Spatial Sorting of Skills and Sectors

Jonathan I. Dingel
Chicago Booth

Frontiers in Urban Economics
November 2015
Spatial Sorting of Skills and Sectors

My goal is to tackle three questions:

- Why should we care?
- How should we characterize skills and sectors?
- What tools are available to model builders?
Spatial distributions of skills and sectors

Why should we care about the spatial distributions of skills and sectors?

1. They vary a lot
2. They covary with city characteristics
3. They’re often the basis for identification
4. They should help us understand how cities work
Spatial distributions of skills and sectors

- Public discussion describes US cities in terms of skills and sectors
- Ranking cities by educational attainment is a popular media exercise

The 10 Smartest Cities in America

The 25 Most Educated Cities in America

- Place names are shorthand for sectors
Educational attainment varies a lot across cities

Share of population 25 and older with bachelor’s degree or higher

Data source: American Community Survey, 2005-2009, Series S1501 Plot: CBSAs for maptile
Sectoral composition varies a lot across cities

Employment share of Professional, Scientific, and Technical Services

Data source: County Business Patterns, 2009, NAICS 54
Plot: CBSAs for maptile
They covary with city characteristics

Populations of three educational groups across US metropolitan areas

Data source: 2000 Census of Population microdata via IPUMS-USA
They covary with city characteristics

Employment in three occupations across US metropolitan areas

![Graph showing the relationship between metropolitan log population and log (demeaned) employment share for three occupations: Computer and mathematical, Office and administrative support, and Installation, maintenance and repair.]

Data source: Occupational Employment Statistics 2000
They covary with city characteristics

Skills and sectors are strongly linked to cities’ sizes

(a) Confounds inference: Agglomeration benefits vs compositional effects

(b) Confounds counterfactuals: Making NYC 10x larger raises finance’s share of national employment and GDP
They’re often the basis for identification

Recent JMPs by Notowidigdo, Diamond, and Yagan

▶ Theory: all locations produce a homogeneous good
▶ Empirics: exploit variation in industrial composition to estimate model parameters via shifts in local labor demand
▶ Shift-share instrument: local composition \times national changes

What variation does the instrument exploit?

▶ Skill mix vs industrial mix (e.g. endogenous local SBTC - Beaudry, Doms, Lewis 2010)
▶ City characteristics covarying with skills and sectors highlight exclusion-restriction assumptions
They should help us understand how cities work

- Why do different people and different businesses locate in different places?
- The answers should be crucial to understanding how cities work
- Which elements of the Marshallian trinity imply we’ll find finance and dot-coms in big cities?
- Coagglomeration (Ellison Glaeser Kerr 2010) and heterogeneous agglomeration (Faggio, Silva, Strange 2015) can provide clues
- Theory is laggard: Most models of sectoral composition are polarized, with *specialized* cities that have only one tradable sector and *perfectly diversified* cities that have all the tradable sectors (Helsley and Strange 2014)
Spatial distributions of skills and sectors

How should we characterize skills and sectors?

- Important question for both theory and empirics

A richer depiction of firms and workers improves realism, but...

- more types threaten to make theoretical models intractable
- more types increase the burden of finding instruments

While the trade-offs are specific to the research question under investigation, we can start by asking: Are two skill groups enough?
Spatial equilibrium with two skill groups

A simple starting point

1. Two skill groups, \(s \in \{L, H\} \)

2. Spatial equilibrium: \(U_s(A_c, w_{s,c}, p_c) = U_s(A_{c'}, w_{s,c'}, p_{c'}) \) \(\forall c, c' \forall s \)

3. Homotheticity: \(U_s(A_c, w_{s,c}, p_c) = \frac{w_{s,c}}{A_c p_c} \)

These jointly imply that relative wages are spatially invariant

\[
\frac{w_{H,c}}{A_c p_c} = \frac{w_{H,c'}}{A_{c'} p_{c'}} \quad \text{and} \quad \frac{w_{L,c}}{A_c p_c} = \frac{w_{L,c'}}{A_{c'} p_{c'}}
\]

\[
\Rightarrow \quad \frac{w_{H,c}}{w_{L,c}} = \frac{w_{H,c'}}{w_{L,c'}} \quad \forall c, c'
\]
Spatial equilibrium with two skill groups

A simple starting point

1. Two skill groups, \(s \in \{L, H\} \)

2. Spatial equilibrium: \(U_s(A_c, w_{s,c}, p_c) = U_s(A_{c'}, w_{s,c'}, p_{c'}) \) \(\forall c, c' \) \(\forall s \)

3. Homotheticity: \(U_s(A_c, w_{s,c}, p_c) = \frac{w_{s,c}}{A_c p_c} \)

These jointly imply that relative wages are spatially invariant

\[
\frac{w_{H,c}}{A_c p_c} = \frac{w_{H,c'}}{A_{c'} p_{c'}} \quad \text{and} \quad \frac{w_{L,c}}{A_c p_c} = \frac{w_{L,c'}}{A_{c'} p_{c'}}
\]

\[\Rightarrow \frac{w_{H,c}}{w_{L,c}} = \frac{w_{H,c'}}{w_{L,c'}} \forall c, c'\]
Spatial variation in skill premia

College wage premia are higher in larger cities

Davis and Dingel, “A Spatial Knowledge Economy”, 2013
Spatial variation in skill premia

This pattern is getting stronger over time

Panel A: Fraction College or More by City Size

Panel B: College Log Wage Premium by City Size

Baum-Snow and Pavan, “Inequality and City Size”, 2013
The data reject our simple model; skill premia are higher in larger cities

\[
\frac{w_{H,c}}{w_{L,c}} \neq \frac{w_{H,c'}}{w_{L,c'}}
\]

Three possible routes to take

1. Non-homothetic preferences
2. Upward-sloping local labor supplies
3. More than two skill groups
How to proceed?

The data reject our simple model; skill premia are higher in larger cities

\[
\frac{w_{H,c}}{w_{L,c}} \neq \frac{w_{H,c'}}{w_{L,c'}}
\]

Three possible routes to take

1. Non-homothetic preferences (Black, Kolesnikova, Taylor 2009)
2. Upward-sloping local labor supplies (Topel, Moretti, Diamond)
3. More than two skill groups (My focus today)
How to proceed?

