Facts 1: Equity Premium and Risk

<table>
<thead>
<tr>
<th></th>
<th>Stocks Real</th>
<th>Bonds Real</th>
<th>Stock-Bond</th>
<th>GDP</th>
<th>Consumption</th>
<th>NDTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>8.6</td>
<td>1.3</td>
<td>7.4</td>
<td>3.2</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td>S</td>
<td>17.6</td>
<td>2.6</td>
<td>18.1</td>
<td>2.6</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>corr</td>
<td>0.99</td>
<td>-0.03</td>
<td>1.00</td>
<td>0.32</td>
<td>0.39</td>
<td>0.43</td>
</tr>
<tr>
<td>Stocks</td>
<td>Bonds</td>
<td>Stock-Bond</td>
<td>GDP</td>
<td>Consumption</td>
<td>NDeks</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>E:</td>
<td>8.6</td>
<td>1.3</td>
<td>7.4</td>
<td>3.2</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td>G:</td>
<td>17.6</td>
<td>2.6</td>
<td>18.1</td>
<td>2.6</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>corr:</td>
<td>0.99</td>
<td>-0.03</td>
<td>1.00</td>
<td>0.32</td>
<td>0.39</td>
<td>0.43</td>
</tr>
</tbody>
</table>

BIG EQUITY PREMIUM $ECR^{Stock} - R^{Bond}$ = 7%

BIG VOLATILITY OF STOCK RETURNS $\sigma(R^{Stock} - R^{Bond}) = 18.4$

Stocks correlated with economy

Why so risky?
FACTS 2: TIME VARYING RISK PREMIUM

\[R_{t+1} = a + bX_t + \varepsilon_{t+1} \]

\[E_t(R_{t+1}) = a + bX_t \]

\[b \rightarrow 0 \Rightarrow E(R_{t+1}) = \text{const.} \]

\[P_t \] forecasts returns

\[\frac{P_t}{D_t} \]

\[E_t(R_{t+1}) \text{ is big; varies a lot over time} \]

\[\text{Big in recessions} \]

\[P_t \] does not forecast \(D_t \)

\[P_t = E \left[\text{discounted div.} \right] \]
FACTS 3: THE CROSS SECTION OF STOCK RETURNS

\[E(R^i) = \alpha_i + \beta_i E(R^m) \]

\[E(R^i) = \alpha_i + b_i E(r_{mt}) + h_i E(hml) < S_i E(smb) \]

WHY? WHY \(E(R^m) \)? WHY \(E(hml) \)?

"MODEL OF RETURNS" - FACTORS
FACTS SUMMARY

RISK PREMIUM

EXPECTED RETURN

1) $E(R_e) \approx 7\%$ → Buy? Risk?

$\sigma(R_e)$ is big, 18%.

R_e is correlated with ΔS, ΔY → Stocks fall in bad times

2) $E_t(\Delta R_{t+m})$ varies over time $\sigma[E_t(\Delta R_{t+m})] \approx 6\%$

→ Buy! Time varying risk premium?

3) $E_i(R_{t+m})$ varies across assets a lot!

Factor models

Why are "factors priced" premium for Value - Growth?
Theory Overview. Preview

- What’s it worth? Time and risk
- $\frac{dV}{dx}$ Risk Management
- Investment vs Equilibrium
- What does the market look like after investment?

Goal

$P_t = E_t \left(\beta \frac{V(t+1)}{V(t)} X_{t+1} \right)$

$P = E(mX)$

All classic issues of finance.
Theory Overview: \(X \) and \(U \) to \(P = E(M_X) \)

Payoff:
- Stock: \(P_t \rightarrow x_k = P_t + d_t \)
- Bond: \(P_t \rightarrow 1 \)

BET: \(P_t = 0 \)

+1 win

-1 lose

\(X_{1, i} \) (Random)

\(\mathbb{E} \)

Utility: \(X \rightarrow P? \) Value to who?

\(U(C_0, C_1, \ldots) = u(C_0) + \beta E_u [U(C_1, \ldots)] \)

Discount factor \(\rightarrow \) time
\[u(c) = \frac{c^{1-\gamma} - 1}{1-\gamma} \quad u'(c) = c^{-\gamma} \]

\[\gamma = 1 \quad u(c) = \log(c) \]

\[\max \quad u(c_t + \beta E_t u(c_{t+1} + \xi_{t+1})) \]

\[p_t = \mathbb{E}_t \left[\frac{u'(c_{t+h})}{u'(c_t)} \xi_{t+h} \right] = \mathbb{E}_t \left[\beta \left(\frac{c_{t+h}}{c_t} \right) \xi_{t+h} \right] \]

- After investment
 - Your A adjusts
 - Marginal

\[p_t = \mathbb{E}_t (c_{t+1} | X_{t+1}) ? \]

\[p_t = \mathbb{E}_t \left(\frac{1}{R} x_{t+1} \right) ? \]

\[p_t = \mathbb{E}_t (M_{t+1} | X_{t+1}) \]

Random, Stochastic