, next week is
likely to be volatile as well.

These properties are captured by the conditional mean and variance.
Using all information at time t, what is the mean of xt+1? We denote this
Et(xt+1), or if you really want to be clear, E(xt+1|It) where It represents all
information available at time t. We call the regular mean and variance the
unconditional mean and variance when we want to clearly distinguish which
mean we’re talking about. We can think about conditional means two three
or more steps ahead, Et(xt+j). The persistent time series, like temperature,
price/earnings ratio, or interest rate, have the property that the sequence
of conditional means Et(xt+j) falls slowly back to the unconditional mean
E(xt). For a coin flip, the conditional mean is always the same and equal
to the unconditional mean — today’s flip gives you no information about
tomorrow’s flip.

White noise; MA models



3.4. TIME SERIES 23

Time series models capture this different behavior of conditional means
and variances. The basic building block of time series models is the white
noise process usually denoted εt. This is like the coin flip, completely
unpredictable over time. In addition, it’s convenient to start with a mean
zero, so Et(εt+1) = E(εt+1) = 0. We usually specify a constant conditional
variance σ2t (εt+1) = σ2(εt+1) = σ2ε as well. Since they are unpredictable
from any information, they are also unpredictable from their own past.
Thus the autocorrelation of the white noise process is zero, corr(εt, εt+j) =
0; corr(εt, εt−j) = 0, and since the mean is zero we can also write this as
E(εtεt−j) = 0, E(εtεt+j) = 0.

We then build up models with more interesting dynamics from the white
noise process. The most basic example are the MA processes. MA stands
for “moving average.” The MA(1) process is

xt = εt + θεt−1

(1) means how many terms. The MA(2) process is

xt = εt + θ1εt−1 + θ2εt−2.

The MA(1) process captures the sense in which the conditional mean
might be different from the unconditional mean — it has some persistence.

Et(xt+1) = Et(εt+1 + θεt) = θεt

Et(xt+2) = Et(εt+2 + θεt+1) = 0.

Similarly, the MA(2) process remembers shocks for two periods,

Et(xt+1) = Et(εt+1 + θ1εt + θ2εt−1) = θ1εt + θ2εt−1

Et(xt+2) = Et(εt+2 + θ1εt+1 + θ2εt) = θ2εt

Et(xt+3) = 0

Notice the rule for working these out: Et(εt+j) = 0. Things with index
less than or equal to t are known at time t, so they are numbers, not random
variables. They stay in the conditional mean formula. Things with index
greater than t are random variables, and we assumed the conditional mean
of the unknown ε are zero.

The conditional variances of the MA(1) process are

σ2t (xt+1) = σ2t (εt+1 + θεt) = σ2ε
σ2t (xt+2) = σ2t (εt+2 + θεt+1) =

¡
1 + θ2

¢
σ2ε

σ2t (xt+3) = σ2t (εt+3 + θεt+2) =
¡
1 + θ2

¢
σ2ε

σ2t (xt+j) = σ2t (εt+j + θεt+j−1) =
¡
1 + θ2

¢
σ2ε ; j ≥ 3
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Notice the rules for working these out. The variance of the known εt
with index t or less is zero. Things with index greater than t are random
variables at time t, so enter variance formulas. The εt are uncorrelated over
time; that’s how I was able to eliminate the last term in the second line,

σ2t (xt+2) = σ2t (εt+2)+θ
2σ2t (εt+1)+2θcovt(εt+1, εt+2) = σ2t (εt+2)+θ

2σ2t (εt+1)

By assumption the εt random variable has the same conditional variance
at all horizons — like a coin flip, it’s the same thing over and over again.
That’s how I was able to collapse the last term

σ2t (εt+2) + θ2σ2t (εt+1) =
£
1 + θ2

¤
σ2ε .

If you got these rules, you should be able to work out the conditional
variance of the MA(2),

σ2t (xt+1) = σ2ε
σ2t (xt+2) =

¡
1 + θ21

¢
σ2ε

σ2t (xt+j) =
¡
1 + θ21 + θ22

¢
σ2ε ; j ≥ 3

From looking at the formulas, you should see that the MA(k) process
has a k period memory. After k periods it forgets where it came from.
All of the effects of conditioning information die out after k periods. To
show this, I graph below the conditional mean and variance of a MA(2).
To make the graph I specify θ1 = θ2 = 1 and εt = εt−1 = εt−2 = 1. The
conditional mean and variance are different of course for different histories;
different values of εt, εt−1. Graphing this for other values of εt, εt−1 is a
great exercise.
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Since I assumed εt = εt−1 = εt−2 = 1, this series has just had a string of
good luck. You can see the persistence of the series in the Et(xt+j) line; the
expected future values of xt are also large, and tail off to the unconditional
mean E(xt) = 0 after 3 periods. We know a bit about where xt+1 will
be at time t, and less about where xt+2 will be. This is reflected in the
slow rise of the standard deviation graph. It too becomes the unconditional
standard deviation after 3 periods. Smaller values of θ would give quicker
reversion of these lines to their unconditional values.

Means and trends

The models I have described so far all have unconditional mean zero.
Most of our series don’t do that; they move around some nonzero mean.
It’s easy enough to fix this by adding constants to the model, for example

xt = μ+ εt + θ1εt−1

Now you can see everything shifts up by μ. Some series like income trend
up over time, and people sometimes model this by adding a trend,

xt = a+ b× t+ εt + θ1εt−1.

You might want to model temperature in Chicago by adding a deterministic
seasonal pattern on top of the random vagaries of the weather,

xt = μ+ b sin(t) + εt + θεt−1.
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This is so easy to do that I, like most writers, routinely suppress the con-
stants and trends, leaving you to put them in where appropriate.

AR Models

The other way to make more complex processes out of the simple white
noise process is the autoregressive process, denoted AR. The AR(1) is

xt = ρxt−1 + εt.

The AR(2) is

xt = ρ1xt−1 + ρ2xt−2 + εt,

and so forth. A problem at the end of the section asks you to work out the
conditional mean and variance of the AR(1), using the tricks above. The
first two terms are

Et(xt+1) = ρxt

Et(xt+2) = ρ2xt

σt(xt+1) = σ2ε
σ2t (xt+2) = (1 + ρ2)σ2ε .

The next figure presents the results. As you can see, the AR(1) is a
much nicer process. The conditional mean geometrically decays back to
the unconditional mean, rather than lose all its information in exactly k
periods as the MA(k) process does. The conditional standard deviation
slowly grows, approaching the unconditional standard deviation, as today’s
information loses its value for predicting the future. It’s also nice that the
conditional means depend on xt, the value of the time series itself, rather
than the more nebulous shocks εt.
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Here are plots of an AR(1) with ρ = 0.1 and ρ = 0.9. You can see how
higher ρ induces more persistence in the time series. That’s just what we
want to model.
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MA and AR processes are really not distinct; you can represent each
AR as an MA and vice versa. To do this, just start substituting recursively,

xt = ρxt−1 + εt

xt = ρ (ρxt−2 + εt−1) + εt = ρ2xt−2 + εt + ρεt−1

xt = ρ2 (ρxt−3 + εt−2) + εt + ρεt−1 = ρ3xt−3 + εt + ρεt−1 + ρ2εt−2

Continuing this way, and if kρk < 1, we see that the AR(1) is the same as
an MA(∞),

xt = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + ... =
∞X
j=0

ρjεt−j .

