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1. Proofs

Proof of Lemma 1 : The same argument leading to equation (IA.8) in the Internet Ap-
pendix of Pastor and Veronesi (2012) implies that conditional on policy n, n = 0; 1; ::; N ,
being chosen at time� , aggregate capital is given by

BT = B � e( � + gn � 1
2 � 2 )( T � � )+ � (ZT � Z � )

Thus, exploiting WT = BT we have

E �

�
W 1� 


T

1 � 

jpolicy n

�
=

B 1� 

�

1 � 

e(1� 
 )( T � � ) � n

g + 1
2 (1� 
 )2(T � � )2� 2

g;n +( � � 

2 � 2 )( T � � )(1 � 
 )

It follows immediately that

E �

�
W 1� 


T

1 � 

jpolicy n

�
> E �

�
W 1� 


T

1 � 

jpolicy m

�

if and only if

e� n = � n
g +

1
2

(1 � 
 )(T � � )� 2
g;n > � m

g +
1
2

(1 � 
 )(T � � )� 2
g;m = e� m

Q.E.D.

Proof of Proposition 1. The government chooses policyn 2 f 0; 1; :::; Ng if and only
if for all m 6= n, m = 0; 1; :::; N ,

E �

�
CnW 1� 


T

1 � 

jpolicy n

�
> E �

�
CmW 1� 


T

1 � 

jpolicy m

�
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where recall that C0 = 1. The same calculations as in Lemma 1 lead to the inequality

� n
g �

� 2
g;n

2
(T � � ) ( 
 � 1) �

cn

(
 � 1) (T � � )
> � m

g �
� 2

g;m

2
(T � � ) ( 
 � 1) �

cm

(
 � 1) (T � � )
(B1)

The claim follows from the de�nitions of e� n and ~cn in equations (15) and (22).Q.E.D.

Proof of Corollary 1 . Immediate from Proposition 1 and equations (16) and (17).

Proof of Corollary 2 . As of time t, we have for eachn = 1; :::; N

cn � N
�
bcn

t ; b� 2
c;t

�
(B2)

Recall from Proposition 1 that policyn 2 f 1; :::; Ng is chosen if and only if

e� n � ecn > e� m � ecm m 6= n; m = 1; :::; N (B3)

e� n � ecn > x � ; (B4)

where we de�ne

x � � e� 0 = bg� �
b� 2

�

2
(T � � ) ( 
 � 1) : (B5)

Therefore, the conditional probability at t that policy n is chosen at� is given by

pn
t = Pr

�
e� n � ecn > e� m � ecm for m 6= n

e� n � ecn > x �

�

=
Z 1

�1
Pr

�
ecn � e� n + e� m < ecm for m 6= n

e� n � ecn > x �
jecn

�
� ecn (ecn) decn

=
Z 1

�1
� m6= n Pr (ecn � e� n + e� m < ecm jecn ) Pr ( e� n � ecn > x � jecn) � ecn (ecn) decn

=
Z 1

�1
� m6= n (1 � � ecm (ecn � e� n + e� m )) � x (e� n � ecn jbgt ) � ecn (ecn ) decn

where we used the fact thatecm 's are independent of each other as well as ofx � . Moreover,
from the de�nition of x � = bg� � b� 2

�
2 (T � � )( 
 � 1) (see equation (16)) we havex � jbgt �

N
�

bgt � b� 2
�
2 (T � � )( 
 � 1); b� 2

t � b� 2
�

�
.

We note two properties:

1. As bgt �! 1 , then pn
t �! 0 for all n 2 f 1; : : : ; Ng, as � x (e� n � ecn jbgt ) �! 0.

2. As t ! � we have

� x (e� n � ecn jbgt ) =
Z e� n � ecn

� x (xjbgt) dx ! 1f x � < e� n � ecn g (B6)
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so that

pn
t =

Z 1

�1
� m6= n (1 � � ecm (ecn + e� m � e� n )) � x (e� n � ecn jbgt ) � ecn (ecn ) decn

!
Z e� n � x �

�1
� m6= n (1 � � ecm (ecn + e� m � e� n )) � ecn (ecn) decn

= pn
�

Q.E.D.

Proof of Lemma A1 . Using the same arguments as to obtain equation (IA.20) in the
Internet Appendix of Pastor and Veronesi (2012), after the announcement of policyn at
time � +, the state price density is given by

E � + [� T jpolicy n] = � n
� + = � � 1B � 


� + e� 
� n
g (T � � )e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 � 2
g;n (B7)

Therefore, using alsoB � = B � + , the state price density at� is

� � =
NX

n=0

pn
� � n

� +

= � � 1
NX

n=0

pn
� B � 


� e� 
� n
g (T � � )e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 � 2
g;n

= � � 1B � 

� e(� 
� + 1

2 
 (
 +1) � 2)(T � � )

 
NX

n=0

pn
� e� 
� n

g (T � � )+ 
 2

2 (T � � )2 � 2
g;n

!

Using the de�nition � 0
g = bg� in equation (17) and the condition

p0
� = 1 �

NX

n=1

pn
� (B8)

we can rewrite the state price density at� as

� � = � � 1B � 

� e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � ) � 
 bg� (T � � )+ 
 2

2 (T � � )2 b� 2
� �

�

 

1 +
NX

n=1

pn
�

�
e� 
 (� n

g � bg� )(T � � )+ 
 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
� !

Similarly, after the announcement of policyn, n = 0; 1; :::; N , at time � +, we have

E � +
�
B � 


T B i
T jpolicy n

�
= N i;n

� + = B � 

� + B i

� + � e(1� 
 ) � n
g (T � � )e((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

(B9)
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Therefore, we have

E �

�
B � 


T B i
T

�
=

NX

n=0

pn
� N i;n

� +

= B � 

� B i

� e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � ) �

 
NX

n=0

pn
� � e(1� 
 ) � n

g (T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

!