The data reject our simple model; skill premia are higher in larger cities

\[
\frac{w_{H,c}}{w_{L,c}} \neq \frac{w_{H,c'}}{w_{L,c'}}
\]

Three possible routes to take

1. Non-homothetic preferences (Black, Kolesnikova, Taylor 2009)
 ⇒ Do more skilled people find big cities less attractive for consumption? (Albouy, Ehrlich, Liu 2015, Handbury 2012)

2. Upward-sloping local labor supplies (Topel, Moretti, Diamond)

3. More than two skill groups (My focus today)
How to proceed?

The data reject our simple model; skill premia are higher in larger cities

\[
\frac{w_{H,c}}{w_{L,c}} \neq \frac{w_{H,c'}}{w_{L,c'}}
\]

Three possible routes to take

1. Non-homothetic preferences (Black, Kolesnikova, Taylor 2009)
 \(\Rightarrow\) Do more skilled people find big cities less attractive for consumption? (Albouy, Ehrlich, Liu 2015, Handbury 2012)

2. Upward-sloping local labor supplies (Topel, Moretti, Diamond)
 \(\Rightarrow\) Relative prices and quantities imply higher relative demand for skilled in larger cities

3. More than two skill groups (My focus today)
How to proceed?

The data reject our simple model; skill premia are higher in larger cities

\[
\frac{w_{H,c}}{w_{L,c}} \neq \frac{w_{H,c'}}{w_{L,c'}}
\]

Three possible routes to take

1. Non-homothetic preferences (Black, Kolesnikova, Taylor 2009)
 ⇒ Do more skilled people find big cities less attractive for consumption? (Albouy, Ehrlich, Liu 2015, Handbury 2012)

2. Upward-sloping local labor supplies (Topel, Moretti, Diamond)
 ⇒ Relative prices and quantities imply higher relative demand for skilled in larger cities

3. More than two skill groups (My focus today)

Both 2 and 3 push us towards thinking about the complementarity between agglomeration and skills
A continuum of skills

Recent research works with a continuum of skills

- High-dimensional: Infinite types of individuals
- One-dimensional: Skills are ordered

A few reasons to take this route

1. Dichotomous results depend on dichotomous definitions
2. Broad categories miss important variation
3. Continuum case can be quite tractable
Two types in theory and practice

Two-type models can be simple – but what about two-type empirics?

▶ Omit types: Our plot of college wage premia was bachelor’s degrees vs HS diplomas – use only 45% of population to test price prediction

▶ Convert quantities to “equivalents”: “one person with some college is equivalent to a total of 0.69 of a high school graduate and 0.29 of a college graduate” (Katz & Murphy 1992, p.68)

Results may be sensitive to dichotomous definitions

▶ Baum-Snow, Freedman, Pavan (2015): “Diamond’s result does not hold for CBSAs if those with some college education are included in the skilled group.”
Two types in theory and practice

Two-type models can be simple – but what about two-type empirics?

- Omit types: Our plot of college wage premia was bachelor’s degrees vs HS diplomas – use only 45% of population to test price prediction
- Convert quantities to “equivalents”: “one person with some college is equivalent to a total of 0.69 of a high school graduate and 0.29 of a college graduate” (Katz & Murphy 1992, p.68)

Results may be sensitive to dichotomous definitions

- Baum-Snow, Freedman, Pavan (2015): “Diamond’s result does not hold for CBSAs if those with some college education are included in the skilled group.”
Dichotomous approach misses relevant variation

In labor economics, the canonical two-skill model “is largely silent on a number of central empirical developments of the last three decades”, such as wage polarization and job polarization (Acemoglu and Autor 2011)

There is systematic variation across cities in terms of finer observable categories: population elasticities for high school graduates (.925), associate’s degree (0.997), bachelor’s degree (1.087), and professional degree (1.113) (Davis and Dingel 2015)
Do broad categories miss important variation?

Contrasting views

▶ “Workers in cities with a well-educated labor force are likely to have unobserved characteristics that make them more productive than workers with the same level of schooling in cities with a less-educated labor force. For example, a lawyer in New York is likely to be different from a lawyer in El Paso, TX.” (Moretti 2004, p.2246)
▶ “Within broad occupation or education groups, there appears to be little sorting on ability” (de la Roca, Ottaviano, Puga 2014)

Data sources for “no sorting” evidence

▶ NLSY79: Longitudinal study of about 11,000 US individuals
Do broad categories miss important variation?

National Longitudinal Survey of Youth 1979

- Bacolod, Blum, Strange (2009): “The mean AFQT scores do not vary much across [four] city sizes” within occupational categories
- BBS observe only one sales person in MSAs with 0.5m – 1.0m residents (10th and 90th percentiles of AFQT are equal)

Baum-Snow & Pavan (2012): Structural estimation of finite-mixture model implies “sorting on unobserved ability within education group... contribute little to observed city size wage premia.”

