Investment and production

• Our objective, eventually, is to have a general equilibrium model with both preferences and production (and maybe frictions or limited market structure) specified. But it makes sense to study preferences and production separately. Walk before you try to run. (See the graph of preferences, technology, and separating prices.)

• Background.

1.

\[p = E(mx) = \sum_s \pi_s u_c(s)x(s) \]

Everywhere, **probability and marginal utility enter together**. There is no way to make any progress on a “real vs. rational” debate other than trying to tie risk premia to macroeconomic fundamentals. (Fama’s “Joint Hypothesis.”)

2. The point of macro models is not to “price the FF25 better than hml or smb.” The point of macro models is to understand why hml and smb are priced.

3. The point of macro models is not to give a better practical risk adjustment for anomaly digestion or mutual fund performance evaluation. It is to connect the factors and risk premia we find in asset markets to mrs and mrt. Are the marginal rates of transformation/substitution in asset markets correctly connected to the real economy? That is the only question.

4. Put yet another way,

\[NA : \exists m > 0 : p = E(mx) \]

Thus, there is some \(m_{t+1} = \beta u'(c_{t+1})/u'(c_t) \) that makes our asset markets perfect. The question, is it Earth or Mars

5. Hopefully, good behavioral finance gives some rejectable model connecting \(\pi_s \) (subjective)−\(\pi_s \) (true) to data, in the same way that expected utility theory connects \(u_c(c_t) = c_{t-1}^{-\gamma} \), say.

6. Explanations, causality? These are just first order conditions. It’s not true that “standard finance thinks consumption is exogenous.” (Or investment). Alas that means it is also not true that “consumption (or investment) explains stock returns.”

• Is there some hope for standard models given recent events? Or is everything frictions, leverage, “institutional finance,” and so forth?

1. Consumption-based models; increasing success using longer horizons, better data, utility functions including habits and recursive:

2. Example: habits.

\[u(c) = \frac{(c - X)^{1-\gamma}}{1-\gamma} \]

\[-\frac{cu''(c)}{u'(c)} = \frac{(-\gamma)c(c - X)^{-\gamma-1}}{(c - X)^{-\gamma}} = \gamma \frac{c}{(c - X)} = \gamma \frac{1}{(1 - X/c)} = \gamma \frac{1}{\frac{c - X}{c}} = \gamma \]

212
This is no longer the risk aversion coefficients – that is more properly defined as $-WV_{W}(W, \cdot)/V_{W}(W, \cdot)$ but you get the idea. The basic prediction of Campbell-Cochrane is that when consumption falls relative to recent consumption, “habit,” risk aversion and expected returns rise; stock p/d falls and expected returns rise. $P/D = f(S), E_{t}(R_{t+1}) = f(S)$, etc.

Rising risk aversion

Surplus consumption (C-X)/C and stocks

4 x D/P and Annualized Following 7-Year Return
3. The basic prediction of the production side: Adjustment costs to investment

\[\frac{I}{K} = f(q) = f \left(\frac{ME}{BE} \right) \]

4. Consumption is standard, popular, well covered elsewhere. Here, I’ll talk about investment.

Theory

- Most basic: Show a graph with \(C_t, C_{t+1} \) production utility and prices.

- Here, I’ll write down the simplest standard preferences, and let’s see how they fit in to asset pricing. Analogously, the consumption problem is, maximize utility in contingent claim markets with an endowment stream \(e_t \)

\[
\max E \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.} \quad E_0 \sum_{t=0}^{\infty} \frac{\Lambda_t}{\Lambda_0} (c_t - e_t) = 0.
\]

The familiar answer is,

\[
\beta \frac{u'(c_t)}{u'(c_0)} = \frac{\Lambda_t}{\Lambda_0} = m_{0,t}.
\]

The contingent claim prices are given, the consumer adjusts until mrs = given prices. So, the question is, what happens if we do exactly the same sort of thing from the producer’s side?

- Theory preview:

\[
\begin{align*}
 y_{t+1} &= \theta_{t+1} f(k_t) \\
 \max_{\{k_t\}} E(m_{t+1}y_{t+1}) - k_t &= \max_{\{k_t\}} E(m_{t+1}\theta_{t+1} f(k_t)) - k_t \\
 \partial / \partial k : 1 &= E(m_{t+1}\theta_{t+1} f'(k_t))
\end{align*}
\]

214
1. Interpretation 1: “price the investment return consistently with the other returns”

\[1 = E(m_{t+1} R^I_{t+1}(k_t)) \]

note

\[R^I_{t+1} = \theta_{t+1} f'(k_t) \]

is the marginal physical return; invest one extra unit of foregone consumption, reap \(\theta_{t+1} f'(k_t) \) units of extra output in each date-state.