= B � 

� B i

� e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � )+(1 � 
 )bg� (T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
� �

�

 

1 +
NX

n=1

pn
� �

�
e(1� 
 )(� n

g � bg� )(T � � )+ (1 � 
 ) 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
� !

The claim follows from taking the ratio M i
� =

E � [� T B i
T ]

� �
=

E � [� � 1B � 

T B i

T ]
� �

. Q.E.D.

Proof of Lemma A2 . From (B7) and (B9) we obtain that if policy n, n = 0; 1; :::; N ,
is selected at� +, then

M i
� + =

E � +
�
B � 


T B i
T jpolicy n

�

E � +
�
B � 


T jpolicy n
� = B i

� + e(� � 
� 2 + � n
g )(T � � )+ 1� 2


2 (T � � )2 � 2
g;n (B10)

Q.E.D.

Proof of Proposition 2 : To prove this proposition, we need three lemmas:

Lemma B1 . � b� and bg� are perfectly correlated, and we can write

� b� = E t [� b� ] + ( bg� � E t [bg� ])
�
� 2=b� 2

t + ( � � t)
�

= E t [� b� ] + ( x � � E t [x � ])
�
� 2=b� 2

t + ( � � t)
�

Proof of Lemma B1 : From Lemma A5 in Pastor and Veronesi (2012), we have that
b� = log ( B � ) and bg� have the conditional joint distribution

�
b� � bt

bg�

�
� N

�
E t [� b� ]
E t [bg� ]

;
�

Vb; Cg;b

Cg;b; Vbg

��
(B11)

where

E t [� b� ] =
�

� + bgt �
1
2

� 2

�
(� � t)

E t [bg� ] = bgt

Vb = ( � � t)2 b� 2
t + � 2 (� � t)

Vbg = b� 2
t � b� 2

�

Cbg;b = b� 2
t (� � t)

We now see thatb� � bt and bg� are perfectly correlated. In fact,

Corr =
Cbg;bp
VbVbg

=
b� 2

t (� � t)
q �

(� � t)2 b� 2
t + � 2 (� � t)

�
(b� 2

t � b� 2
� )

(B12)

4



Using the fact that

b� 2
� =

1
1

b� 2
t

+ 1
� 2 (� � t)

=
b� 2

t � 2

� 2 + b� 2
t (� � t)

(B13)

we �nd

Corr =
b� 2

t (� � t)
r

�
(� � t)2 b� 2

t + � 2 (� � t)
� �

b� 2
t � b� 2

t � 2

� 2 + b� 2
t ( � � t )

�

=
b� 2

t (� � t)
p

(� � t) (b� 2
t (� 2 + b� 2

t (� � t)) � b� 2
t � 2)

=
b� 2

t (� � t)
q

(� � t) (b� 2
t )2 (� � t)

= 1

It follows that we can write

� b� = E t [� b� ] + f bg� � E t [bg� ]g
Cb;bg

Vbg
= E t [� b� ] + f bg� � E t [bg� ]g

s
Vb

Vbg

= E t [� b� ] + f bg� � E t [bg� ]g
b� 2

t (� � t)
b� 2

t � b� 2
�

= E t [� b� ] + f bg� � E t [bg� ]g
�
� 2=b� 2

t + ( � � t)
�

where we also used the equality

b� 2
t � b� 2

� = b� 2
t �

b� 2
t � 2

� 2 + b� 2
t (� � t)

=
(b� 2

t )2 (� � t)
� 2 + b� 2

t (� � t)

From the de�nition of x � , it also follows that x � � E t [x � ] = bg� � E t [bg� ]. Q.E.D.

Lemma B2: The conditional distribution of � b� = b� � bt = log ( B � =Bt ) conditional on
time-t information and policy n being chosen at time� is

f (� b� jSt ; n at � ) (B14)

=
� � b� (� b� )

pn
t

Z e� n � E t [x � ]� (� b� � E t [� b� ])
b� 2

t
( � � t ) b� 2

t + � 2

�1
� m6= n (1 � � ecm (ecn � e� n + e� m )) � ecn (ecn) decn

(B15)

where � � b� (� b� ) is the normal density with meanE t [� b� ] =
�
� + bgt � 1

2 � 2
�

(� � t) and

varianceVb = ( � � t)2 b� 2
t + � 2 (� � t). In addition, E t [x � ] = bgt � b� 2

�
2 (T � � ) ( 
 � 1).

Note that f (� b� jSt ; � at � ) does not depend on the current value of log capital,bt , hence
the conditional dependence only onSt and time t:
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Proof of Lemma B2 . The conditional CDF is

F� b�

�
� bjSt ;

x � < e� n � ecn

ecn � e� n + e� m < ecm for m 6= n

�
=

Pr
�

� b� < � b;
x � < e� n � ecn

ecn � e� n + e� m < ecm for m 6= n
jSt

�

Pr
�

x � < e� n � ecn

ecn � e� n + e� m < ecm for m 6= n
jSt

�

(B16)
The denominator is justpn

t from Corollary 2. Consider the numerator. From Lemma B1:

� b� � E t [� b� ] = f x � � E t [x � ]g
�
� 2=b� 2

t + ( � � t)
�

which implies

x � = E t [x � ] + f � b� � E t [� b� ]g
b� 2

t

(� 2 + b� 2
t (� � t))

Thus, the joint distribution can be written as

Pr
�

� b� < � b;
x � < e� n � ecn

ecn � e� n + e� m < ecm jSt

�

= Pr

 

� b� < � b;
E t [x � ] + f � b� � E t [� b� ]g b� 2

t

(� 2 + b� 2
t ( � � t )) < e� n � ecn

ecn � e� n + e� m < ecm
jSt

!