This fact can be useful. For example, you saw that it was pretty easy to
calculate conditional means and variances of MA processes, so expressing
an AR as an MA might be a good idea for that purpose. On the other
hand, it was nice to capture the history of the process with the x variable
rather than the ε in the AR process, so you might express an MA as an
AR for that purpose.

Fitting a model

How would you go about fitting a time series process, i.e., figuring out
which AR or MA process best describes a time series like stock price/earnings
ratios, returns, interest rates, etc.? The AR processes are particularly con-
venient because you can fit the parameters by simple regressions. Look
again at the AR(1) model,

xt = ρxt−1 + εt.

The error term is, by assumption, unpredictable by and hence uncorrelated
with any information at time t−1, including xt−1. The central requirement
to run a regression is that the right hand variable xt−1 is uncorrelated with
the error term εt. So, we can obtain a consistent estimate of ρ by just
running a regression! In practice, you would include the constant or trend
too, i.e. run

xt = μ+ ρxt−1 + εt.

It takes a while to get used to this kind of regression. There is no sense
in which xt−1 “causes” xt, and we will see cases in which the causality
in fact runs exactly the opposite way, (return forecasting regressions in
particular). Yet all OLS requires is that the error is uncorrelated with the
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right hand variable, and forecast errors are by definition uncorrelated with
information at time t.

The other parameter is the variance of the error term σ2ε , and you get
this of course from the variance of the residual of the regression. What
could be simpler?

More complex models

Once you see the picture, you can see lots of other interesting ways
to build more complex and interesting time series models from the simple
white noise building blocks, in order to capture the many interesting things
we see in the data.

The future of one variable, xt might be related to the past history of
other variables yt. For example, it seems we can forecast stock returns
by the D/P ratio as well as by past stock returns. This suggests a many-
variable AR(1),

xt = μx + ρxxxt−1 + ρxyyt−1 + εxt
yt = μy + ρyxxt−1 + ρyyyt−1 + εyt .

The natural way to represent this is to throw both variables in together
and think of a vector autoregression

zt = μ+Azt−1 + εt

zt =

∙
xt
yt

¸
; μ =

∙
μx
μy

¸
; A =

∙
ρxx ρxy
ρyx ρyy

¸
; εt =

∙
εxt
εyt

¸
You can fit it by simply running two OLS regressions, one of x on past x
and past y; and one of y on past x and past y. Everything I have done
so far can just be reinterpreted with vectors and matrices to handle many
variables and cross-forecasting properties.

Financial markets often show persistence in volatility as well as persis-
tence in means. The models I have written down don’t have that, σt(xt+1)
is always the same. The ARCH and GARCH models for which Rob Engel
got the Nobel prize use these same ideas for variances in place of the actual
variables. Interest rates are more volatile when interest rates are higher,
and this is often represented in term structure models with equations like

xt+1 = μ+ ρxt +
√
xtεt+1.

In this model, when the level xt is higher, the conditional variance σ
2
t (xt+1) =

xtσ
2
ε is also higher. (This is called, no surprise, the square root model.)

Stationarity.
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The models I have written down all have some properties that are worth
pointing out.

I have blithely used the same symbol for the variance of different el-
ements of the time series; I have assumed for example that σ2(x10) =
σ2(x20), and used the symbol σ

2(xt) to denote the common value of both.
I have also assumed that correlations depend on horizon, not on the date,
E(xtxt+10) = E(xt+20xt+30) for example. These are properties of the AR
and MA models I have written down, built up by stable functions of the
white noise coin flip. (With some restrictions, for example kρk < 1 for the
AR(1) model.)

This property, that unconditional means and variances exist and that
they depend on horizon rather than date, is called stationarity. Intuitively,
a stationary series is one that looks the same, from a statistical point of
view at any moment in time. A repeated coin toss is stationary (so long
as the coin doesn’t wear out). The first through tenth observations look
just like the hundred and first through hundred and tenth observations
from a statistical point of view. Stock and bond returns are remarkably
stationary, despite the large changes in the economy and trading mechanism
over time.

In my examples, the conditional mean and variance got closer and
closer to the unconditional mean and variance as the horizon got longer,
limj→∞Et(xt+j) = E(xt). Similarly, as we look back in time, people had
less and less information about what today would be like, limj→∞Et−j(xt) =
E(xt). These are also properties of stationary time series.

A coin toss has a much stronger property, it’s independent over time.
The next coin flip is completely unpredictable. This means that the con-
ditional mean is the same as the unconditional mean, Et(xt+1) = E(xt+1).
In addition, the conditional variance and the whole conditional distribution
f(xt+1|It) is the same over time and equal to the unconditional distribution
f(xt).

Independence is stronger than stationarity. Price/earnings ratios and
bond yields are stationary (at least I hope so), but not independent. If
today has a high P/E or a high interest rate, tomorrow is also likely to
have large values of these variables. However, over long time periods these
swings even out, so we have really no idea whether P/E or interest rates
will be high or low in, say 2100. Stock returns are much closer to coin flips,
though not exactly so. The AR(1) with ρ = 0.9 is stationary, but it is not
independent over time.

For a lot of reasons, we want always to work with stationary time series.
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This usually requires no more than a clever choice of units. For example,
stock prices are not stationary, since they rise over time. If the Dow is
200, you know you’re looking at the 1920s, if it’s 10,000, you’re looking at
the 1990s, and the two sets of numbers are not comparable. But price /
dividend or price earnings ratios are much more likely to be stationary, and
returns even more so. That’s one good reason why we work with these
transformations of the variables.

More information

I wrote a more comprehensive set of time series notes titled “Time
series for macroeconomics and finance” which you can get off my webpage.
James Hamilton’s book Time Series Analysis is the standard textbook for
this kind of (discrete-time) time series analysis.
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Chapter 4

Maximization

The heart of Finance is saving/investment/portfolio problems. How much
should an investor save vs. consume and which assets should he or she
buy? We solve these problems by maximizing an objective (utility) subject
to the constraint that you only have so much money.

In this way, finance is really just the application of apples and oranges
economics to financial markets. The standard microeconomics problem is,
maximize utility subject to a budget constraint. In finance, using different
letters (ct and ct+1) this becomes the optimal portfolio/investment-saving
problem.

Here I review how to do constrained optimization, using the standard
micro problem as an example.