2. Interpretation 2: “Invest until marginal q = marginal cost of capital = one” (marginal q = marginal value of one unit of installed capital)

\[mc \text{ of one unit of capital} = \frac{\partial V}{\partial k_t} = \frac{\partial}{\partial k_t} E[m_{t+1} \theta_{t+1} f(k_t)] \]

3. With constant returns to scale,

\[f(k_t) = f_k k_t \]

then we have two special additional results:

(a) Marginal q = average q, so invest until the marginal cost of investment = average q = ME/BE

\[\frac{V(k_t)}{k_t} = \frac{E(m_{t+1} \theta_{t+1} f k_t)}{k_t} = E(m_{t+1} \theta_{t+1}) f_k \]

Note, in this completely linear case, that means 0 or infinite investment; q always equals one. This is why we need some adjustment costs!

(b) Stock return = investment return, ex post.

\[R^\text{stock}_{t+1} = \frac{y_{t+1}}{V(k_t)} = \frac{\theta_{t+1} f_k k_t}{k_t} \]

To a dynamic, serious model. I’ll use the standard production function

\[y_t = f(\theta_t, k_t, l_t) - c(i_t, k_t) \]

\[k_{t+1} = (1 - \delta) k_t + i_t \]

1. \(c(i, k) \) is an adjustment cost. Here, it is lost output – you don’t get much work done while you’re installing a new computer. My (1991) paper took it out of investment which is equivalent but a bit uglier.

2. For examples, I’ll use a quadratic cost function

\[c(i, k) = \eta \left(\frac{i_t}{k_t} \right)^2 \]

There is a proportional cost, whose size depends on the intensity of installation. That has the right scaling properties. It is also homogenous of degree one, which is important below.

\[c_i = \eta \left(\frac{i_t}{k_t} \right) ; c_k = -\eta \frac{1}{2} \left(\frac{i_t}{k_t} \right)^2 \]
3. The central consequence of an adjustment cost is that installed capital is worth more than uninstalled capital. You have to pay the “installation” costs before new investment can become productive. Now stock prices – the value of the ownership claim to installed capital – can differ from the purchase cost of new capital goods. In a one-good model such as this, if there are no adjustment costs, the stock price is always one – the value of one unit of installed capital is just the value of one unit of the good. Models without adjustment costs cannot hope to capture the fact that the relative price of stocks and other goods ever varies.

• Firm objective:

\[
\max E_0 \sum_{t=0}^{\infty} \frac{\Lambda_t}{\Lambda_0} (y_t - w_tl_t - i_t)
\]

\[
\max E_0 \sum_{t=0}^{\infty} \frac{\Lambda_t}{\Lambda_0} [f(k_t, l_t) - c(i_t, k_t) - w_tl_t - i_t]
\]

\[s.t. k_t = (1 - \delta)k_{t-1} + i_{t-1}\]

Here the firm “owns” the capital stock. This is equivalent to usual formulations in which the firm “rents” capital for one period. None of this will make any difference – we’ll end up with the same rules that a planner would use.

• Major result preview:

1. The marginal cost of creating a new unit of installed capital – its’ direct cost plus the marginal adjustment cost = marginal q = marginal change in the present value of profits coming from that investment

\[MC = 1 + c_i(i_t, k_t) = \frac{\partial V}{\partial k}\]

2. The physical investment return \(R^I\) – invest $1 more today, invest less tomorrow and collect extra output tomorrow, leave production, output, capital etc. unchanged for all other dates – should be priced consistently with other assets.

\[1 = E(mR^I)\]

3. If the firm has constant returns to scale, then marginal q = average q, and the investment and stock returns should be equal ex post.

\[\frac{\partial V}{\partial k} = \frac{V}{k}; R^I_t = R^{stock}_{t+1}\]

• First order conditions. This is easy to do by iterating and substituting in the constraint. (You can also do it recursively)

\[
\max E_0 \sum_{t=0}^{\infty} \frac{\Lambda_t}{\Lambda_0} \left[f \left(\sum_{j=1}^{\infty} (1 - \delta)^{j-1} i_{t-j}, l_t \right) - c \left(i_t, \sum_{j=1}^{\infty} (1 - \delta)^{j-1} i_{t-j} \right) - w_tl_t - i_t \right]
\]

216
Central Result 1

\[\frac{\partial}{\partial i_0} : 1 + c_i(0) = E_0 \sum_{t=1}^{\infty} \frac{\Lambda_t}{\Lambda_0} (1 - \delta)^{t-1} [f_k(t) - c_k(t)] \]

(10)

Here \(t \) means \((k_t, i_t)\).