- BSP use NLSY79 data on 1754 white men; 583 have bachelor’s degree or more; college wage premia don’t rise with city size

Spanish tax data (de la Roca and Puga 2015)

- 150,375 workers and 37,443 migrations
- Identification of sorting relies on random migration conditional on observables
- Little sorting within five educational categories
Bringing more data to bear on sorting

- Baccalaureate and Beyond tracks a cohort graduating from four-year colleges in 1993
- In 2003, look at 2300 white individuals who obtained no further education after bachelor’s degree and now live in a PMSA
- Look at variation in SAT scores across cities – all variation is within the finest age-race-education cell in typical public data sets
- Mean SAT score in metros with more than 3.25m residents is 40 points higher than metros with fewer than 0.57m residents
Sorting within observable demographic cells

- Mean SAT score in metros with more than 3.25m residents is 40 points higher than metros with fewer than 0.57m residents
- Full distribution suggests stochastic dominance
The continuum case

Why work with a continuum?

▶ Evidence for sorting on characteristics that are typically not observed
▶ Need at least five types to capture sorting on observables in the sense of de la Roca and Puga (2015)
▶ Modeling a finite, particular number of types is potentially painful

Continuum case can be quite tractable

▶ These papers rely on tools from the assignment literature
▶ Assignments of individuals/firms to cities, with endogenous city characteristics determined in equilibrium
▶ Davis and Dingel (2015) speak to both skills and sectors
Assignment models

Many markets concern assignment problems

▶ Who marries whom? (Becker)
▶ Which worker performs which job? (Roy)
▶ Which country makes which goods? (Ricardo)

If relevant objects are well ordered, we can use tools from mathematics of complementarity to characterize equilibrium prices and quantities

▶ Supermodularity (Topkis 1998)
▶ Log-supermodularity (Athey 2002)

Basis for today’s introduction

▶ Sattinger - “Assignment Models of the Distribution of Earnings”
▶ Costinot & Vogel - “Beyond Ricardo: Assignment Models in International Trade”
▶ Davis & Dingel - “The Comparative Advantage of Cities”
Differentials rents model

In the spirit of Ricardo’s analysis of rent, start with land and labor:

- A plot of land has fertility $\gamma \in \mathbb{R}$
- A farmer has skill $\omega \in \mathbb{R}$
- Profits are $\pi(\gamma, \omega) = p \cdot y(\gamma, \omega) - r(\gamma)$

Which farmer will use which plot of land?

- Farmers optimize: $\gamma^*(\omega) \equiv \arg\max_{\gamma} \pi(\gamma, \omega)$
- Equilibrium prices $r(\gamma)$ must support the equilibrium assignment of farmers to plots
Supermodularity

Definition (Supermodularity)

A function \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is supermodular if \(\forall x, x' \in \mathbb{R}^n \):

\[
g(\max(x, x')) + g(\min(x, x')) \geq g(x) + g(x')
\]

where max and min are component-wise operators.

- Supermodularity means the arguments of \(g(\cdot) \) are complements
- \(g(x) \) is SM in \((x_i, x_j) \) if \(g(x_i, x_j; x_{-i, -j}) \) is SM
- \(g(x) \) is SM \(\iff \) \(g(x) \) is SM in \((x_i, x_j) \) \(\forall i, j \)
- If \(g \) is \(C^2 \), \(\frac{\partial^2 g}{\partial x_i \partial x_j} \geq 0 \) \(\iff \) \(g(x) \) is SM in \((x_i, x_j) \)
Supermodularity implies PAM

Positive assortative matching:

- If \(g(x, t) \) is supermodular in \((x, t)\), then \(x^*(t) \equiv \arg \max_{x \in X} g(x, t) \) is increasing in \(t \)
- If \(y(\gamma, \omega) \) is strictly supermodular (fertility and skill are complements), then \(\gamma^*(\omega) \) is increasing
- More skilled farmers are assigned to more fertile land

Why? Suppose not:

- Suppose \(\exists \omega > \omega', \gamma > \gamma' \) where \(\gamma' \in \gamma^*(\omega), \gamma \in \gamma^*(\omega') \)
- \(\gamma' \in \gamma^*(\omega) \Rightarrow p \cdot y(\gamma', \omega) - r(\gamma') \geq p \cdot y(\gamma, \omega) - r(\gamma) \ \forall \gamma \)
- \(\gamma \in \gamma^*(\omega') \Rightarrow p \cdot y(\gamma, \omega') - r(\gamma) \geq p \cdot y(\gamma', \omega') - r(\gamma') \ \forall \gamma' \)
- Summing: \(p \cdot (y(\gamma', \omega) + y(\gamma, \omega')) \geq p \cdot (y(\gamma, \omega) + y(\gamma', \omega')) \)
- Would contradict strict supermodularity of \(y(\cdot) \)
Ricardian trade model

Costinot and Vogel (2015) survey Ricardo-Roy models

- **Ricardo:** Linear production functions
- **Roy:** Multiple factors of production (ω)

Output in sector σ in country c is

$$Q(\sigma, c) = \int_{\Omega} A(\omega, \sigma, c)L(\omega, \sigma, c)d\omega$$

Ricardo 1817: England $= c > c' = $ Portugal and cloth $= \sigma > \sigma' = $ wine

$$A(\sigma, c)/A(\sigma', c) \geq A(\sigma, c')/A(\sigma', c')$$
Definition (Log-supermodularity)
A function $g : \mathbb{R}^n \rightarrow \mathbb{R}^+$ is log-supermodular if $\forall x, x' \in \mathbb{R}^n$

$$g \left(\max (x, x') \right) \cdot g \left(\min (x, x') \right) \geq g(x) \cdot g(x')$$

where \max and \min are component-wise operators.