The consumer wants to maximize utility of two goods, apples X and
oranges Y (or pizza and beer, or whatever example your micro teacher
used) subject to the budget constraint

max
{X,Y }

U(X,Y ) s.t. PXX + PY Y =W

For example, using one popular utility function,

max
{X,Y }

[log(X) + a log(Y )] s.t. PXX + PY Y =W

Solving by substitution

In this simple sort of problem you can get by using the constraint to

33
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substitute out one of the goods:

max
{X,Y }

U

µ
X,

W − PXX

PY

¶
max
{X}

log (X) + a log

µ
W − PXX

PY

¶
You find any maximum by setting the derivative of the objective with

respect to the choice variable to zero:

d

dX
U

µ
X,

W − PXX

PY

¶
= 0

∂U

∂X
− PX

PY

∂U

∂Y
= 0.

In our example,

d

dX

½
log(X) + a log

µ
W − PXX

PY

¶¾
= 0

1

X
− a

PX
PY

PY
W − PXX

= 0

1

X
=

aPX
W − PXX

W − PXX = aXPX

W = (a+ 1)PXX

X =
W

(1 + a)PX

Notice the downward sloping demand curve. The fact that PY does not
enter is a peculiarity of the log utility function; usually demand depends
on PX/PY . Then we find Y from the constraint,

Y =
W − PXX

PY
=

W − PX

³
W

(1+a)PX

´
PY

=
a

(1 + a)

W

PY
.

Solving by Lagrangian

This gets the answer but it clearly is not going to be a pretty way to
attack the problem when we have a lot of goods (stocks) to choose from.
In that case, it’s better to solve the problem by a “Lagrangian.” Here’s
the trick: add (or subtract) λ times the constraint to the problem. Then
differentiate with respect to X, Y and the constraint λ, and solve the
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resulting system of three equations. (The derivative with respect to λ just
restates the constraint.)

max
{X,Y,λ}

U(X,Y )− λ(PXX + PY Y −W )

X :
∂U

∂X
= λPX

Y :
∂U

∂Y
= λPY

λ : PXX + PY Y =W

The first two equations give “marginal rate of substitution equals price
ratio”

∂U/∂X

∂U/∂Y
=

PX
PY

.

In our example,

1

X
= λPX → X =

1

λPX
a

Y
= λPY → Y =

a

λPY
PXX + PY Y = W

Use the X and Y equations in the constraint, and solve for λ

PX

µ
1

λPX

¶
+ PY

µ
a

λPY

¶
= Wµ

1

λ

¶
+
³a
λ

´
= W

λ =
1 + a

W

Now use λ (the “shadow price of the constraint”) to find X and Y

X =
1

λPX
=

W

1 + a

1

PX

Y =
a

λPY
=

aW

1 + a

1

PY

Same answer, but I hope you can see that the method is much prettier,
treats X and Y symmetrically, and that this will be the way to go when
we have many things to choose, as in a portfolios problem
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Chapter 5

Matrix algebra

The only way to keep track of 25 portfolios, 3 factors, 600 months of data
and so forth and stay sane is to organize the data in matrices. This is a
quick refresher of all you need to know about matrices for this course.

A matrix is just a rectangular set of numbers, i.e. a cell range in excel.

A =

⎡⎢⎢⎣
a b c
d e f
g h i
j k l

⎤⎥⎥⎦
A frequent special case is a vector which only has one column,

x =

⎡⎢⎢⎣
a
d
g
j

⎤⎥⎥⎦
We often use small letters for vectors and big letters for matrices.

You add matrices just by adding their elements together

A =

∙
a b
c d

¸
, B =

∙
e f
g h

¸
A+B =

∙
a b
c d

¸
+

∙
e f
g h

¸
=

∙
a+ e b+ f
c+ g d+ h

¸
To add matrices, they must have the same shape.

37
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You can multiply matrices together. The rule is that you take the
columns of the matrix on the right, put them on the rows of the matrix on
the left, multiply the elements and add them up.

A =

∙
a b c
d e f

¸
;B =

⎡⎣ g h
i j
k l

⎤⎦
AB =

∙
a b c
d e f

¸⎡⎣ g h
i j
k l

⎤⎦ = ∙ ag + bi+ ck ah+ bj + cl
dg + ei+ fk dh+ ej + fl

¸
You can only do this if the matrices have the right size — if the number of
columns of the first matrix equals the number of rows of the second matrix.
If not, you can’t multiply them. Matrix multiplication works like regular
multiplication in a lot of ways. For example

(A+B)C = AC +BC

The big difference is that, in general,

AB 6= BA

For example, in the above multiplication you can’t even do BA. Thus, the
order of multiplication matters.

The identity matrix is the matrix equivalent of 1.

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
Note AI = IA = A for any A.

In matlab, you can also do an element by element multiplication,∙
a b
c d

¸
. ∗
∙
e f
g h

¸
=

∙
ae bf
cg dh

¸
This is a different thing than matrix multiplication as defined above. Just
keep track of which one you’re doing. You can also do element by element
division ∙

a b
c d

¸
./

∙
e f
g h

¸
=

∙
a/e b/f
c/g d/h

¸
Another fun thing we often do is transpose a matrix, using the prime ’

notation.

A =

∙
a b
c d

¸
→ A0 =

∙
a c
b d

¸
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A matrix is symmetric if the off diagnoal elements are the same, so the
matrix equals its transpose

A =

⎡⎣ a d e
d b f
e f c

⎤⎦ ; A = A0

The transpose of a vector is a row vector

x =

∙
a
b

¸
→ x0 =

£
a b

¤
It’s good to know the general shape of things. We often multiply a

square matrix by a vector, and this produces another vector,

Ax =

∙
a b
c d

¸ ∙
e
f

¸
=

∙
bf + ae
df + ce

¸
= y

A row vector times a matrix produces another row vector

x0A =
£
e f

¤∙ a b
c d

¸
=
£
cf + ae df + be

¤
= y0

A row vector times a column vector equals a number. This is sometimes
called an inner product,

x0y =
£
a b c

¤⎡⎣ d
e
f

⎤⎦ = [ad+ cf + be]

The other way around, a column vector times a row vector produces a
matrix. This is sometimes called an outer product.

xy0 =

⎡⎣ a
b
c

⎤⎦ £ d e f
¤
=

⎡⎣ ad ae af
bd be bf
cd ce cf

⎤⎦
One of the most fun things to do is called a quadratic form. This also
produces a number. We use it most commonly with a symmetric matrix in
the middle,

x0Ax =
£
e f

¤∙ a b
b d

¸ ∙
e
f

¸
=
£
ae2 + df2 + 2bef

¤
The last thing we do with matrices is invert them. For example, if you

have an equation
Ax = b
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with A a matrix and b, x vectors, it would be nice to solve this as

x = A−1b

The inverse has the property that

AA−1 = A−1A = I

You can’t always invert a matrix. It has to be square, and it has to have
“full rank”; the equivalent of “you can’t divide by zero” for matrices. The
computer will tell you when this is the case. There is a formula for inverse
in the 2x2 case, ∙

a b
c d

¸−1
=

1

ad− bc

∙
d −b
−c a

¸
but you almost never invert matrices by hand. You can see we need ad−bc 6=
0 for this to work.