1 + \eta \left(\frac{i_0}{k_0} \right) = E_0 \sum_{t=1}^{\infty} \frac{\Lambda_t}{\Lambda_0} (1 - \delta)^{t-1} [f_k(t) - c_k(t)]

- **Intuition:** The present value of future profits from investing $1 should be $1. To increase capital by $1 without lowering output, you have to put in \(1 + c_i(0) \) units of investment today. This turns in to 1 unit of capital tomorrow, \((1 - \delta)\) units the day after, and so forth. \((1 - \delta)^{t-1}\) units of capital means \((1 - \delta)^{t-1} f_k(t)\) units more output via the production function, and also changes future adjustment costs by \((1 - \delta)^{t-1} c_k(t)\). Thus \((1 - \delta)^{t-1} [f_k(t) - c_k(t)]\) is the increase in profit at \(t \) from the investment at 0.

- **Q theory, marginal Q.**

1. The quantity on the right hand side of the first order condition (10) is marginal \(q \). The firm’s market value at the end of day 0 (after \(y_0 - w_0 l_0 - i_0 \) is paid out to shareholders) is

\[V_0(k_1, \cdot) = E_0 \sum_{t=1}^{\infty} \frac{\Lambda_t}{\Lambda_0} [f(k_t^*, l_t^*) - c(i_t^*, k_t^*) - w_t l_t^* - i_t^*] \]

where * denotes optimal values (I won’t keep using * below) and \(\cdot \) denotes other state variables (not under the firm’s control). \((k_1 \) is known at time 0. This is simpler of course in continuous time.) Marginal \(q \) is defined as how much the value of the firm would rise if it had a bit more capital,

\[\frac{\partial V_0(k_1, \cdot)}{\partial k_1} = E_0 \sum_{t=1}^{\infty} \frac{\Lambda_t}{\Lambda_0} (1 - \delta)^{t-1} [f_k(t) - c_k(t)] \].

Since \(k_1 = (1 - \delta)k_0 + i_0 \), \(\partial V / \partial k_1 = \partial V / \partial i_0 \) which is the derivative we took.

2. The quantity on the left hand side is the extra capital you get from a dollar of investment, holding output \(y_0 \) fixed, which is typically a number less than one.

\[\frac{1}{1 + c_i(i_0, k_0)} = \left. \frac{\partial k_1}{\partial i_0} \right|_{y_0} \]

3. Thus, the first order condition says, invest until the marginal cost of one extra unit of installed capital equals the marginal value – the marginal increase in the value of the firm – from an extra unit of installed capital.

\[1 + \eta \left(\frac{i_0}{k_0} \right) = 1 + c_i(i_0, k_0) = 1 / \left. \frac{\partial k_1}{\partial i_0} \right|_{y_0} = \left. \frac{\partial}{\partial k_1} V_0(k_1, \cdot) \right|_{y_0} \]

If we could measure marginal \(q \), we could solve this equation for \(i_0 \), telling us how much the firm should invest! (More when marginal \(Q \) is higher)
• One-period first order condition and investment return. We can also express the “one-period” first order condition by quasi-first differencing. (As we do to go from price = present value to return)

\[
1 + c_i(0) = E_0 \left[\frac{\Lambda_1}{\Lambda_0} [f_k(1) - c_k(1)] \right] + E_0 (1 - \delta) \frac{\Lambda_1}{\Lambda_0} \sum_{j=1}^{\Lambda_1} (1 - \delta)^{j-1} [f_k(1 + j) - c_k(1 + j)]
\]

\[
1 + c_i(0) = E_0 \left[\frac{\Lambda_1}{\Lambda_0} [f_k(1) - c_k(1)] \right] + E_0 \left[\frac{\Lambda_1}{\Lambda_0} (1 - \delta)(1 + c_i(1)) \right]
\]

\[
1 + c_i(0) = E_0 \left[\frac{\Lambda_1}{\Lambda_0} (1 - \delta)(1 + c_i(1)) + f_k(1) - c_k(1) \right]
\]

\[
1 = E_0 \left[\frac{m_1 (1 - \delta)(1 + c_i(1)) + f_k(1) - c_k(1)}{1 + c_i(0)} \right]
\]

• “Investment return”

\[
R_{t+1}^I = \frac{(1 - \delta) [1 + c_i(t + 1)] + f_k(t + 1) - c_k(t + 1)}{1 + c_i(t)}
\]

\[
R_{t+1}^I (i_t, k_t, i_{t+1}, k_{t+1}, l_{t+1}, \theta_{t+1}) = \frac{(1 - \delta) [1 + c_i(i_{t+1}, k_{t+1})] + f_k(\theta_{t+1}, k_{t+1}, l_{t+1}) - c_k(i_{t+1}, k_{t+1})}{1 + c_i(i_t, k_t)}
\]

1. Intuition: We can form a one period return by lowering investment at \(t + 1 \) just enough so that there is no capital, output, etc. change at \(t + 2 \) and beyond. In short we create a one-period physical rate of return by investing a bit more at \(t \) and then a bit less at \(t + 1 \), transferring resources from \(t \) to \(t+1 \), leaving all other dates unchanged.