Example: $A : \Sigma \times C \rightarrow \mathbb{R}^+$, where $\Sigma \subseteq \mathbb{R}$ and $C \subseteq \mathbb{R}$, with $\sigma > \sigma'$ and $c > c'$

$$A(\sigma, c)A(\sigma', c') \geq A(\sigma', c)A(\sigma, c')$$

$g(x)$ is LSM in (x_i, x_j) if $g(x_i, x_j; x_{-i}, x_{-j})$ is LSM

$g(x)$ is LSM \iff $g(x)$ is LSM in $(x_i, x_j) \forall i, j$

$g > 0$ and g is $C^2 \Rightarrow \frac{\partial^2 \ln g}{\partial x_i \partial x_j} \geq 0 \iff g(x)$ is LSM in (x_i, x_j)
Log-supermodularity (2/2)

Three handy properties:

1. If $g, h : \mathbb{R}^n \rightarrow \mathbb{R}^+$ are log-supermodular, then gh is log-supermodular.

2. If $g : \mathbb{R}^n \rightarrow \mathbb{R}^+$ is log-supermodular, then $G(x_{-i}) \equiv \int g(x_i, x_{-i}) dx_i$ is log-supermodular.

3. If $g : \mathbb{R}^n \rightarrow \mathbb{R}^+$ is log-supermodular, then $x_i^*(x_{-i}) \equiv \arg \max_{x_i \in \mathbb{R}} g(x_i, x_{-i})$ is increasing in x_{-i}.
Assignments with factor endowments (Costinot 2009)

Primitives:

▶ Technologies $A(\omega, \sigma, c) = A(\omega, \sigma) \ \forall c$
▶ Endowments $L(\omega, \gamma_{L,c})$

Profit maximization by firms:

$$p(\sigma) \leq \min_{\omega \in \Omega} \{w(\omega, c)/A(\omega, \sigma)\}$$

$$\Omega(\sigma, c) \equiv \{\omega \in \Omega : L(\omega, \sigma, c) > 0\} \subseteq \arg \min_{\omega \in \Omega} \{w(\omega, c)/A(\omega, \sigma)\}$$

$A(\omega, \sigma)$ is strictly log-supermodular in (ω, σ) \Rightarrow

▶ $\Omega(\sigma, c)$ is increasing in σ by property 3 of LSM
▶ High-ω factors are employed in high-σ activities

Equilibrium:

▶ FPE $w(\omega, c) = w(\omega)$
▶ Continuum $\Rightarrow \Sigma(\omega, c) = \Sigma(\omega)$ singleton
Output quantities (Costinot 2009)

Labor market clearing:

\[\int \Sigma L(\omega, \sigma, c) d\sigma = L(\omega, \gamma_{L,c}) \quad \forall \omega, c \]

\(L(\omega, \gamma_{L,c}) \) is strictly log-supermodular: High-\(\gamma_{L,c} \) locations are relatively abundant in high-\(\omega \) factors

\[Q(\sigma, c) = \int_{\Omega} A(\omega, \sigma) L(\omega, \sigma, c) d\omega \]

\[= \int_{\Omega(\sigma)} A(\omega, \sigma) L(\omega, \gamma_{L,c}) d\omega \quad \text{by } \Sigma(\omega, c) \text{ singleton} \]

Rybczynski: \(A(\omega, \sigma) \) and \(L(\omega, \gamma_{L,c}) \) SLSM \(\Rightarrow Q(\sigma, \gamma_{L,c}) \) SLSM by properties 1 and 2 of LSM
Comparative Advantage of Cities: Theory

- Davis and Dingel (2015) describe comparative advantage of cities as jointly governed by individuals’ comparative advantage and locational choices.
- Cities endogenously differ in TFP due to agglomeration.
- More skilled individuals are more willing to pay for more attractive locations.
- **Larger cities are skill-abundant** in equilibrium.
- By individuals’ comparative advantage, **larger cities specialize in skill-intensive activities**.
- Under a further condition, **larger cities are larger in all activities**.
Comparative Advantage of Cities: Empirics (1/2)

- Use US data on skills and sectors
- Characterize the comparative advantage of cities with two tests
- **Elasticity test** of variation in relative population/employment
 - Compare elasticities of different skills, sectors
 - Steeper slope in log-log plot is higher elasticity
 - Elasticities may be **positive for all sectors**
Comparative Advantage of Cities: Empirics (2/2)

Pairwise comparison test (LSM)

- The function $f(\omega, c)$ is log-supermodular if

\[
c > c', \omega > \omega' \implies f(\omega, c)f(\omega', c') \geq f(\omega', c)f(\omega, c')
\]

- Our theory says skill distribution $f(\omega, c)$ and sectoral employment distribution $f(\sigma, c)$ are log-supermodular

- For example, population of skill ω in city c is $f(\omega, c)$. Check whether, for $c > c', \omega > \omega'$,

\[
\frac{f(\omega, c)}{f(\omega', c)} \geq \frac{f(\omega, c')}{f(\omega', c')}
\]

Are larger cities larger in all sectors?