Examples: when we form a portfolio Rp of an underlying set of assets
R1, R2, , , Rn, with weights w1, w2, ...wNwe might write

Rp = w1R
1 + w2R

2 + ...+ wNR
N =

NX
i=1

wiR
i

We could also write it more compactly with matrices as

w =

⎡⎢⎢⎢⎣
w1
w2
...

wN

⎤⎥⎥⎥⎦ ; R =
⎡⎢⎢⎢⎣

R2

R2

...
RN

⎤⎥⎥⎥⎦ ;Rp = w0R

This is a nice use of inner product. We also represent multiple regressions
this way,

yt = β1x1t + β2x2t + β3x3t + εt = β0xt + εt

We use the outer product for covariance matrices. We keep track of the vari-
ance of two random variables x and y and their covariance in a covariance
matrix, ∙

σ2(x) cov(x, y)
cov(x, y) σ2(y)

¸
If we call x and y elements of a vector z,

z =

∙
x
y

¸
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Then we can think of “variance of z” as

E(zz0) = E

∙
x
y

¸ £
x y

¤
=

∙
E(x2) E(xy)
E(xy) E(y2)

¸
If they have mean zero, this is the covariance matrix. If not, the natural
vector version of the standard formula σ2(z) = E(z2)−E(z)2 works,

cov(z, z0) = E(zz0)−E(z)E(z0)

We use a quadratic form to find the variance of a portfolio given the variance
of the underlying returns. With mean zero R

var(w0R) = E((w0R)(R0w)) = w0E(RR0)w

(w are numbers, R are random so the numbers come out of E). The formula
for the Sharpe ratio in the APT looks like this, as does the central part of
the GRS test, α̂0Σ−1α̂
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Chapter 6

Stocks

6.1 The “fallacy of time-diversification.”

Many people suggest you should hold stocks “for the long run” since their
returns are “more stable over long horizons.” This isn’t true. This is a nice
example that uses the formulas for mean and variance of a sum.

The two period gross return is

R0→2 = R0→1R1→2

so

lnR0→2 = lnR0→1 + lnR1→2

Let’s look at the mean and standard deviation of the two period return,
assuming that mean returns are the same every year and that returns are
independent over time.

E (lnR0→2) = E (lnR0→1) +E (lnR1→2) = 2E (lnR)

σ2 (lnR0→2) = σ2 (lnR0→1) + σ2 (lnR1→2) + cov.. = 2σ2 (lnR)

Look. The ratio of mean return to variance of return is independent of hori-
zon (again, if the mean is the same every year and returns are independent
over time).

Where did the fallacy come from? Let’s look at annualized returns.

Rann
0→2 = (R0→1R1→2)

1
2

43
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lnRann
0→2 =

1

2
(lnR0→1 + lnR1→2)

E lnRann
0→2 =

1

2
(E lnR0→1 +E lnR1→2) = E lnR

σ2 lnRann
0→2 = σ2

∙
1

2
(lnR0→1 + lnR1→2)

¸
=
1

4
2σ2 (lnR) =

1

2
σ2 (lnR) .

The mean of annualized returns is the same as the horizon gets longer, but
the variance of annualized returns goes down as the horizon gets longer.

But who cares if the variance of annualized returns gets smaller? You
care about the total return, which is the annualized return raised to the
power of the horizon. The explosive effect of compounding exactly undoes
the stabilizing effects of longer horizon.

6.2 Mean-variance frontier for N risky assets

Every textbook does the case for two assets, two assets plus risk free rate,
and then the tangency portfolio. What’s the real answer — how do we
compute the MVF for N risky assets? Here we go. The tools are the means
and variances of sums as above, plus matrix manipulations.

6.2.1 Summary

Let
E = Vector of mean returns

V = Variance-covariance matrix

1 =Vector of 1’s

A = E0V−1E; B = E0V−11; C = 10V−11.

Then, for a given mean portfolio return μ = E (Rp), the minimum variance
portfolio has variance

var (Rp) =
Cμ2 − 2Bμ+A

AC −B2

and is formed by portfolio weights

w = V−1
E (Cμ−B) + 1 (A−Bμ)

(AC −B2)
.
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6.2.2 Derivation

The problem is, minimize the variance of a portfolio given a value for the
portfolio mean.

min var (Rp) s.t. E (Rp) = μ

The portfolio return Rp is a combination of N individual asset returns

Rp =
NX
i=1

wiR
i;

NX
i=1

wi = 1

The w’s are portfolio weights; they express what fraction of your wealth
goes into each asset. Thus, they sum to 1. Thus, you choose portfolio
weights to do the minimization.

It’s much easier to do all this with matrix notation. Let

w =

⎡⎢⎢⎢⎣
w1
w2
...

wN

⎤⎥⎥⎥⎦ ; R =

⎡⎢⎢⎢⎣
R1

R2

...
RN

⎤⎥⎥⎥⎦ ; 1 =
⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ .
Then the portfolio return is

Rp = w0R ;

the condition that the weights add up to 1 is

1 = 10w.

The mean of the portfolio return is

E (Rp) = E (w0R) = w0E (R) = w0E.

The last equality just simplifies notation. The vector of mean returns shows
up so much that I’ll call it E instead of carrying E (R) around.

The variance of the portfolio return is

var (Rp) = E
h
(Rp −E (Rp))2

i
= E

h¡
w0R−w0E

¢2i
= E

h
(w0 (R−E))2

i
=

= E
£
w0 (R−E) (R−E)0w

¤
= w0Vw

where
V =E

£
(R−E) (R−E)0

¤
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is the variance-covariance matrix of returns.

Now, let’s restate our problem with this notation. Minimizing the vari-
ance is the same as minimizing 1/2 the variance, so we want to choose
weights to

min
w

1

2
w0Vw s.t. w0E =μ; w01 = 1.

To do a constrained minimization, you form the Lagrangian,

L = 1

2
w0Vw−λ (w0E−μ)− δ (w01−1) .

Then, you take derivatives of the Lagrangian with respect to the choice
variables and the multipliers λ and δ. Taking derivatives of matrices with
respect to vectors works just as you’d think it does, so we have

∂L
∂w

: Vw−λE−δ1 = 0

and the two constraints. We want the weights w, so

w = V−1 (Eλ+1δ)

What about λ and δ? We determine these so that the constraints are
satisfied. Plugging this value of w into the constraint equations, we get

w0E = E0w =μ→ E0V−1 (Eλ+1δ) = μ

w01 = 10w = 1→ 10V−1 (Eλ+1δ) = 1.