2. We measure the “investment return” from watching endogenous variables, via a production function, just as we measure the marginal rate of substitution \(m_{t+1} = \beta (c_{t+1}/c_t)^{-\gamma} \) by watching endogenous variables, via a utility function.

• Central Result 2: The producer first order conditions are

\[
1 = E_0 \left[m_1 R_t^I \right]
\]

The producer first order conditions say “the investment return should be correctly priced like any other asset return.” If investment returns are a good deal, increase investment (or adjust other variables) until that’s no longer true. Equivalently “remove any arbitrage opportunities between investment returns and returns of traded assets.” This is the “first difference” of q theory.

• Q theory, Average Q

1. If the production function, including the adjustment cost function is homogenous of degree one (double all inputs doubles outputs) then marginal q = average q = market/book ratio.

\[
\frac{\partial V(k_1, \cdot)}{\partial k_1} = \frac{V(k_1, \cdot)}{k_1}
\]

218
Major result 4

To price; this statement relates investment growth to price growth (roughly speaking).

If there are no adjustment costs, $q = B/M$ is always equal to one. To have any hope of matching the data, in which the vast majority of stock price variation does not correspond to variation in book value (quantity of capital) we need adjustment costs. The fact that the vast majority of value fluctuation comes form changing prices of the same quantity of stuff should be central to all our thinking. For example, it makes a huge difference that the same quantity of houses now carries a lower price, rather than half the houses in the country just having blown up.

Major result 4

Stock return = investment return, ex-post. When the technology is homogenous of degree one, the stock return should equal the investment return, ex-post. This is really just a first differenced version of q theory. Q theory related investment to price; this statement relates investment growth to price growth (roughly speaking).
1. Algebra:

\[R_{2}^{stock} = \frac{V_1(k_2, \cdot) + [f(1) - c(1) - w_1 l_1 - i_1]}{V_0(k_1)} \]

\[= \frac{(1 + c_i(1)) k_2 + [f_k(1) k_1 + f_i(1) l_1 - c_i(1) i_1 - c_k(1) k_1 - w_1 l_1 - i_1]}{(1 + c_i(0)) k_1} \]

\[= \frac{(1 + c_i(1)) ((1 - \delta) k_1 + i_1) + [f_k(1) k_1 - (1 + c_i(1)) i_1 - c_k(1) k_1]}{(1 + c_i(0)) k_1} \]

\[= \frac{(1 - \delta) [1 + c_i(1)] + f_k(1) - c_k(1)}{1 + c_i(0)} \]

- A functional form.

\[y_t = \theta_t \alpha_k k_t + \alpha l_t - \frac{\eta}{2} \left(\frac{i_t}{k_t} \right) i_t \]

\[c_i = \eta \left(\frac{i_t}{k_t} \right); c_k = -\eta \left(\frac{i_t}{k_t} \right)^2 \]

1. The investment return

\[R_{t+1}^I = \frac{(1 - \delta) [1 + c_i(t + 1)] + f_k(t + 1) - c_k(t + 1)}{1 + c_i(t)} \]

\[= \frac{(1 - \delta) \left[1 + \eta \left(\frac{i_{t+1}}{k_{t+1}} \right) \right] + \theta_t \alpha_k + \frac{\eta}{2} \left(\frac{i_t}{k_t} \right)^2}{1 + \eta \left(\frac{i_t}{k_t} \right)} \]

\[\approx 1 + \theta \alpha_k - \delta + \eta \Delta i_{t+1} \]

2. Intuition. \(1 + \eta i/k \) are the price terms, and \(\theta \alpha \) is the dividend term. If you invest more now, that means prices are high and you don’t get much capital for your investment, lowering the return. If you invest more later, that means prices are high, reducing capital in the future by $1 frees up many dollars of investment so the return is good.

Price terms (P/D, B/M) dominate the variation of stock returns, far more than dividends.

As Q says “investment should be proportional to stock price” this says “investment growth should be proportional to stock return”

3. Q theory

\[1 + \eta \left(\frac{i_0}{k_0} \right) = \frac{V}{k_1} = E_0 \sum_{t=1}^{\Lambda_t} \frac{\Lambda_t}{\Lambda_0} (1 - \delta)^{t-1} [f_k(t) - c_k(t)] \]

\[= E_0 \sum_{t=1}^{\Lambda_t} \frac{\Lambda_t}{\Lambda_0} (1 - \delta)^{t-1} \left[\theta_t \alpha_k + \frac{\eta}{2} \left(\frac{i_t}{k_t} \right)^2 \right] \]

Variation in \(\Lambda \) – discount rates – can be the dominant source of variation
4. If we use the standard functional form,

\[y_t = \theta_t k_t^{\alpha_t} l_t^{1-\alpha_t} - \frac{\eta_t}{2} \left(\frac{i_t}{k_t} \right)^{\alpha_t} \]

\[R^I = \frac{(1 - \delta) \left[1 + \eta_t \left(\frac{i_{t+1}}{k_{t+1}} \right) \right] + \theta_t \alpha_t \left(\frac{k_t}{l_t} \right)^{\alpha_t-1} + \frac{\eta_t}{2} \left(\frac{i_t}{k_t} \right)^2}{1 + \eta_t \left(\frac{i_t}{k_t} \right)} \]

It’s easy enough to do. I was just too lazy to get \(k \) and \(l \) data, since the investment terms completely dominate the series.