=
Z 1

�1
Pr

 

� b� < � b;
ecn < e� n � E t [x � ] � f � b� � E t [� b� ]g b� 2

t

(� 2 + b� 2
t ( � � t ))

ecn � e� n + e� m < ecm
jecn ; St

!

� ecn (ecn) decn

=
Z � b

�1

Z e� n � E t [x � ]�f � b� � E t [� b� ]g
b� 2

t
( � 2+ b� 2

t ( � � t ) )

�1
� m6= n [1 � � ecm (ecn � e� n + e� m )] � ecn (ecn ) decn � � b� (� b� )d� b�

where we exploited the independence acrossecm and with respect to � b� . Substituting into
(B16) and taking the �rst derivative with respect to � b, we obtain the density (B15).Q.E.D.

Lemma B3 : The distribution of bg� conditional on time-t information and no new policy
being chosen at time� is

f (bg� jno policy change at� ) =
� bg� (bg� jbgt )

p0
t

� N
n=1

�
1 � � ecn

�
e� n � bg� +

b� 2
�

2
(T � � ) ( 
 � 1)

��

(B17)

where� bg� (bg� jbgt ) is the conditional normal density ofbg� , namely, N(bgt ; b� 2
t � b� 2

� ).

Proof of Lemma B3: The conditional CDF is given by

Fbg� (gjno policy change at� )

= Fbg� (gjx � > e� n � ecn for all n)

=
Pr

�
bg� < g & bg� > e� n � ecn + b� 2

�
2 (T � � ) ( 
 � 1) for all n

�

Pr (x � > e� n � ecn for all n)
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=

R1
�1 Pr

�
bg� < g & bg� > e� n � ecn + b� 2

�
2 (T � � ) ( 
 � 1) for all njbg�

�
� bg� (bg� jbgt ) dbg�

p0
t

=

R1
�1 1f bg� <g g� N

n=1

�
1 � � ecn

�
e� n � bg� + b� 2

�
2 (T � � ) ( 
 � 1)

��
� bg� (bg� jbgt ) dbg�

p0
t

=

Rg
�1 � n

n=1

�
1 � � ecn

�
e� n � bg� + b� 2

�
2 (T � � ) ( 
 � 1)

��
� bg� (bg� jbgt ) dbg�

p0
t

Taking the �rst derivative with respect to g, we obtain the density (B17). Q.E.D.

Proof of Proposition 2: We know that

� t = E t [� � + ] =
NX

n=0

E t [� � + jn at � ] pn
t (B18)

Note that for n = 1; :::; N

E t [� � + jn at � ] = E t

�
� � 1B � 


� + e� 
� n
g (T � � )e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 � 2
g;n jn at �

�

= � � 1e(� 
� + 1
2 
 ( 
 +1) � 2)(T � � )� 
� n

g (T � � )+ 
 2

2 (T � � )2 � 2
g;n e� 
b t E t

�
e� 
 (b� � bt ) jn at �

�

= � � 1B � 

t e(� 
� + 1

2 
 (
 +1) � 2)(T � � ) �

� e� 
� n
g (T � � )+ 
 2

2 (T � � )2 � 2
g;n

� Z 1

�1
e� 
 � b� f (� b� jSt ; n at � ) d� b�

�

Similarly, for n = 0 we have

E t [� � + j0 at � ] = E
�
� � 1B � 


� + e� 
 bg� (T � � )e(� 
� + 1
2 
 (
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 b� 2
� j0 at �

�

= � � 1e(� 
� + 1
2 
 ( 
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 b� 2
� e� 
b t E t

�
e� 
 � b� � 
 bg� (T � � ) j0 at �

�

= � � 1e(� 
� + 1
2 
 ( 
 +1) � 2)(T � � )+ 
 2

2 (T � � )2 b� 2
� e� 
b t �

� E t

"

e
� 


�
E t [� b� ]+ f bg� � E t [bg� ]g

r
Vb
Vbg

�
� 
 bg� (T � � )

j0 at �

#

= � � 1B � 

t e(� 
� + 1

2 
 (
 +1) � 2)(T � � ) � e� 
 bgt (T � � )+ 
 2

2 (T � � )2 b� 2
�

�
Z 1

�1
e

� 

�

E t [� b� ]+ f bg� � E t [bg� ]g
r

Vb�
Vbg�

�
� 
 (T � � )( bg� � bgt )

f (bg� j0 at � ) dbg�

The result follows from comparing the terms in equations (28) and (A1) with the ones above,
and de�ning in this proposition � 0

g = bgt and � 2
g;0 = b� 2

� . Q.E.D.

Proof of Proposition 3: The result follows from an application of Ito's Lemma to
equation (28), and recalling that� t is a martingale, and thusE t [d� t=� t ] = 0. Q.E.D.
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Proof of Corollary 3: The probability that the old policy will be retained is

p0
t = Pr

�
e� n � ecn < bg� �

b� 2
�

2
(T � � ) ( 
 � 1) for all n > 0

�

=
Z 1

�1
Pr

�
e� n � ecn < bg� �

b� 2
�

2
(T � � ) ( 
 � 1) for all n > 0jbg�

�
� (bg� jbgt ) dbg�

=
Z 1

�1

NY

n=1

�
1 � � ecn

�
e� n � bg� +

b� 2
�

2
(T � � ) ( 
 � 1)

��
� (bg� jbgt ) dbg�

Thus, for a givenbcn
t , for n = 1; ::; N , we have that asbgt ! �1 , p0

t ! 0 and dpt =dbgt ! 0.
From the proof of Proposition 2, for a su�ciently small bgt , the state price density converges
to