We want to solve these two equations in the two unknowns λ, δ. So write
them as

E0V−1Eλ+E0V−11δ = μ

10V−1Eλ+10V−11δ = 1

or ∙
E0V−1E E0V−11
10V−1E 10V−11

¸ ∙
λ
δ

¸
=

∙
μ
1

¸
.

Now we can solve,∙
λ
δ

¸
=

∙
E0V−1E E0V−11
10V−1E 10V−11

¸−1 ∙
μ
1

¸
.

∙
λ
δ

¸
=

µ∙
E0

10

¸
V−1

£
E 1

¤¶−1 ∙ μ
1

¸
.
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Now that we know what the λ and δ multipliers are, we can go back
and find the weights,

w = V−1 (λE+δ1) = V−1
£
E 1

¤ ∙ λ
δ

¸

= V−1
£
E 1

¤µ∙ E0
10

¸
V−1

£
E 1

¤¶−1 ∙ μ
1

¸
Now, use these weights to find the portfolio variance (did you forget?

That’s what we’re after!)

var (Rp) = w0Vw =

£
μ 1

¤µ∙ E0
10

¸
V−1

£
E 1

¤¶−1 ∙ μ
1

¸
.

This isn’t as bad as it seems. To make it look prettier, give names to
the elements of the matrix that got inverted,µ∙

E0

10

¸
V−1

£
E 1

¤¶
=

∙
A B
B C

¸
Then,

var (Rp) =
£
μ 1

¤ ∙ A B
B C

¸−1 ∙
μ
1

¸
=

1

AC −B2

£
μ 1

¤ ∙ C −B
−B A

¸ ∙
μ
1

¸
var (Rp) =

Cμ2 − 2Bμ+A

AC −B2

The variance is a quadratic function of the mean. (We used the notation
μ = E (Rp).) That’s why we draw bow-shaped frontiers all the time.

We can also write out the portfolio weights in this notation,

w = V−1
£
E 1

¤ ∙ E0V−1E E0V−11
10V−1E 10V−11

¸−1 ∙
μ
1

¸

= V−1
£
E 1

¤ ∙ C −B
−B A

¸ ∙
μ
1

¸
/
¡
AC −B2

¢
w = V−1

E (Cμ−B) + 1 (A−Bμ)

(AC −B2)
.
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Chapter 7

Fixed income (bonds)

7.1 Notation

We need to distinguish bonds of varying maturity. I’ll use a superscript
in parentheses—P (3) is the price of a three year zero-coupon bond, etc. All
logs are natural logs–base e.

7.2 Present value

We start by ignoring uncertainty. Then, all future cash flows are known
(no default) and all future interest rates are known. Obviously, we’ll later
put in expectations of things that happen in the future, and patch up the
formulas a bit.

The central trick to all of bond pricing with no uncertainty is to repack-
age the same things in different guises. A set of zero coupon bonds, a set of
coupon bonds, and a current and promised future interest rate are all the
same thing. To derive the price of any of these items in terms of the prices
of any others, you just figure out how to repackage them.

Any bond is a claim to a sequence of cash flows {CF1, CF2, ...CFN}.We
can write its value as

P =
NX
j=1

CFj
R0R1R2...Rj−1

where R0 is the interest rate from 0 to 1, etc.

49
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The issue in using the present value formula is: where do you get interest
rates Rj?

A) If you know what interest rates banks will charge, and the borrowing
and lending rates are equal, then these are the rates to use, by arbitrage.
This only happens in textbooks.

B) More plausibly, you can use the price of zero coupon bonds as quoted
in the Wall Street Journal. They should be

P (N) =
1

R0R1...RN−1
.

Then, we can get rid of the fictitious R’s and write

P =
NX
j=1

P (j)CFj .

You can get to the same formula directly, if you want. View the cash flows
as zero-coupon bonds, and then realize that the bond is just a combination
of the zeros.

C) You can go backwards, and infer zero prices from the prices of coupon
bonds, and then use those zero prices to price other coupon bonds.

7.3 Yield

First, we need to define the yield:

Yield: The yield (to maturity) is defined as that fictional, con-
stant, known, annual, interest rate that justifies the quoted price
of a bond, assuming that the bond does not default.

From this definition, the yield of a zero coupon bond is the number
Y (N) that satisfies

P (N) =
1£

Y (N)
¤N .

Hence

Y (N) =
1£

P (N)
¤ 1
N

; lnY (N) = − 1
N
lnP (N).
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The yield of any stream of cash flows is the number Y that satisfies

P =
NX
j=1

CFj
Y j

.

In general, you have to search for the value Y that solves this equation,
given the cash flows and the price. So long as all cash flows are positive,
this is fairly easy to do.

As you can see, the yield is just a convenient way to quote the price.
In using yields we make no assumptions. We do not assume that actual
interest rates are known or constant; we do not assume the actual bond is
default-free.

7.4 Forward rates

From the prices of zero coupon bonds given above, you can find an implied
future interest rate. From

P (N) =
1

R0R1..RN−1

it follows that

RN =
P (N)

P (N+1)
.

What do these rates mean? These are forward rates

Forward rate: The forward rate of interest is the rate at which
you can contract today to borrow or lend money starting at
period N, to be paid back at period N + 1.

Here’s the neat thing, implicit in the above math. You can synthesize
a forward contract from a spectrum of zero coupon bonds. Here’s how.
Suppose you bought one N period zero and simultaneously sold x N + 1
period zero coupon bonds. Let’s track your cash flow at every date.

Buy N-Period zero Sell x N+1 Period zeros Net cash flow
Today 0: −P (N) +xP (N+1) xP (N+1) − P (N)

Time N: 1 1
Time N+1: -x -x
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Now, choose x so that today’s cash flow is zero:

x =
P (N)

P (N+1)

Look at what you have. You pay or get nothing today, you get $1.00 at
N , and you pay P (N)/P (N+1) at N + 1. You have synthesized a contract
signed today for a loan from N to N + 1–a forward rate! Thus,

FN = Forward rate N → N + 1 =
P (N)

P (N+1)

and of course
lnFN = lnP

(N) − lnP (N+1).

Forward rates are useful when you have to plan today for a project, but
you will want to borrow money a few years in the future when construction
really gets going. It also allows you to put your money where your mouth
is if you think you know where interest rates are going.

7.5 Holding period returns

If you buy an N period bond and then sell it–it has now become an N −1
period bond–you achieve a return of

HPR
(N)
t+1 =

$back

$paid
=

P
(N−1)
t+1

P
(N)
t

or, of course,

lnHPR
(N)
t+1 = lnP

(N−1)
t+1 − lnP (N)t .