Papers

- Paper 1: “Production Based” This paper exploits the \(R^I = R^{stock} \) prediction for the aggregate market.

1. Note: \(Q \) theory does not allow for an error term. \(Q \) theory is an exact relationship that ought to hold in every time period. There is no expectational error here. Should you run investment on \(Q \) or \(Q \) on investment? The source of the error is a specification error, and that’s hard to make any great assumptions about. This is also true of the stock return = investment return prediction. The “production based” paper looks at a lot of ways that stock returns are correlated with investment returns, but does not offer a reason why the correlation is not perfect.

2. The Return implication might be easier to use empirically than the investment-q relation,

 (a) We look at returns throughout finance rather than price vs. present value. Long term present values are hard to calculate

 (b) The Return prediction highlights the adjustment cost and the role of investment. The price or q prediction highlights proper discounting, modeling of \(f_k \), getting taxes and depreciation allowances right, and so forth.

 (c) The return prediction minimizes difficulty in measuring book value. We only need \(k \) for \(i/k \), which I imputed from past \(i \). Conventional q measurement spends a lot of time on book value.

 (d) \(Q \) theory had been discarded in macro in part because investment doesn’t line up well with interest rates. Duh, says a finance person, expected returns vary because risk premia vary, not because interest rates vary. Still, the major divide between finance fact and macro theory is that almost all macro looks at variation in interest rates with small and constant risk premia, while finance understands that risk premia are huge, time varying, and constitute the bulk of the signals sent to investment by the price system.

3. Main results: Though \(R^I = R^s \) with no error is obviously rejected, to what extent is \(R^I \) like \(R^s \) in the ways that count?
(a) Figure 1, timing. You have to deal with stock returns being point to point and investment coming from averages. Given the correlation graphs from Cc simulations, we should be doing a lot more thinking about time aggregation and timing mistakes in any test that involves correlations! Timing differences destroy correlations, and \(\text{cov}(R, m) \) is all about correlation. Another reason to think about long horizons.

(b) I pick parameters of \(R^I \) to match the variance of returns.

(c) Figure 2: Stock and investment returns are highly correlated. (Table II statistics)

(d) Table III. stock return forecasts are the same as investment return forecasts. \(R^I = R^S \) implies \(E(R^I | X) = E(R^* | X) \). This is true individually, and as a test \(E(R^I - R^* | X) = 0 \). Figure 3. (But remember these are \(\beta' X \), so we’re only testing if the \(\beta \) are the same. With a single variable this will always show a great correlation!)

(e) Also notice that \(I/K \) forecasts returns! “Companies invest more when the cost of capital is low” makes abundant sense. (This is often cited as an anomaly, for reasons that escape me)

(f) Figure 4. \(R^I(I/K_{t+1}, I/K_t) \), so if \(R^I = R^* \) let’s project both in \(I/K \). They’re about the same with investment slightly leading. (S shape because these are single regression coefficients.) Investment returns are a function of \(I/K \), but stock returns have the same projection. This makes sense if \(R^* = R^I + \text{error} \), error uncorrelated with investment. Of course that’s not true, if anything the error (specification, measurement) is the other way.

(g) Table V single, Both stock and investment returns forecast GNP growth

(h) One summary point: q theory may not work well in levels but it seems to work pretty well in first differences. A low frequency misspecification can ruin levels but leave first differences to work fairly well.

(i) Where the body is buried: Residential investment is really important here, and not a big part of the corporate sector. Ideally (by theory) this should be the investment in the capital stock whose rate of return we are computing.

4. Some evidence and updated graphs to inspire you. First, let’s look at the market P/D (vw crsp) ratio (I can’t find Market/Book) and some I/K ratios. To form I/K, I took the real nonresidential, and gross real investment series, and then just accumulated capital based on \(\delta = 0.1 \). As you can see there is a suggestive correlation! In particular, the Q theory seems to do very well in the 1990s tech boom, bust and the current troubles. The blips line up well, and there is something to the low frequency boom of the 1960s and 1990s and the low frequency movement in P/D. Perhaps a better Market/Book would have less of a trend in it. But you can also see that if this is going to be a model with an \(R^2 \) of one, it will be easy to reject, or to have other variables like “cash flow” enter a regression of i on q.
Now, let’s look instead at the same data, but this time in “return” form. I graphed the one and two year returns along with the growth \((I_t/K_t)/(I_{t-h}/K_{t-h})\). I standardized both by subtracting the mean and dividing by standard deviation so they would plot together. (I didn’t compute an investment return, because I want to convince you there are robust features of the data at work here not needing a complex calculation.)
Those are much better correlations! You can also see that stock returns lead a bit. That might be timing – investment is a quarterly average – and it also might reflect planning lags, which we should incorporate into the technology.