� t = E t [� � + ] !
NX

n=1

pn
t E [� � + jn at � +]

= � � 1B � 

t e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )
NX

n=1

pn
t e� 
� n

g (T � � )+ 1
2 
 2(T � � )2 � 2

g;n E
�
e� 
 � b� jSt ; n at �

�

(B19)

As bgt declines so thatp0
t ! 0, we haveE

�
e� 
 � b� jSt ; n at �

�
! E

�
e� 
 � b� jSt

�
. Indeed, note

that in the proof of the distribution of � b� in Lemma B2, we have

F (� b� jSt ; n at � ) = Pr
�

� b� < � bt jSt ;
x � < e� n � ecn

e� m � ecn < e� n � ecn for m 6= n

�

The statement p0
t = 0 implies that the event x � < e� n � ecn is certain to be realized. Thus:

F (� b� jSt ; n at � ) = Pr (� b� < � bt jSt ; e� m � ecn < e� n � ecn for m 6= n) = Pr (� b� < � bt jSt )

the last step due to the independence ofecn , ecm from � b� process. We then obtain

� t = � � 1B � 

t e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )
NX

n=1

pn
t e� 
� n

g (T � � )+ 1
2 
 2(T � � )2 � 2

g;n E
�
e� 
 � b� jSt ; n at �

�

= � � 1B � 

t e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )E
�
e� 
 � b� jSt

� NX

n=1

pn
t e� 
� n

g (T � � )+ 1
2 
 2(T � � )2 � 2

g;n

= � � 1B � 

t e(� 
� + 1

2 
 ( 
 +1) � 2)(T � � )

� e� 
 (( � + bgt � 1
2 � 2)( � � t ))+ 1

2 
 2(( � � t )2 b� 2
t +( � � t ) � 2)

NX

n=1

pn
t e� 
� n

g (T � � )+ 1
2 
 2(T � � )2 � 2

g;n

where the last step follows from Lemma B2:

� b� jSt � N
��

� + bgt �
1
2

� 2

�
(� � t) ; (� � t)2 b� 2

t + ( � � t) � 2

�
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It follows that for bgt su�ciently small, 
 ( St ) converges to


 ( St ) = e� 
 (( � + bgt � 1
2 � 2)( � � t ))+ 1

2 
 2((� � t )2 b� 2
t +( � � t )� 2)

NX

n=1

pn
t e� 
� n

g (T � � )+ 1
2 
 2 (T � � )2 � 2

g;n (B20)

Taking the �rst derivative with respect to bgt and dividing by 
( St ), we �nd that as bgt ! �1 ,

� �; 0 =
1


 ( St)
@
 ( St )

@bgt
b� 2

t � � 1 ! � 
 (� � t)b� 2
t � � 1

proving the �rst part of the statement of Corollary 3.

To prove the second part of the statement of Corollary 3, fromproperty 1 in the proof
of Corollary 2, for a given distribution ofecn , we havep0

t ! 1 asbgt ! 1 . It follows that the
state price density converges to one that assigns zero probability to a policy change:

� t ! E t [� � + j0 at n] = � � 1E t
�
B � 


T j0 at n
�

= � � 1B � 

t e� 
 bgt (T � t )e(� 
� + 1

2 
 ( 
 +1) � 2)(T � t )+ 
 2

2 (T � t )2 b� 2
t (B21)

It follows that in this case, for bgt su�ciently large, 
( St ) converges to


 ( S) = e(� 
� + 1
2 
 ( 
 +1) � 2)(� � t )e� 
 bgt (T � t )+ 1

2 
 2 (T � t )2 b� 2
t

Taking the �rst derivative with respect to bgt and dividing by 
( St ), we �nd that as bgt ! 1 ,

� �; 0 =
1


 ( St )
@
 ( St )

@bgt
b� 2

t � � 1 ! � 
 (T � t)b� 2
t � � 1

Q.E.D.

Proof of Corollary 4 : From expression (B21), we see that the state price density does
not depend on anybcn

t . Hence, we have 1

( St )

@
( S)
@bcn = 0. Q.E.D.

Proof of Proposition 4 : The proof is identical to the proof of Proposition 2, except
that we have to calculate

E t
�
� � + M i

� +

�
=

NX

n=0

pn
t E t

�
� � + M i

� + jn at �
�

From (B9), for n = 1; ::; N :

E t
�
� � + M i

� + jn at �
�

= � � 1E t
�
N i

� + jn at �
�

= � � 1E t

�
B � 


� + B i
� + � e(1� 
 ) � n

g (T � � )e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n jn at �

�

= � � 1e(1� 
 ) � n
g (T � � )e((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n E t

h
e� 
b � + bi

� jn at �
i

9



Now, recall
B i

�

B i
t

=
B �

B t
e� 1

2 � 2
1 (T � � )+ � 1(Z i

� � Z i
t ) (B22)

which implies
ebi

� = ebi
t + b� � bt � 1

2 � 2
1 (T � � )+ � 1(Z i

� � Z i
t ) (B23)

For n = 1; :::; N , we then have:

E t
�
� � + M i

� + jn at �
�

= � � 1B � 

t B i

t e
(1� 
 ) � n

g (T � � )e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

E t
�
e(1� 
 )� b� jn at �

�

= � � 1B � 

t B i

t e
(1� 
 ) � n

g (T � � )e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

Z
e(1� 
 )� b� f (� b� jSt ; n at � ) d� b�

Similarly, for n = 0, we have:

E t
�
� � + M i

� + j0 at �
�

= � � 1E t
�
N i

� + j0 at �
�

= � � 1E t

�
B � 


� B i
� � e(1� 
 )bg� (T � � )e((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
� j0 at �

�

= � � 1e((1� 
 ) � + 1
2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
� E t

h
e� 
b � + bi

� +(1 � 
 )bg� (T � � ) j0 at �
i

= � � 1B � 

t B i

t e
((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
� E t

�
e(1� 
 )� b� +(1 � 
 )bg� (T � � ) j0 at �

�

= � � 1B � 

t B i

t e
((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
�

� E t

"

e
(1� 
 )

�
E t [� b� ]+ f bg� � E t [bg� ]g

r
Vb
Vbg

�
+(1 � 
 )bg� (T � � )

j0 at �

#

= � � 1B � 

t B i

t e
(1� 
 )bgt (T � � )+ ((1� 
 ) � + 1

2 
 ( 
 � 1)� 2)(T � � )+ (1 � 
 ) 2

2 (T � � )2 b� 2
�

�
Z

e
(1� 
 )

�
E t [� b� ]+ f bg� � E t [bg� ]g

r
Vb
Vbg

�
+(1 � 
 )( bg� � bgt )(T � � )

f (bg� jSt ; 0 at � ) dbg�

The result follows from comparing the terms in equations (35), (A1), and (A2) with the ones
above, and de�ning in this proposition� 0

g = bgt and � 2
g;0 = b� 2

� . Q.E.D.

Proof of Proposition 5 . The claim follows from an application of Ito's Lemma to the
price M i

t in Proposition 4, and the equilibrium restriction � i
M = � Covt

�
dM i

t
M i

t
; d� t

� t

�
. Q.E.D.

Proof of Corollary 5 . The proof is identical to that of Corollary 3, except that weana-
lyze the limiting behavior ofE t

�
� � + M i

� +

�
. Comparing the proofs of Proposition 2 and Propo-

sition 5, we see that the same arguments discussed in Corollary 3 apply for E t
�
� � + M i

� +

�
. In

particular, as bgt ! �1 , we have that for bgt su�ciently small, H (St ) converges to

H (St ) = e(1� 
 )(( � + bgt � 1
2 � 2)( � � t ))+ 1

2 (1� 
 )2((� � t )2 b� 2
t +( � � t )� 2)

NX

n=1

pn
t e(1� 
 ) � n

g (T � � )+ 1
2 (1� 
 )2(T � � )2 � 2

g;n

(B24)
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Hence,
1

H (St )
@H(St)

@bgt
! (1 � 
 )( � � t)

Therefore, asbgt ! �1 , we have

� M; 0 =
�

1
H (St )

@H(St)
@bgt

�
1


( St )
@
( St )

@bgt

�
b� 2

t � � 1 ! (� � t)b� 2
t � � 1

Similarly, as bgt ! 1 , we have that for bgt su�ciently large, H (St ) converges to

H (St ) = e((1� 
 ) � + 1
2 (1� 
 ) 
� 2)(� � t )e(1� 
 )bgt (T � t )+ 1

2 (1� 
 )2(T � t )2 b� 2
t (B25)

which implies
1

H (St )
@H(St)

@bgt
! (1 � 
 )(T � t)

Hence, asbgt ! 1 , we obtain

� M; 0 =
�

1
H (St )

@H(St)
@bgt

�
1


( St )
@
( St)

@bgt

�
b� 2

t � � 1 ! (T � t)b� 2
t � � 1

Q.E.D.

Proof of Corollary 6 . The proof is identical to that of Corollary 4. In particular,
from expressions (B21) and (B25), neither 
(St ) nor H (St ) depend on anybcn

t . Thus, both
@
( St)=@bcn

t ! 0 and @H(S)=@bcn
t ! 0, which implies� M;n ! 0 for all n. Q.E.D.

Proof of Proposition 6. From Lemmas A1 and A2, the gross announcement return
from announcing policyn is

1 + Rn (bg� ) = e( � n � bg� )(T � � )+ 1� 2

2 (T � � )2(� 2

g;n � b� 2
� ) �

�

�
1 +

P N
n=1 pn

�

�
e� 
 (� n

g � bg� )(T � � )+ 
 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
��

�
1 +

P N
n=1 pn

�

�
e(1� 
 )(� n

g � bg� )(T � � )+ (1 � 
 ) 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
��

Similarly, recalling the notation � 0
g = bg� and � g;0 = b� � , from Lemma A1 and A2 the gross

announcement return from announcing no policy change is

1 + R0 (bg� ) =

�
1 +

P N
n=1 pn

�

�
e� 
 (� n

g � bg� )(T � � )+ 
 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
��

�
1 +

P n
n=1 pn

�

�
e(1� 
 )(� n

g � bg� )(T � � )+ (1 � 
 ) 2

2 (T � � )2(� 2
g;n � b� 2

� ) � 1
�� (B26)
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Therefore, we can write more compactly, forn = 1; :::; N ,

1 + Rn (bg� ) = e(� n
g � bg� )(T � � )+ 1� 2


2 (T � � )2(� 2
g;n � b� 2

� ) �
�
1 + R0 (bg)

�
(B27)

From equations (15) and (16) in the paper, we have

� n
g � bgt =

�
e� n � e� 0

�
+

�
� 2

g;n � b� 2
�

�

2
(T � � ) ( 
 � 1)

For the exponent in equation (B27), we therefore obtain

�
� n

g � bgt

�
(T � � ) +

1 � 2

2

(T � � )2 �
� 2

g;n � b� 2
�

�

=
�
e� n � e� 0�

(T � � ) +

�
� 2

g;n � b� 2
�

�

2
(T � � )2 (
 � 1) +

1 � 2

2

(T � � )2 �
� 2

g;n � b� 2
�

�

=
�
e� n � e� 0

�
(T � � ) �



2

(T � � )2 �
� 2

g;n � b� 2
�

�

The claim of Proposition 6 then follows immediately.Q.E.D.