- Check if $c > c' \implies f(\sigma, c) \geq f(\sigma, c')$
Theory
Model components

Producers

- Skills: Continuum of skills indexed by ω (educational attainment)
- Sectors: Continuum of sectors σ (occupations, industries)
- Goods: Freely traded intermediates assembled into final good
- All markets are perfectly competitive

Places

- Cities are *ex ante* identical
- Locations within cities vary in their desirability
- TFP depends on agglomeration of “scale and skills”

\[
A(c) = J \left(L, \int_{\omega \in \Omega} j(\omega)f(\omega, c) d\omega \right)
\]
Individual optimization

Perfectly mobile individuals simultaneously choose

- A sector σ of employment
- A city with total factor productivity $A(c)$
- A location τ (distance from ideal) within city c

The productivity of an individual of skill ω is

$$q(c, \tau, \sigma; \omega) = A(c)T(\tau)H(\omega, \sigma)$$

Utility is consumption of the numeraire final good, which is income minus locational cost:

$$U(c, \tau, \sigma; \omega) = q(c, \tau, \sigma; \omega)p(\sigma) - r(c, \tau)$$

$$= A(c)T(\tau)H(\omega, \sigma)p(\sigma) - r(c, \tau)$$
Sectoral choice

- Individuals’ choices of locations and sectors are separable:

 \[
 \arg \max_{\sigma} A(c) T(\tau) H(\omega, \sigma) p(\sigma) - r(c, \tau) = \arg \max_{\sigma} H(\omega, \sigma) p(\sigma)
 \]

 - \(H(\omega, \sigma)\) is log-supermodular in \(\omega, \sigma\) and strictly increasing in \(\omega\)
 - Comparative advantage assigns high-\(\omega\) individuals to high-\(\sigma\) sectors
 - Absolute advantage makes more skilled have higher incomes

 \[
 G(\omega) = \max_{\sigma} H(\omega, \sigma) p(\sigma)
 \]
 \(G(\omega)\) is increasing
Locational choice

- A location’s attractiveness \(\gamma = A(c) T(\tau) \) depends on \(c \) and \(\tau \)
- \(T'(\tau) < 0 \) may be interpreted as commuting to CBD, proximity to productive opportunities, or consumption value
- More skilled are more willing to pay for more attractive locations
- Equally attractive locations have same rental price and skill type
- Location in higher-TFP city is farther from ideal desirability

\[
\gamma = A(c) T(\tau) = A(c') T(\tau')
\]

\(A(c) > A(c') \Rightarrow \tau > \tau' \)

- Locational hierarchy: A smaller city’s locations are a subset of larger city’s in terms of attractiveness: \(A(c) T(0) > A(c') T(0) \)
Equilibrium distributions

- Skill and sectoral distributions reflect distribution of locational attractiveness: Higher-γ locations occupied by higher-ω individuals who work in higher-σ sectors
- Locational hierarchy \Rightarrow hierarchy of skills and sectors
- The distributions $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular if and only if the supply of locations with attractiveness γ in city c, $s(\gamma, c)$, is log-supermodular

$$s(\gamma, c) = \begin{cases} \frac{1}{A(c)} V \left(\frac{\gamma}{A(c)} \right) & \text{if } \gamma \leq A(c) T(0) \\ 0 & \text{otherwise} \end{cases}$$

where $V(z) \equiv -\frac{\partial}{\partial z} S(T^{-1}(z))$ is the supply of locations with innate desirability τ such that $T(\tau) = z$
When is $s(\gamma, c)$ log-supermodular?

Proposition (Locational attractiveness distribution)

The supply of locations of attractiveness γ in city c, $s(\gamma, c)$, is log-supermodular if and only if the supply of locations with innate desirability $T^{-1}(z)$ within each city, $V(z)$, has a decreasing elasticity.

- Links each city’s exogeneous distribution of locations, $V(z)$, to endogenous equilibrium locational supplies $s(\gamma, c)$
- Informally, ranking relative supplies is ranking elasticities of $V(z)$

$$s(\gamma, c) \propto V \left(\frac{\gamma}{A(c)} \right) \Rightarrow \frac{\partial \ln s(\gamma, c)}{\partial \ln \gamma} = \frac{\partial \ln V \left(\frac{\gamma}{A(c)} \right)}{\partial \ln z}$$

- Satisfied by the canonical von Thünen/monocentric geography
Corollary (Skill and employment distributions)

If \(V(z) \) has a decreasing elasticity, then \(f(\omega, c) \) and \(f(\sigma, c) \) are log-supermodular.

- Larger cities are skill-abundant in equilibrium (satisfies Assumption 2 in Costinot 2009)
- Locational productivity differences are Hicks-neutral in equilibrium (satisfies Definition 4 in Costinot 2009)
- \(H(\omega, \sigma) \) is log-supermodular (Assumption 3 in Costinot 2009)

Corollary (Output and revenue distributions)

If \(V(z) \) has a decreasing elasticity, then sectoral output \(Q(\sigma, c) \) and revenue \(R(\sigma, c) \equiv p(\sigma)Q(\sigma, c) \) are log-supermodular.
The Comparative Advantage of Cities

Corollary (Skill and employment distributions)

If $V(z)$ has a decreasing elasticity, then $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular.