We date this return (from t to t+1) as t+1 because that is when you find
out its value. Except for one period bonds, you don’t know for sure what
this return will be. (If this is confusing, take the time to write returns as
HPRt→t+1 and then you’ll never get lost.)

7.6 Yield curve

The yield curve is a plot of yields of zero coupon bonds as a function of their
maturity. What forces determine the prices or yields of bonds of various
maturities?
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7.6.1 Yield curve with no uncertainty

Suppose we know where interest rates, or future yields on one period bonds,
are going. Then, the present value formula is

P
(N)
0 =

µ
1

R0

1

R1
...

1

RN−1

¶
=

Ã
1

Y
(1)
0

1

Y
(1)
1

...
1

Y
(1)
N−1

!

The definition of yield is

P (N) =
1£

Y (N)
¤N .

Substituting,

Y
(N)
0 =

³
Y
(1)
0 Y

(1)
1 Y

(1)
2 ...Y

(1)
N−1

´ 1
N

or, the yield on an N-Period zero is the geometric average of future interest
rates.

As usual logs are prettier,

lnY
(N)
0 =

1

N

³
lnY

(1)
0 + lnY

(1)
1 + lnY

(1)
2 ...+ lnY

(1)
N−1

´
the log yield on an N-Period zero is the arithmetic average of future interest
rates.

The right hand side of the yield curve formula expresses one way of
getting a dollar from now to N periods from now–roll over one-period
bonds. The left hand side expresses another way of getting a dollar from
now to N periods from now–buy a 30 year zero coupon bond. With no
uncertainty, the two must give the same return, by arbitrage.

7.6.2 Yield curve with uncertainty

What if we don’t know where interest rates are going? Well, if traders
are risk-neutral enough, then they will either buy N-period zeros or plan
to roll over one period bonds if either strategy promises to do better on
average. This isn’t as clean as pure arbitrage, but is at least a workable
approximation. And we add a risk premium fudge factor to soak up any
errors. Thus, the actual expression for the yield curve relation is

The N-period yield is the average of expected future one-
period yields, perhaps plus a risk premium.



54 CHAPTER 7. FIXED INCOME (BONDS)

Y
(N)
0 = E0

∙³
Y
(1)
0 Y

(1)
1 Y

(1)
2 ...Y

(1)
N−1

´ 1
N

¸
(+risk premium)

or

lnY
(N)
0 =

1

N
E0

³
lnY

(1)
0 + lnY

(1)
1 + lnY

(1)
2 ...+ lnY

(1)
N−1

´
(+risk premium).

Here “E0” means “conditional expectation as of time 0.”

Unless you say something about the risk premium, either of these equa-
tions is a tautology—a definition of the risk premium. The expectations
hypothesis states that the risk premium isn’t present. It is a good approxi-
mation when the risk premium is small and does not vary much over time.
Often, this is a good approximation. More complex term structure mod-
els are all about quantifying the size and movement over time in the risk
premium.

As a technicality, the level and log statements of the expectations hy-
pothesis (no risk premium) are not equivalent. (ln[E(x)] 6= E[ln(x)].) But
since either is a hypothesis, and they say approximately the same thing, we
won’t make a big deal about the difference between the two statements.

7.6.3 Forward yield curve.

Suppose we knew where interest rates were going. Then, arbitrage requires
that

Forward rate = Future spot rate

F (N) = RN→N+1.

Why? Arbitrage. If the forward rate is lower than the future spot rate,
people will arrange today to borrow at the forward rate, wait around, and
then lend at the spot rate when the time comes, making a certain profit.

Forward rate = future spot rate implies the yield curve. To see this look
at one step ahead:

F (1) = R1→2.

Substituting in the forward rate formula

P (1)

P (2)
= R1→2.
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Using R0→1 = 1/P
(1), and Y (2) = 1/

√
P (2),h

Y (2)
i2
= R0→1R1→2

or
Y (2) = [R0R1]

1
2

our old friend.

This shouldn’t be a surprise. If two ways of getting money from Monday
to Tuesday, Tuesday to Wednesday, Wednesday to Thursday, etc. each have
to be the same–forward rate = future spot rate–it is no surprise that two
ways of getting money from Monday to Thursday have to be the same–the
yield curve.

With uncertainty, we add expectations and a risk premium the same
way

Forward rate = Expected future spot rate (+ risk premium).

This just states that fairly risk neutral traders will take either side of lock
in a loan vs. wait until the expected gain from either strategy is about the
same.

7.6.4 Holding period return yield curve

Consider two ways of getting money from today to tomorrow: Hold an N-
period zero coupon bond for a period, selling it as an N-1 period zero coupon
bond, or hold a one-period zero coupon bond for a period. Again, if our
bond traders are fairly risk-neutral, we expect that the expected holding
period returns from one strategy should be the same as for the other, with
perhaps a small risk premium. If you like equations,

E0

³
HPR

(N)
t+1

´
= E0

³
HPR

(M)
t+1

´
(+ risk premium)

Again, this is the same as yield curve. In the certainty case,

HPR
(2)
1 = HPR

(1)
1

P
(1)
1

P
(2)
0

=
1

P
(1)
th

Y
(2)
0

i2
Y
(1)
1

= Y
(1)
0
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Y
(2)
0 =

h
Y
(1)
0 Y

(1)
1

i 1
2

.

Again, no surprise when you think about it. Getting money from one time
to another in two different ways has to give the same result.

7.7 Duration

Here’s the big picture. We have figured out how to find the value of bonds.
Now we can find out how that value changes if something happens. That
something is interest rates, and duration is the main measure of a bond’s
sensitivity to interest rate changes. Then, we can figure out how to structure
your portfolio so that you are insured or “immunized” against interest rate
changes.

Duration is the sensitivity of prices to yield, or, in equations,

D = −% Change in P

% Change in Y
= −Y

P

dP

dY
= −d lnP

d lnY
.

From the definition, we can easily find the duration of zero-coupon bonds.

P (N) =
1

Y N

−Y
P

dP

dY
=

Y

P
N

1

Y N+1
= N

For zeros, duration = maturity.

For other bonds,

P =
NX
j=1

CFj
Y j

−Y
P

dP

dY
=

Y

P

NX
j=1

j
CFj
Y j+1

=
1

P

NX
j=1

j
CFj
Y j

=
NX
j=1

j
CFj/Y

jPN
j=1CFj/Y

j

duration =
X

cash flows

duration of cash flow× value of cash flow
total value

The duration of any bond = value-weighted average of durations of its in-
dividual cash flows
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The duration of coupon bonds is less than their maturity. As an extreme
example, a perpetuity has duration1

D = − 1
P

∞X
j=1

j
C

Y j
=

Y

Y − 1 .

At a yield of 10%, the infinite maturity perpetuity has an eleven year
duration.

Duration tells you that a coupon bond is “like” a zero-coupon bond of
maturity equal to that duration, where “like” means “has the same interest-
rate sensitivity as.”