Proof of Corollary 7. Immediate from Proposition 6.Q.E.D.

Proof of Corollary 8. Immediate from Corollary 7. Q.E.D.
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2. Detailed Closed-Form Solutions

For convenience, we begin by restating Propositions 3 and 5 from the paper. For t � � , the
stochastic discount factor (SDF) follows the di�usion process

d� t

� t
= ( � 
� + � �; 0) dbZt +

NX

n=1

� �;n dbZ n
c;t ; (B28)

where

� �; 0 =
1



@

@bgt

b� 2
t � � 1 (B29)

� �;n =
1



@

@bcn

t
b� 2

c;th
� 1 ; (B30)

and stock returns of �rm i at time t � � follow the process

dM i
t

M i
t

= � i
M dt + ( � + � M; 0) dbZt +

NX

n=1

� M;n dbZ n
c;t + � 1dZ i

t ; (B31)

where

� M; 0 =
�

1
H

@H
@bgt

�
1



@

@bgt

�
b� 2

t � � 1 (B32)

� M;n =
�

1
H

@H
@bcn

t
�

1



@

@bcn

t

�
b� 2

c;th
� 1 : (B33)

In this section, we provide detailed closed-form solutionsfor the partial �rst derivatives
appearing in equations (B29), (B30), (B32), and (B33). Those solutions can then be plugged
into the same equations to obtain closed-form solutions for� �; 0, � �;n , � M; 0, and � M;n .

The partials of 
 are presented in Proposition B0(a); the partials of H are in Proposition
B0(b). While all of these expressions are analytical, they are very complicated in their full
generality (the two propositions stretch over four pages!). We provide more insight into
these expressions in certain special cases (such asN = 2 and bgt ! �1 ) in Section 3 of this
Technical Appendix.
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Proposition B0(a) : The �rst derivatives of 
 ( St ) with respect to bgt and bck;t , for k =
1; : : : ; N , are given by

@

@bgt

=
NX

n=1

e� 
� n (T � � )+ 
 2

2 (T � � )2 � 2
g;n

@[pn
t F n (bgt ; bct ; t)]

@bgt
+ e


 2

2 (T � � )2 b� 2
�
@[p0

t F 0 (bgt ; bct ; t)]
@bgt

@

@bck;t

=
NX

n=1

e� 
� n (T � � )+ 
 2

2 (T � � )2 � 2
g;n

@[pn
t F n (bgt ; bct ; t)]

@bck;t
+ e


 2

2 (T � � )2 b� 2
�
@[p0

t F 0 (bgt ; bct ; t)]
@bck;t

;

where the partial derivatives are presented below in �ve di�erent cases. Before presenting
those partial derivatives, we note that1

F n (St ) =
Z

e� 
 � b� f (� b� jSt ; n at � ) d � b� n = 1; : : : ; N

F 0 (St ) =
Z

e
� 


�
E t [� b� ]+( bg� � bgt )

r
Vb�
Vbg�

�
� 
 (T � � )bg�

f (bg� jSt ; 0 at � ) dbg�

E t [� b� ] =
�

� + bgt �
1
2

� 2

�
(� � t)

E t [x � ] = bgt �
b� 2

�

2
(T � � ) ( 
 � 1)

Vb� � Var(b� jSt ) = b� 2
t (� � t)2 + � 2 (� � t)

Vbg� � Var(bg� jSt ) = b� 2
t � b� 2

� ;

and the conditional densitiesf (� b� jSt ; n at � ) and f (bg� jSt ; 0 at � ) are de�ned in the paper's
Appendix. The above partial derivatives are given by the following expressions:

1. For n = 1; :::; N

@[pn
t F n (bgt ; bct ; t)]

@bgt
=

=
Z 1

�1
e� 
 � b� � � b� (� b� )

�
(� b� � E t [� b� ])

Vb

�
(� � t)

�

2

4
Z e� n � E t [x � ]� (� b� � E t [� b� ])

b� 2
t

( � � t ) b� 2
t + � 2

�1
� j 6= n

�
1 � � ecj

�
ecn � e� i + e� j �� � ecn (ecn ) decn

3

5 d� b�

�
� 2

(� � t) b� 2
t + � 2

Z 1

�1
e� 
 � b� � � b� (� b� ) �

1In the paper's Appendix immediately following equation (A1), the function F 0 is rede�ned slightly (it
includes an extra � bgt term), solely for expositional purposes. We chose that slightly altered version of F 0

for the paper's Appendix because it substantially simpli�es the expression for 
(St ) presented in equation
(A1)|it allows us to collapse all the terms into a single summ ation. The version of F 0 used here is more
suitable for the detailed exposition as well as the proof of Proposition B0(a), which is why we use it here.
Under the version of F 0 used here, the function 
 is given in equation (B34) at the beginning of the proof
of Proposition B0(a).
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� � j 6= n

�
1 � � ecj

�
e� j � E t [x � ] � (� b� � E t [� b� ])

b� 2
t

(� � t) b� 2
t + � 2

��

� � ecn

�
e� n � E t [x � ] � (� b� � E t [� b� ])

b� 2
t

(� � t) b� 2
t + � 2

�
d� b�

2. and

@[p0
t F 0 (bgt ; bct ; t)]

@bgt
=

=
Z 1

�1
e� 


�
E t [� b� ]+( bg� � E t [bg� ])

q
V ( b� )
V ( bg� )

�
� 
 (T � � )bg� � bg (bg� jbgt )

�

� 2=b� 2

t +
(bg� � bgt )
(b� 2

t � b� 2
� )

�

� � N
n=1

�
1 � � ecn

�
e� n � bg� +

b� 2
�

2
(T � � ) ( 
 � 1)

��
dbg�

3. for k 6= n, n; k = 1; :::; N :

@[pn
t F n (bgt ; bct ; t)]

@bck;t
=

=
Z 1

�1
e� 
 � b� � � b� (� b� )

Z e� n � bgt

�
1�

b� 2
t ( � � t )

( � � t ) b� 2
t + � 2

�
+ b� 2

�
2 (T � � )( 
 � 1)� ( � b� � (� � 1

2 � 2)(� � t ))

�1 
� eck

�
ecn � e� n + e� k

�

(
 � 1) (T � � )

!