- Lamont, Table 5. Planned investment for time t, reported at time $t-1$ does a great job of forecasting returns for time t. This is a good way to start thinking about lags in the investment process.

- Lu Whitehed and Zhang

1. Background: Zhang has a number of papers pointing out that anomalies are consistent with q theory. For example, net stock issues forecast low returns in the cross section. Does this mean managers are clever and time overpriced markets? No, says Zhang, Q theory says to issue more and invest when prices are high and the cost of capital (future returns) are low.

2. Zhang tends to try to say “explain” way more than is warranted! A “comparison” with traditional models and “produces smaller errors” doesn’t make that much sense to me – a behavioralist would reply that stocks are disconnected with mrs, and this just shows that irrational prices leak out to investment.

4. 10 unexpected earnings SUE portfolios, 10 B/M portfolios, 10 investment CI portfolios

5. Table 1. Means and alphas (e!) from popular models

6. Table 2. $E(r - rs)$ GMM estimates of mpk and adjustment cost parameter. Formalizing my calibration.

7. Table 3, figure 1. for SUE, Figure 2 for BM Figure 3 for CI. The parameters are the same across firms. Note R^i uses i’s investment, so “predicted” is $E(R^i(I_{t+1}, I_i))$. This is fundamentally a different object for “explaining average returns” than $\beta_i \lambda = cov(R^i_{t+1}, f_{t+1})\lambda_f$.

- Another good example: Tuesday’s finance workshop Andrea L. Eisfeldt and Dimitris Papanikolaou “Organization Capital and the Cross-Section of Expected Returns”
1. Model: fixes sdf process (8)

\[d\pi_t = -r\pi_t dt - \lambda_\theta \theta t dZ_t - \lambda_\pi \pi_t dZ^x_t \]

where \(Z, Z^x \) are productivity shocks. Then firms choose investment \(O_t \) to maximize contingent claim value in (12).

2. The final result (p.22) Expected returns

\[E_t \left[\frac{dV_{firm}}{V_{firm}} + \frac{y_t - w_t}{V_{firm}} dt \right] = \left(r + \lambda_\theta \theta_t + \lambda_x \sigma_x \cdot \frac{O_t}{K} + \frac{O_t}{q + \frac{K}{q}} \right) \]

3. Note they leave out the ex-post return relation coming from (24) \(V_{firm} = \ldots \)

4. Empirical work: sorts on expected returns according to portfolios sorted on \(O \).

5. It doesn’t look like it, but this is exactly the same philosophy

• Zhang

1. Claims from the introduction: Q theory explains

(a) The frequency of equity issuance is procyclical;
(b) investment is negatively related with future stock returns in the cross section, and the magnitude of this correlation is stronger in firms with higher cash flows;
(c) firms conducting seasoned equity offerings underperform nonissuers with similar size and book-to-market in the long run;
(d) the operating performance of issuing firms substantially improves prior to equity offerings, but then deteriorates;
(e) firms distributing cash back to shareholders outperform other firms with similar size and book-to-market, and the outperformance is stronger in value firms than in growth firms
(f) relative to industry peers, firms announcing share re-purchases exhibit superior operating performance, but the performance declines following the announcements.

2. Note marginal \(\neq \) average \(q \), so that you still see these effects with b/m controls.

• Comments

1. Where are the shocks? In a simple q theory analysis here it looks like it’s all shocks to preferences – time varying discount rates, leads firms to invest more or less. Why? We know there are strong time varying expected returns, and little time varying expected cash flow (\(\theta_t \alpha_t \)). In a more sophisticated GE model perhaps news about \(\theta \) leads to changing risk aversion. Still a GE version of this that answers “where are the shocks” would be welcome.
2. Limits of “investment return”. Often there are lags or irreversibilities in the production process, so that the partial derivative “a little more in today, a little more out tomorrow, and no other changes in any date and state” is not physically possible. Of course we can still value margins, “a little more in vs. the present value of the little bit extra we get out at each date/state in the future.” And we can still first-difference if there is more signal vs. noise at higher frequencies.

Better theory

- **Why no m?**

1. Why did “consumption based” models lead to $m_t = \beta (c_{t+1}/c_t)^{-\gamma}$ but here we only have $1 = E(mR^I)$ or $R^I = R_{stock}$? Aren’t production and consumption supposed to be symmetric?

2. Answer: Look at a very simple technology, $y_{t+1} = \theta_{t+1} f(k_t)$. This allows smooth variation across time, but not across states of nature.