Sometimes it’s convenient to quotemodified duration, the percent change
in price for a one percentage point change in yield, rather than a one percent
change in yield. You don’t have to take any more derivatives, since,

Mod. duration ≡ −% ch. Price

ch. Yield
= − 1

P

dP

dY
=
1

Y

µ
−Y
P

dP

dY

¶
=
1

Y
×duration.

7.8 Immunization

Now, how can we structure a portfolio so that it is not sensitive to interest
rate changes? There is always one conceptually easy way,

Dedicated portfolio. For each cash flow of assets or liability, buy or sell a
corresponding zero-coupon bond. Then, no matter what happens to interest

1

D = − 1
P

∞X
j=1

j
C

Y j
= −C

P

∞X
j=1

j
1

Y j
=

Y

Y − 1

For those of you who like to see all the steps, I use the fact that

∞X
j=1
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z
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.

Then, using the fact that
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∞X
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C
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=

C

Y − 1
,
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C

P

1/Y

(1− 1/Y )2
= (Y − 1) Y

(Y − 1)2
=

Y

Y − 1
.
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rates, the cash flow will be covered by the maturing zero-coupon bond. Of
course, since you can synthesize zeros from coupon bonds, you can do the
same thing with artful portfolios of coupon bonds. This is “expensive”–it
requires lots of buying and selling.

Duration-matching. Suppose instead you only change two assets or lia-
bilities, so that 1) the present value of assets = the present value of liabilities
and 2) the duration of assets = the duration of liabilities. Then, your total
position will be insensitive to interest rate changes.



Chapter 8

Options

8.1 Arbitrage, and two applications

Options are priced by arbitrage. Rather than find the fundamental deter-
minants of value, we show how the value of the option can be expressed as
a function of other, observed securities.

A payoff is how much a security is worth at some future date. The
payoff is unknown today, and could take on many values, depending on
how things come out. The price or value is how much it is worth today.

There are two fundamental arbitrage facts we use.

The Law of One Price: If two securities have the same payoff
they must have the same price.

Note “same payoff” here means same payoff no matter what happens.
Not the same expected payoff.

No Arbitrage: If payoff A is always greater than (or equal to)
payoff B then the price of A must be greater than (or equal to)
the price of B.

Again, “greater than” means no matter what happens, not
greater on average, etc. These statements seem perfectly obvi-
ous, but watch what nice and not-so-obvious implications they
have.

59



60 CHAPTER 8. OPTIONS

8.1.1 Put-Call parity

Suppose you hold a call and simultaneously write a put with the same strike
price. The payoff is the same as you would get by just holding the stock and
promising to pay an amount X for sure! (Draw yourself a payoff diagram
to prove it.) If the payoffs are the same, the prices must be the same (Law
of one price). I.e.,

payoff: CT − PT = ST −X

implies

price: C − P = S − PV (X)

or

C − P = S −X/R.

This is the put-call parity formula. The principle of the law of one price
looked trivially obvious, but I bet this instance wasn’t obvious!

This fact is useful for two reasons. 1) It illustrates the fundamental
principle we use to price options before expiration, 2) It shows you how to
find the price of a put given that of a call and vice versa. Thus, we just
have to figure out how to value calls, and use put-call parity to value the
put. (Strictly speaking, this is valued for European options on stocks that
do not pay dividends, but the extensions are pretty easy.)

8.1.2 Arbitrage bounds and early exercise

What does the no-arbitrage principle say directly about the value of a call
before expiration? We can say several things.

1) C ≥ 0. The price of a zero payoff is zero. The call payoff is always
more than zero. Hence the call price must be greater than zero.

2) C ≤ S. The call payoff is always less than that of the stock (for
positive strike price). Hence the call price must be less than the stock
price.

3) C ≥ S − PV (D)− PV (X). The call payoff is

CT = max (ST −X, 0) ≥ ST −X = ST +D −D −X

Taking prices, (the price of ST +D is S) we get the relation.

These relations are usually summarized in a graph,
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Stock Price S S-PV(D)-PV(X)

C = S

Call price must be
in here

Call Price C

This last inequality has a nice implication. If interest rates are not zero,
it does not pay to exercise an option on a stock that pays no dividends before
the expiration date. Why? With no dividends, you have C ≥ S−PV (X) >
S−X. The right hand side is what you get by exercising, the left by selling.
Moral: sell options, don’t exercise them.

These are nice illustrations of the logic behind arbitrage bounds. If you
don’t know the price of something, but you do know the price of something
else whose payoff is always larger or smaller, then you can at least get an
upper or lower bound.

8.2 Binomial option pricing 1: one step ahead.

Let’s find the value of a call option before expiration. Again, we’ll do
European calls on stocks with no dividends, to keep things simple. Since
we know the value of a call option at expiration,

CT = max (ST −X, 0) ,

let’s start by finding the value of the call option one period before expira-
tion.

The stock price right now is S. Suppose the stock can do one of two
things tomorrow, when it expires: it can go up to ST = uS or down to
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ST = dS. (I’ll show you later how to do a more realistic example. As usual,
understand the simple version and the more complex one will be clearer.)
The call can then take on one of two values, CT = Cu = max (uS −X, 0)
or C = Cd = max(dS−X, 0). As usual, denote the value of the stock today
by S and the value of the option (which we don’t know yet) C. I.e., the
trees look like

uS
%

S
&

dS

;

Cu = max (uS −X, 0)
%

C
&

Cd = max (dS −X, 0)

.

We know u, d, S,X and we want to find C.

Consider a portfolio consisting of H shares of stock and B face value
bonds. The payoff of this portfolio is HuS + B if the stock goes up and
HdS + B if the stock goes down. Now, arrange the number of shares and
the number of bonds so that the payoff of the stock + bond portfolio is
exactly the same as the payoff of the call option. This means you need to
choose H and B so that

HuS +B = Cu and HdS +B = Cd

Two equations in two unknowns. Use your favorite method for solving two
equations in two unknowns to check

H =
Cu − Cd

uS − dS
B =

uSCd − dSCu

uS − dS

H is known as the hedge ratio. It’s the number of shares you hold so
that the stock portfolio exactly matches the call option for one period. It
is also the change in the option value per change in the stock price. (As S
changes from dS to uS, the call value changes from HdS to HuS.) If we
make a graph of option value as a function of stock price value, H is the
slope of that line.

We have two portfolios with exactly the same payoff. By the law of one
price they must have exactly the same price. In equations, the price or
value today must satisfy

C = HS +B/R.