� j 6= n;k
�
1 � � ecj

�
ecn � e� n + e� j �� � ecn (ecn) decnd� b�

4. for n = k = 1; :::; N

@[pn
t F n (bgt ; bct ; t)]

@bcn;t
=

=
Z 1

�1
e� 
 � b� � � b� (� b� )

Z e� n � E t [x � ]� (� b� � E t [� b� ])
b� 2

t
( � � t ) b� 2

t + � 2

�1

� j 6= n

�
1 � � ecj

�
ecn � e� n + e� j

��
�

(ecn � E t [ecn ])
V (ecn )

�
�

�
1

(
 � 1) (T � � )
� ecn (ecn ) decn

5. and for everyk = 1; :::; N

@[p0
t F 0 (bgt ; bct ; t)]

@bck;t
=

=
Z 1

�1
e� 


�
(� + bgt � 1

2 � 2)(� � t )+( bg� � bgt )
q

V ( b� )
V ( bg� )

�
� 
 (T � � )bg� �

� � bg (bg� jbgt )
�

� eck

�
e� k � bg� +

b� 2
�

2
(T � � ) ( 
 � 1)

�
1

(T � � ) ( 
 � 1)

�

� j 6= i

�
1 � � ecj

�
e� j � bg� +

b� 2
�

2
(T � � ) ( 
 � 1)

��
dbg�
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Proposition B0(b) : The �rst derivatives of H (St ) with respect to bgt and bck;t , for k =
1; : : : ; N , are given by

@H
@bgt

=
NX

n=1

e(1� 
 ) � n (T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

@[pn
t Gn (bgt ; bct ; t)]

@bgt
+ e

(1 � 
 ) 2

2 (T � � )2 b� 2
�
@[p0

t G0 (bgt ; bct ; t)]
@bgt

@H
@bck;t

=
NX

n=1

e(1� 
 ) � n (T � � )+ (1 � 
 ) 2

2 (T � � )2 � 2
g;n

@[pn
t Gn (bgt ; bct ; t)]

@bck;t
+ e

(1 � 
 ) 2

2 (T � � )2 b� 2
�
@[p0

t G0 (bgt ; bct ; t)]
@bck;t

;

where2

Gn (St ) =
Z

e(1� 
 )� b� f (� b� jbgt ; n at � ) d � b� n = 1; : : : ; N

G0 (St ) =
Z

e
(1� 
 )

�
E t [� b� ]+( bg� � bgt )

r
Vb�
Vbg�

�
+(1 � 
 )( T � � )bg�

f (bg� jbgt ; 0 at � ) dbg� ;

and the above partial derivatives are presented below in �vedi�erent cases:

1. For n = 1; :::; N

@[pn
t Gn (bgt ; bct ; t)]

@bgt
=

=
Z 1

�1
e(1� 
 )� b� � � b� (� b� )

�
(� b� � E t [� b� ])

Vb

�
(� � t)

�

2

4
Z e� n � E t [x � ]� (� b� � E t [� b� ])

b� 2
t

( � � t ) b� 2
t + � 2

�1
� j 6= n

�
1 � � ecj

�
ecn � e� i + e� j

��
� ecn (ecn ) decn

3

5 d� b�

�
� 2

(� � t) b� 2
t + � 2

Z 1

�1
e(1� 
 )� b� � � b� (� b� ) �

� � j 6= n

�
1 � � ecj

�
e� j � E t [x � ] � (� b� � E t [� b� ])

b� 2
t

(� � t) b� 2
t + � 2

��

� � ecn

�
e� n � E t [x � ] � (� b� � E t [� b� ])

b� 2
t

(� � t) b� 2
t + � 2

�
d� b�

2. and

@[p0
t G0 (bgt ; bct ; t)]

@bgt
=

2In the paper's Appendix immediately following equation (A2), the function G0 is rede�ned slightly (it
includes an extra � bgt term), solely for expositional purposes. We chose that slightly altered version of G0

for the paper's Appendix because it substantially simpli�es the expression forH (St ) presented in equation
(A2)|it allows us to collapse all the terms into a single summ ation. The version of G0 used here is more
suitable for the detailed exposition as well as the proof of Proposition B0(b), which is why we use it here.
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=
Z 1

�1
e(1� 
 )

�
E t [� b� ]+( bg� � E t [bg� ])

q
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Proof of Propositions B0(a) and B0(b) : We only prove Proposition B0(a). The
proof of Proposition B0(b) is analogous. First, we can write
 ( St ) as


( St ) =
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e� 
� n (T � � )+ 
 2
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which is equivalent to equation (A1) in the paper's Appendix, as noted in footnote 1. In
this expression for 
 (St ), we have
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Similarly,
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Using (from the proof of Lemma B1)
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we have
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Moving now to the derivatives with respect tobck;t , we have to consider whetherk = n or
k 6= n. In particular,
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where we used the fact that fromecj � N
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We can then write
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we have
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Q.E.D.
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3. Political Risk Premium: Additional Results

The closed-form solutions presented in the previous section of this Technical Appendix are
too complicated to provide any analytical insights. However, we are able to provide some
insights in several special cases. Throughout this sectionexcept for the last subsection
(Section 3.3.), we consider the limiting case ofbgt ! �1 . Recall that in this limiting case,
the probability of retaining the old policy converges to zero (i.e., p0

t ! 0).