Here are the production sets implied by $c_{t+1}(s) = \theta_{t+1}(s)f(k_t)$; $k_t + c_t = e_t$. As you can see, the firm can smoothly transform consumption from c_t to c_{t+1} in each state, but this is “joint production” — by investing one dollar, you get more production in both states. There is no way to transform consumption from state rain to state shine, or to transform consumption from date t to one state only.

3. Compare with expected utility

$$U = u(c_t) + \beta E_t u(c_{t+1})$$

$$= u(c_t) + \pi_1 \beta u(c_{t+1}(s_1)) + \pi_2 \beta u(c_{t+1}(s_2))$$

$$mrs_{1,2} = \frac{\pi_1 u'(c_{t+1}(s_1))}{\pi_2 u'(c_{t+1}(s_2))}$$

The consumer is always “on a margin,” and thinks about trading $c_{t+1}(s_1)$ against $c_{t+1}(s_2)$ when offered contingent claims that allow such transformation.

4. Why not? This is a historical accident. Economists started with production sets $y_t = f(k_t)$ that made sense for nonstochastic production theory and nonstochastic growth theory. Then, when we wanted to add randomness, we just tacked
a productivity shock \(y_t = \theta_t f(k_t) \) on to it. We did not get here from deep microeconomic evidence that production sets allow no substitution across states of nature!

5. How can we construct a model \(m_{t+1} = f(\text{production data}_{t:t+1}) \)? Can producers transform across states, and if so how do we model that?

(a) Connect production shocks to mrs in general equilibrium. Cochrane, JPE, just hypothesizes \(m_{t+1} = 1 - b' R_{t+1}^t \). After all, what matters other than the rates of return of investments? I used an APT argument, that other assets had to just be repackaging of available investment returns, or that marginal utility growth had to reflect consumption of those returns. It’s pretty ad hoc! (This is very similar in spirit to current papers, for example Eisfeldt and Papanikolaou “Organization Capital and the Cross-Section of Expected Returns” who model contingent claims \(\Lambda \) (their \(\pi \)) as a function of productivity shocks)

\[
d\Lambda_t = -r \Lambda_t dt - \lambda_\theta \Lambda_t dZ_t - \lambda_\pi \Lambda_t dZ_t^x.
\]

(b) Construct aggregate production sets by dynamic spanning. If we have multiple technologies, we can span multiple states (Jermann’s paper expands on this idea) by dynamic spanning arguments.

1. If the farmer has one field that does well in rainy weather, and one field that does well in sunny weather, then he can transform output from (rain) to (sun) by investing a bit more in the sunny field and a bit less in the rainy field, not changing his overall investment.

2. This is an ancient idea in finance. Dynamic trading lets you span a large state space with a few assets. For example, following Black and Scholes, dynamic trading in “stock” and “bond” lets you span all contingent claims based on the stock outcome, and to construct a discount factor that prices all those states. Each of “stock” and “bond” has a fixed payout across states of nature.

3. A simple example.

\[
y_1(s) = \theta_1(s)k_1^\alpha; \quad \theta_1 = \begin{bmatrix} 1.5 & 1 \end{bmatrix}
\]
\[
y_2(s) = \theta_2(s)k_2^\alpha; \quad \theta_2 = \begin{bmatrix} 1 & 2 \end{bmatrix}
\]
\[
k_1 + k_2 = k
\]
\[
y(s) = y_1(s) + y_2(s) = \theta_1(s)k_1^\alpha + \theta_2(s)k_2^\alpha = \theta_1(s)k_1^\alpha + \theta_2(s)(k - k_1)^\alpha
\]

Using \(\alpha = 0.8 \), here’s what it looks like
The endpoints are where you put all investment into one or the other field. The line between them is convex, because of decreasing returns to scale. Half in each field is, other things equal, better.

4. Once we see where the firm decides to produce, we can now infer contingent claims prices and hence the discount factor!

\[
y_1(s) = \theta_1(s)k_1^\alpha; \\
y_2(s) = \theta_2(s)k_2^\alpha;
\]

\[
\max \sum \pi(s) \frac{\Lambda_1(s)}{\Lambda_0} \theta_i(s) k_i^\alpha \text{ s.t. } k_1 + k_2 = k
\]

\[
\sum \pi(s) \frac{\Lambda_1(s)}{\Lambda_0} \theta_i(s) k_i^\alpha - 1 = \lambda
\]

Note

\[
\theta_i(s) k_i^\alpha - 1 = R_i^l(s) = \alpha y_i(s)/k_i
\]

so it’s the investment return, and we can measure it with data on output and capital

\[
\begin{bmatrix}
\pi(1) \frac{\Lambda_1(1)}{\Lambda_0} & \pi(2) \frac{\Lambda_1(2)}{\Lambda_0}
\end{bmatrix}
\begin{bmatrix}
R^l_1(1) & R^l_2(1) \\
R^l_1(2) & R^l_2(2)
\end{bmatrix}
= \begin{bmatrix}
\lambda & \lambda
\end{bmatrix}
\]

since we have two returns and two states, we can solve for the discount factor!