- Larger cities are skill-abundant in equilibrium (satisfies Assumption 2 in Costinot 2009)
- Locational productivity differences are Hicks-neutral in equilibrium (satisfies Definition 4 in Costinot 2009)
- $H(\omega, \sigma)$ is log-supermodular (Assumption 3 in Costinot 2009)

Corollary (Output and revenue distributions)

If $V(z)$ has a decreasing elasticity, then sectoral output $Q(\sigma, c)$ and revenue $R(\sigma, c) \equiv p(\sigma)Q(\sigma, c)$ are log-supermodular.
When are bigger cities bigger in everything?

We identify a sufficient condition under which a larger city has a larger supply of locations of a given attractiveness

Proposition

For any $A(c) > A(c')$, if $V(z)$ has a decreasing elasticity that is less than -1 at $z = \frac{\gamma}{A(c)}$, $s(\gamma, c) \geq s(\gamma, c')$.

Now apply this result to the least-attractive locations, so larger cities are larger in all skills and sectors

Corollary

If $V(z)$ has a decreasing elasticity that is less than -1 at $z = \frac{K^{-1}(\omega)}{A(c)} = \frac{\gamma}{A(c)}$, $A(c) > A(c')$ implies $f(\omega, c) \geq f(\omega, c')$ and $f(M(\omega), c) \geq f(M(\omega), c')$ $\forall \omega \in \Omega$.
Empirical approach and data description
Empirical tests

Our theory says $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular.

Two tests to describe skill and sectoral employment distributions:

- **Elasticities test:**
 - Compare population elasticities estimated via linear regression
 - More skilled types should have higher population elasticities
 - More skill-intensive sectors should have higher population elasticities

- **Pairwise comparisons test:**
 - Compare any two cities and any two skills/sectors
 - Relative population of more skilled should be higher in larger city: $c > c', \omega > \omega' \Rightarrow \frac{f(\omega, c)}{f(\omega', c)} \geq \frac{f(\omega, c')}{f(\omega', c')}$
 - Relative employment of more skill-intensive sector should be higher in larger city: $c > c', \sigma > \sigma' \Rightarrow \frac{f(\sigma, c)}{f(\sigma', c)} \geq \frac{f(\sigma, c')}{f(\sigma', c')}$
 - “Bin” together cities ordered by size and compare bins similarly
Proxy skills by educational attainment, assuming $f(\text{edu}, \omega, c)$ is log-supermodular in edu and ω (Costinot and Vogel 2010)

Following Acemoglu and Autor (2011), we use a minimum of three skill groups.

<table>
<thead>
<tr>
<th>Skill (3 groups)</th>
<th>Population share</th>
<th>Share US-born</th>
<th>Skill (9 groups)</th>
<th>Population share</th>
<th>Share US-born</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school or less</td>
<td>.37</td>
<td>.78</td>
<td>Less than high school</td>
<td>.04</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High school dropout</td>
<td>.08</td>
<td>.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High school graduate</td>
<td>.25</td>
<td>.88</td>
</tr>
<tr>
<td>Some college</td>
<td>.31</td>
<td>.89</td>
<td>College dropout</td>
<td>.23</td>
<td>.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Associate’s degree</td>
<td>.08</td>
<td>.87</td>
</tr>
<tr>
<td>Bachelor’s or more</td>
<td>.32</td>
<td>.85</td>
<td>Bachelor’s degree</td>
<td>.20</td>
<td>.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Master’s degree</td>
<td>.08</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Professional degree</td>
<td>.03</td>
<td>.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Doctorate</td>
<td>.01</td>
<td>.72</td>
</tr>
</tbody>
</table>

Notes: Sample is individuals 25 and older in the labor force residing in 270 metropolitan areas. Data source: 2000 Census of Population microdata via IPUMS-USA
Data: Sectors

- **19 industrial categories** (2-digit NAICS, 2000 County Business Patterns)
- **22 occupations** (2-digit SOC, 2000 BLS Occupational Employment Statistics)
- Infer sectors’ skill intensities from average years of schooling of workers employed in them

<table>
<thead>
<tr>
<th>SOC</th>
<th>Occupational category</th>
<th>Skill intensity</th>
<th>NAICS</th>
<th>Industry</th>
<th>Skill intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Farming, Fishing & Forestry</td>
<td>8.7</td>
<td>11</td>
<td>Forestry, fishing, hunting & agriculture support</td>
<td>10.5</td>
</tr>
<tr>
<td>37</td>
<td>Cleaning & Maintenance</td>
<td>10.8</td>
<td>72</td>
<td>Accommodation & food services</td>
<td>11.8</td>
</tr>
<tr>
<td>35</td>
<td>Food Preparation & Serving Related</td>
<td>11.5</td>
<td>23</td>
<td>Construction</td>
<td>11.9</td>
</tr>
<tr>
<td>47</td>
<td>Construction & Extraction</td>
<td>11.5</td>
<td>56</td>
<td>Admin, support, waste mgt, remediation</td>
<td>12.2</td>
</tr>
<tr>
<td>51</td>
<td>Production</td>
<td>11.5</td>
<td>48</td>
<td>Transportation & warehousing</td>
<td>12.6</td>
</tr>
<tr>
<td>29</td>
<td>Healthcare Practitioners & Technical</td>
<td>15.6</td>
<td>52</td>
<td>Finance & insurance</td>
<td>14.1</td>
</tr>
<tr>
<td>21</td>
<td>Community & Social Services</td>
<td>15.8</td>
<td>51</td>
<td>Information</td>
<td>14.1</td>
</tr>
<tr>
<td>25</td>
<td>Education, Training & Library</td>
<td>16.3</td>
<td>55</td>
<td>Management of companies & enterprises</td>
<td>14.6</td>
</tr>
<tr>
<td>19</td>
<td>Life, Physical & Social Science</td>
<td>17.2</td>
<td>54</td>
<td>Professional, scientific & technical services</td>
<td>15.3</td>
</tr>
<tr>
<td>23</td>
<td>Legal Occupations</td>
<td>17.3</td>
<td>61</td>
<td>Educational services</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Data source: 2000 Census of Population microdata via IPUMS-USA
Empirical results
Three skill groups