To find the call option price C all we have to do is find the right hand side
in terms of primitives. Substituting for H and B,

C =
Cu − Cd

uS − dS
S +

uCd − Cud

u− d
/R
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C =
Cu − Cd

u− d
+

uCd − Cud

u− d
/R

Now, we need to make this formula prettier. Define

p =
R− d

u− d

so

1− p =
u−R

u− d

In terms of p the formula for C simplifies, as follows

C =
Cu

u− d
− Cd

u− d
+

uCd

u− d
/R− Cud

u− d
/R

C =

µ
1

u− d

µ
1− d

R

¶¶
Cu +

µ³ u
R
− 1
´ 1

u− d

¶
Cd

C =
1

R

∙µ
R− d

u− d

¶
Cu +

µ
u−R

u− d

¶
Cd

¸
Thus, we have the Answer:

C =
1

R
[pCu + (1− p)Cd]

where, as a reminder,

Cu = max (uS −X, 0) and Cd = max(dS −X, 0).

There are three really pretty things to see in this formula.

1) The probabilities of the states do not enter! The entire argument
followed from the law of one price; if the option does not follow this relation
to the stock price S, there is a completely risk-free arbitrage opportunity
(hold HS + B and short option or vice versa). Essentially, all we need to
know about whether the stock price will go up or down is already included
in the stock price S. If the + state gets more likely, the stock price rises.

2) Risk aversion, risk premia, aggregate risk factors, etc. do not enter
in the formula. For the same reason: they are already reflected in S. The
rest is arbitrage. This works just like pricing a coupon bond given the price
of zeros.

3) p looks like a probability. It’s between 0 and 1. It’s called a risk-
neutral probability for the following reason. Suppose people were in fact
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risk neutral and the probability that the stock goes up to uS were in fact
p. Then the option price would be its expected discounted value

C =
1

R
E (C tomorrow) =

1

R
[pCu + (1− p)Cd] .

In fact, you can use this logic to derive the option value in the first
place. Start by realizing that you can synthesize the option with a leveraged
stock position–HS + B gives the same payoff as the option. Then, risk
aversion must not matter–the price of the option, given the stock price,
is the same whether everyone is risk averse or not, since only arbitrage is
involved. Now, suppose (counterfactually) that people were risk neutral.
What probabilities would give rise to the current stock price? They must
be

S =
1

R
[puS + (1− p) dS]

solving for p,

p =
R− d

u− d

as before. Again, if people were risk neutral, the option value would be

C =
1

R
[pCu + (1− p)Cd] .

That must be the actual option value, since risk aversion can’t matter to
an arbitrage argument. (This is in fact how much actual option pricing
is done. Find a set of risk-neutral probabilities that explain current stock
prices, and then use those probabilities to value options.)

Don’t confuse risk-neutral probabilities with real probabilities! The real
probabilities do not matter for option pricing. Perhaps more accurately, all
you need to know about them is reflected in today’s stock price. (If you
wanted to try to price an option without knowledge of today’s stock price,
you’d be back to beta, and probabilities, means, risk premia, etc. would all
matter. )

8.3 Binomial option pricing 2: Two steps ahead

Now, let’s try two periods until expiration. Suppose the stock can rise or
decline by u or d each period. Then denote the option prices by Cu Cuu,
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etc. so the stock and option prices follow

u2S
%

uS
% &

S udS
& %

dS
&

d2S

Cuu = max
¡
u2S −X, 0

¢
%

Cu

% &
C Cud = max (udS −X, 0)

& %
Cd

&
Cdd = max

¡
d2S −X, 0

¢
To find the option prices, just work back from the end:

Cu =
1

R
[pCuu + (1− p)Cud]

Cd =
1

R
[pCud + (1− p)Cdd]

C =
1

R
[pCu + (1− p)Cd] .

If you prefer, you can substitute in to reexpress the answer as

C =
1

R2

h
p2Cuu + 2p (1− p)Cud + (1− p)

2
Cdd

i
or

C =
1

R2
£
p2max

¡
u2S −X, 0

¢
+

+2p (1− p)max (udS −X, 0) + (1− p)
2
max

¡
d2S −X, 0

¢i
.

Note:

1) All the things an option price should depend on is there. The stock
price S, the strike price X, the volatility u, d the interest rate R and the
time—number of periods to expiration.

2) This is a perfectly practical, real-world way to find option prices. If
you let u = rise 1/16 and d = decline 1/16, in two periods, you have the
possibilities rise 1/8, stay the same, or decline 1/8.With more periods, you
can allow virtually any amount of stock price movement. This is in fact how
much option pricing is really done, when you want answers more accurate
than the simple Black-Scholes formula given below.
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8.4 To Black-Scholes

Suppose you increase the number of steps in the binomial model, making
each step a smaller size. When you take limits the right way, a beautiful
formula emerges:

Black-Scholes Formula:

C = SN (d1)−Xe−rTN (d2)

where

d1 ≡
ln
¡
S
X

¢
+
³
r + σ2

2

´
T

σ
√
T

; d2 = d1 − σ
√
T

N (x) = area under normal distribution up to x

r = continuously compounded interest rate (e.g. 0.02)

σ = standard deviation of stock returns (e.g., 0.17)

This formula looks mysterious initially, but it is derived exactly as our
binomial formula was. Note a few things.

1) If the option is way in the money, S >> X, N (∞) = 1 so C →
S −Xe−rT .

2) If the option is way out of the money, S << X, N (−∞) = 0 so
C → 0.

3) The option price is again a deterministic function of the stock price,
with r, T, σ,X as parameters. Again, the option is priced by arbitrage.

4) σ is not observable. It is the conditional volatility, what traders think
the stock’s volatility will be. (In the binomial model, we had to take a stand
on u, d, or how much traders thought that the price could go up or down.)
The Black-Scholes formula is often used the way the definition of yield is
used—not to find the correct price of an option, but to find a common basis
on which to quote prices of options with widely differing strike prices and
times to maturity. Thus, the implied volatility is the value of σ that makes a
given option satisfy the Black Scholes formula perfectly. Options are often
quoted by their volatilities, not their actual prices.

5) Intuition. The present value of receiving the stock in the future is S,
today’s value. Thus, the first term looks like the present value of the stock
times the probability that it will end up in the money, i.e. that you’ll get
it. The second term looks a lot like the present value of the strike price you
have to pay for the stock, again times a probability that you’ll get it. These
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aren’t the same, and they aren’t exactly probabilities. They are the risk-
neutral probabilities. Thus, the Black-Scholes formula can be interpreted
as a risk-neutral probability formula, just like the binomial formula.

5) The Hedge Ratio is the slope of the call option price, or the derivative
of the Black-Scholes formula. An interesting fact is that

Hedge ratio =
∂C

∂S
= N (d1)

Note that this slope varies as the stock price varies and as time passes. As
with duration, to truly synthesize an option, you have to use a dynamic
trading strategy in which the portfolio position is adjusted all the time.

The hedge ratio is also useful in another context. If you have to hold a
lot of stock (say, for a client, or because you are underwriting the offering),
the hedge ratios tell you how many options to write to offset the risk of
price changes of the stock.