\[
\begin{bmatrix}
\pi(1) \frac{\Lambda_1(1)}{\Lambda_0} & \pi(2) \frac{\Lambda_1(2)}{\Lambda_0}
\end{bmatrix}
= \begin{bmatrix}
R^l_1(1) & R^l_2(1) \\
R^l_1(2) & R^l_2(2)
\end{bmatrix}^{-1}
\begin{bmatrix}
\lambda & \lambda
\end{bmatrix}
\]

5. This is realistic! When we aggregate from worker to plant to firm to industry to aggregate production we lose all the capacity to transform across states of nature by changing the composition of investment.

6. Agenda: start from very disaggregated production functions (a continuum) and describe aggregate production functions across states. Include dynamic spanning as well, i.e. varying investment over time.
7. What do aggregate production sets from this idea look like?

(c) **Construct smooth production sets directly.** Can we write aggregate production sets directly that allow marginal rates of transformation? We’re still tied too much to the idea that the underlying production sets must be Leontief. Why must the aggregate set represent such “microfoundations”

1. Idea: choose the shock ε as well, in some set θ

$$\max_{k, \varepsilon_{t+1} \in \theta} E \left[m_{t+1} \varepsilon_{t+1} f(k_t) \right] - k_t = \sum_{s_{t+1}} \pi_s m_s \varepsilon_s f(k) - k$$

2. What’s a good θ? **What is a good convex set of random variables?** I tried

$$\left[E \left(\frac{\varepsilon_{t+1}}{\theta_{t+1}} \right)^{\alpha} \right]^{1/\alpha} = \left[\sum_s \pi_s \left(\frac{\varepsilon_s}{\theta_s} \right)^{\alpha} \right]^{1/\alpha} = 1$$

(note the inspiration from non-expected utility) The idea is, you can choose your productivity shock from a set, increasing the productivity shock in some states, if you reduce it in others. θ represents the “natural” productivity across states.

3. First order conditions:

$$\max_s \sum \pi_s m_s \varepsilon_s f(k) - k - \lambda \sum_s \pi_s \left(\frac{\varepsilon_s}{\theta_s} \right)^{\alpha}$$

$$\frac{\partial}{\partial \varepsilon_s} :$$

$$m_s f(k) = \lambda \frac{\varepsilon_s^{\alpha-1}}{\theta_s^\alpha}$$

$$m_{t+1} = \lambda \frac{y_{t+1}^{\alpha-1}}{\theta_{t+1}^\alpha f(k_t)^\alpha}$$

The first order conditions say to produce more in high contingent claim price states – choose a productivity shock ε that is weighted towards high contingent claim prices.

4. Empirical trouble 1: high m states are low c states, so this says “produce more in recessions.” Well, of course, that’s what price signals tell a firm to do; produce more where output prices are higher. But we observe the opposite. Hence, the “underlying” productivity shock θ must be really low in recessions, firms work hard to overcome that by choosing a ε that is less bad in recessions, but the constraint set is keeping them from doing it.

5. Empirical trouble 2: How do you measure θ independently from ε? Frederico Belo has finally made some progress on this idea.

229
6. Theoretical trouble 1: The basic problem here is that nothing (I can think of) gives risk-neutrality as a natural benchmark. There is nothing that says a firm’s ability to transform goods across states of nature has anything to do with the probability of those states occurring. By writing $E(\varepsilon_{t+1}/\theta_{t+1})^\alpha = 1$, however, I use probabilities in the production function. Another way to put it: why should the “technical” probabilities in the production set $E(\varepsilon_{t+1}/\theta_{t+1})^\alpha = 1$ be related to objective frequencies? We have no theory of rational (or irrational) expectations, subjective probability, etc. as we do for consumers. Back to the rain and shine example: by switching inputs from the “good in rain” field to the “good in shine” field, the farmer may be able to trade one pound of “wheat if it rains” to two pounds of “wheat if it shines.” But this technical ability seemingly has nothing to do with the probability of rain vs. shine. If the climate changes so rain is more likely, the mrt stays constant, no?

7. Theoretical trouble 2: From my spanning examples, we get a sense that producers can trade off output in “production-relevant” states, like rain or shine. But production will surely stay Leontief across states of nature that have nothing to do with production. There is no way to trade output from the state “a coin comes up heads” to “a coin comes up tails.” Though we can always evaluate the consumers mrs across states like that. My set $E(\varepsilon_{t+1}/\theta_{t+1})^\alpha = 1$ surely goes too far by allowing transformation across any states. Fortunately, we have some sense that real markets are developed for “production-relevant” states, whatever that means.