<table>
<thead>
<tr>
<th>Dependent variable: $\ln f(\omega, c)$</th>
<th>(1) All</th>
<th>(2) US-born</th>
<th>Population share</th>
<th>Share US-born</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{\omega 1}$ High school or less \times log population</td>
<td>0.954 (0.0108)</td>
<td>0.895 (0.0153)</td>
<td>.37</td>
<td>.78</td>
</tr>
<tr>
<td>$\beta_{\omega 2}$ Some college \times log population</td>
<td>0.996 (0.0105)</td>
<td>0.969 (0.0122)</td>
<td>.31</td>
<td>.89</td>
</tr>
<tr>
<td>$\beta_{\omega 3}$ Bachelor's or more \times log population</td>
<td>1.086 (0.0153)</td>
<td>1.057 (0.0162)</td>
<td>.32</td>
<td>.85</td>
</tr>
</tbody>
</table>
Nine skill groups

<table>
<thead>
<tr>
<th>Dependent variable: $\ln f(\omega, c)$</th>
<th>(1) All</th>
<th>(2) US-born</th>
<th>Population share</th>
<th>Share US-born</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{ω_1} Less than high school $\times \log$ population</td>
<td>1.089</td>
<td>0.858</td>
<td>.04</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td>(0.0314)</td>
<td>(0.0239)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_2} High school dropout $\times \log$ population</td>
<td>1.005</td>
<td>0.933</td>
<td>.08</td>
<td>.73</td>
</tr>
<tr>
<td></td>
<td>(0.0152)</td>
<td>(0.0181)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_3} High school graduate $\times \log$ population</td>
<td>0.925</td>
<td>0.890</td>
<td>.25</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>(0.0132)</td>
<td>(0.0163)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_4} College dropout $\times \log$ population</td>
<td>0.997</td>
<td>0.971</td>
<td>.23</td>
<td>.89</td>
</tr>
<tr>
<td></td>
<td>(0.0111)</td>
<td>(0.0128)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_5} Associate’s degree $\times \log$ population</td>
<td>0.997</td>
<td>0.965</td>
<td>.08</td>
<td>.87</td>
</tr>
<tr>
<td></td>
<td>(0.0146)</td>
<td>(0.0157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_6} Bachelor’s degree $\times \log$ population</td>
<td>1.087</td>
<td>1.059</td>
<td>.20</td>
<td>.86</td>
</tr>
<tr>
<td></td>
<td>(0.0149)</td>
<td>(0.0164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_7} Master’s degree $\times \log$ population</td>
<td>1.095</td>
<td>1.063</td>
<td>.08</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>(0.0179)</td>
<td>(0.0181)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_8} Professional degree $\times \log$ population</td>
<td>1.113</td>
<td>1.082</td>
<td>.03</td>
<td>.81</td>
</tr>
<tr>
<td></td>
<td>(0.0168)</td>
<td>(0.0178)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_9} PhD $\times \log$ population</td>
<td>1.069</td>
<td>1.021</td>
<td>.01</td>
<td>.72</td>
</tr>
<tr>
<td></td>
<td>(0.0321)</td>
<td>(0.0303)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial distribution of skills in 1980

<table>
<thead>
<tr>
<th>Dependent variable: $\ln f(\omega, c)$</th>
<th>(1) All</th>
<th>(2) US-born</th>
<th>Population share</th>
<th>Share US-born</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{ω_1} Less than high school \times log population</td>
<td>0.975</td>
<td>0.892</td>
<td>.09</td>
<td>.72</td>
</tr>
<tr>
<td></td>
<td>(0.0236)</td>
<td>(0.0255)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_2} High school dropout \times log population</td>
<td>1.006</td>
<td>0.983</td>
<td>.12</td>
<td>.91</td>
</tr>
<tr>
<td></td>
<td>(0.0157)</td>
<td>(0.0179)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_3} Grade 12 \times log population</td>
<td>0.989</td>
<td>0.971</td>
<td>.33</td>
<td>.93</td>
</tr>
<tr>
<td></td>
<td>(0.00936)</td>
<td>(0.0111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_4} 1 year college \times log population</td>
<td>1.047</td>
<td>1.033</td>
<td>.10</td>
<td>.94</td>
</tr>
<tr>
<td></td>
<td>(0.0144)</td>
<td>(0.0151)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_5} 2-3 years college \times log population</td>
<td>1.095</td>
<td>1.076</td>
<td>.12</td>
<td>.91</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_6} 4 years college \times log population</td>
<td>1.091</td>
<td>1.073</td>
<td>.12</td>
<td>.92</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{ω_7} 5+ years college \times log population</td>
<td>1.113</td>
<td>1.093</td>
<td>.12</td>
<td>.90</td>
</tr>
<tr>
<td></td>
<td>(0.0202)</td>
<td>(0.0196)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Occupations’ elasticities and skill intensities

Skill intensity (employees' average years of schooling)

Population elasticity
Summary

- Spatial distributions of skills and sectors are prominent in public discussion of cities, exploited for identification in empirical work, and potentially key to understanding agglomeration processes.
- We need models with more than two skills groups and more than perfectly specialized/diversified cities.
- Recent research exploits tools from assignment literature to characterize spatial sorting of skills and sectors.
- Assignment mechanisms can be used in quantitative work via assumptions on components observed and unobserved by the econometrician – Fréchet distribution is most popular.
Thank you
Table 5
Agglomeration and the AFQT and Rotter scores: Distributions for selected occupations and city size categories.

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Panel A. 10th & 90th Percentiles of AFQT Score</th>
<th>Panel B. 10th & 90th Percentiles of Rotter Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSA Size</td>
<td>MSA Size</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td>Managers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.99</td>
<td>42.02</td>
<td>36.37</td>
</tr>
<tr>
<td>69.65</td>
<td>64.81</td>
<td>82.29</td>
</tr>
<tr>
<td>Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.92</td>
<td>79.22</td>
<td>62.95</td>
</tr>
<tr>
<td>79.22</td>
<td>86.96</td>
<td>87.59</td>
</tr>
<tr>
<td>Therapists</td>
<td>60.75</td>
<td>70.92</td>
</tr>
<tr>
<td></td>
<td>60.9</td>
<td>72.93</td>
</tr>
<tr>
<td>College Professors</td>
<td>74.1</td>
<td>59.79</td>
</tr>
<tr>
<td>Teachers</td>
<td>60.32</td>
<td>63.82</td>
</tr>
<tr>
<td></td>
<td>81.43</td>
<td>81.77</td>
</tr>
<tr>
<td>Sales Persons</td>
<td>69.74</td>
<td>82.27</td>
</tr>
<tr>
<td></td>
<td>81.45</td>
<td>82.27</td>
</tr>
<tr>
<td>Food Services</td>
<td>47.48</td>
<td>21.05</td>
</tr>
<tr>
<td></td>
<td>58.01</td>
<td>54.9</td>
</tr>
<tr>
<td>Mechanics</td>
<td>39.73</td>
<td>29.72</td>
</tr>
<tr>
<td></td>
<td>57.01</td>
<td>61.59</td>
</tr>
<tr>
<td>Construction Workers</td>
<td>42.4</td>
<td>26.8</td>
</tr>
<tr>
<td></td>
<td>51.75</td>
<td>42.58</td>
</tr>
<tr>
<td>Janitors</td>
<td>34.54</td>
<td>35.99</td>
</tr>
<tr>
<td></td>
<td>45.41</td>
<td>55.4</td>
</tr>
<tr>
<td>Natural Scientists</td>
<td>79.67</td>
<td>53.53</td>
</tr>
<tr>
<td></td>
<td>75.67</td>
<td>72.7</td>
</tr>
<tr>
<td>Nurses</td>
<td>57.33</td>
<td>61.02</td>
</tr>
<tr>
<td></td>
<td>58.88</td>
<td>65.34</td>
</tr>
<tr>
<td>Social Workers</td>
<td>38.52</td>
<td>54.14</td>
</tr>
<tr>
<td></td>
<td>52.54</td>
<td>57.04</td>
</tr>
<tr>
<td>Technicians</td>
<td>67.28</td>
<td>52.01</td>
</tr>
<tr>
<td></td>
<td>79.89</td>
<td>81.6</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>34.18</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>55.98</td>
<td>70.32</td>
</tr>
<tr>
<td>Personal Services</td>
<td>60.54</td>
<td>34.46</td>
</tr>
<tr>
<td></td>
<td>68.11</td>
<td>57.92</td>
</tr>
<tr>
<td>Total</td>
<td>56.78</td>
<td>52.77</td>
</tr>
<tr>
<td></td>
<td>66.61</td>
<td>69.49</td>
</tr>
</tbody>
</table>

Notes. The first row reports the 10th percentile, while the second row reports the 90th percentile. Small MSA size: population between 100,000 and 500,000; Medium: between 500,000 and 1 million; Large: between 1 million and 4 million; Very Large: more than 4 million.
College wage premia in NLSY vs Census

<table>
<thead>
<tr>
<th></th>
<th>Baum-Snow & Pavan</th>
<th>2000 Census PMSA</th>
<th>2000 Census CMSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hispanic white males with fewer than 15 years of work experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium-city college wage premium</td>
<td>.09</td>
<td>0.0978</td>
<td>0.0937</td>
</tr>
<tr>
<td></td>
<td>(0.00578)</td>
<td>(0.00613)</td>
<td></td>
</tr>
<tr>
<td>Large-city college wage premium</td>
<td>.05</td>
<td>0.145</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>(0.00565)</td>
<td>(0.00551)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>17991</td>
<td>301326</td>
<td>301326</td>
</tr>
<tr>
<td>Individuals observed</td>
<td>1257</td>
<td>301326</td>
<td>301326</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.197</td>
<td>0.202</td>
</tr>
<tr>
<td>p-value for equal premia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

Notes: This table describes full-time, full-year employees ages 18-55. Following BSP, “college graduate” means anyone with a bachelor’s degree or greater educational attainment. Large means population greater than 1.5m. Medium means population .25m to 1.5m. Small includes rural areas. The premia in the first column are obtained by differencing the numbers for high-school and college graduates’ log wages in the first column of BSP’s Table 1. Note that they report results for temporally deflated panel data, while we report cross-sectional results. BSP assign individual to metropolitan statistical areas using the 1999 boundary definitions, but they do not specify whether they use consolidated MSAs or primary MSAs for large cities. Hence we report both.