Proposition B1 : As bgt ! �1 , then, for everym = 1; ::; N

1
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�
;

where the weights, which sum to one, are given by
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1;t =

pn
t e� 
� n

g (T � � )+ 1
2 
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2 
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Proof. Follows immediately from equations (B20) and (B24).Q.E.D.

Note that the weights are larger for policies with lower means � n
g and higher uncertainties

� g;n. Since all of thebcm
t 's are independent of each other and

P N
n=1 pn

t = 1, we have (i ) @pnt
@bcn < 0

(i.e., an increase in the perceived political cost of policyn decreases the probability of its
adoption); and (ii ) @pnt

@bcm > 0 for m 6= n (i.e., an increase in the political cost of policym
increases the probability of adopting a di�erent policyn).

3.1. Two New Policies ( N = 2)

We now specialize the above result to the case with only two new policies, which we denote
by H and L. In that case, we obtain analytical solutions:

Proposition B2 . For N = 2 and bgt ! �1 , we have
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Proof. With N = 2, we havepL
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t . We prove only the expression for 1
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m = H; L , as the other case withH (St ) can be proved analogously. Using (B20), we have
that for bgt su�ciently small, 
( St ) converges to a quantity that is proportional to
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where the constant of proportionality is independent of anystate variables. Thus,
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Using the de�nition of G1 we obtain
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and
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We �nally compute the sensitivity of probabilities to expected costs. Asbg ! �1 , we have
p0

t ! 0, and we �nd that pH
t and pL

t converge to
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Z 1
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�
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�
ecL

�
decL
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Thus, we obtain
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Similarly, using pH
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t , we also obtain
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This yields the expressions
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An identical argument, using (B24), proves the claim for1H
@H
@bcm , for m = H; L . Q.E.D.

This proposition allows us to obtain conditions for the signs for the sensitivity of 
( St )
and H (St ) to bcm

t , with m = H; L . In particular, consider the following inequalities:

Condition 1: � H
g � � L

g <
1
2


 (T � � )
�
� 2

g;H � � 2
g;L

�

Condition 2: � H
g � � L

g <
1
2

(
 � 1) (T � � )
�
� 2

g;H � � 2
g;L

�

Condition 3: � H
g � � L

g <
1
2

(2
 � 1) (T � � )
�
� 2

g;H � � 2
g;L

�
:

Note that Condition 2 holds if and only if e� H < e� L , that is, if policy H provides a lower
expected utility than policy L to the representative agent. Also note that Condition 2
implies Condition 1, which in turns implies Condition 3 (because
 > 1). In other words, if
Condition 2 is satis�ed, so are the other two conditions, andif Condition 1 is satis�ed, so is
Condition 3. Using these conditions, we obtain the following corollary.
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Corollary B1: The following statements hold forG1 and G2 from Proposition B2:

G1 > 0 if and only if Condition 1

G2 > 0 if and only if Condition 2

G1 > G 2 if and only if Condition 3

It follows that if Condition 2 holds, then both G1 > 0 and G2 > 0, and we obtain the
following signs for the partial derivatives:

1



@

@bcH

< 0;
1



@

@bcL

> 0;
1
H

@H
@bcH

< 0;
1
H

@H
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> 0

Proof of Corollary B1. We have
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2 (1� 
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 � 1) (T � � )
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� 2
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�

The third statement follows quickly from comparing the above expressions forG1 and G2.
The statements about the signs of the partial derivatives then follow immediately from
Proposition B2. Q.E.D.

The conditions in this corollary are intuitive. Consider the case in which� 2
g;H > � 2

g;L ,
that is, H is a riskier policy thanL. In that case, the conditions of this corollary state that if
the risky policy H does not have a su�ciently higher expected impact than policy L to o�set
its higher risk (i.e., if � H

g � � L
g is not large enough), then an increase in the political cost of

policy H is good news, as it decreases marginal utility (1



@

@bcH < 0) and increases expected

utility (which is proportional to 1
1� 


1
H

@H
@bcH > 0, since
 > 1). The opposite sign holds for an

increase in the cost of the less risky policyL.

When � H
g � � L

g is high enough to violate both Conditions 1 and 2, thenG1 < 0 and
G2 < 0. In that case, the signs of the partial derivatives are ambiguous because they depend
on the signs ofG� 1

1 + pH
t and G� 1

2 + pH
t . If the probability of the risky policy is small, then

an increase in the cost of the risky policy actually increases marginal utility and decreases
expected utility, due to the even smaller chance of adoptinga high growth policy.

Corollary B1 immediately implies Corollary B2, which determines the signs of� �;H , � �;L ,
� M;H , and � M;L .
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Corollary B2: The signs of the di�usion terms in the state price density andstock
market returns are as follows:
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The above signs are intuitive. Both Conditions 1 and 3 indicate that � 2
g;H is su�ciently

higher than � 2
g;L , so that the riskier policy H is less desirable than policyL in that the

expected impact of policyH does not o�set its higher risk. Since a positive shock to the
perceived political cost of policyH (dbcH > 0) makes (the less desirable) policyH less likely,
it represents good news, and it increases the stock market value (� M;H > 0) while also
decreasing the state price (� �;H < 0). Similarly, since Conditions 1 and 3 make policyL
more desirable, a political shock that makes policyL less likely is bad news, and it decreases
the stock market value (� M;L < 0) while increasing the state price (� �;L > 0). The slight
di�erence between Conditions 1 and 3 is related to the fact that maximizing stock market
value is not equivalent to maximizing expected utility, as discussed in the paper.

3.2. Two New Policies ( N = 2), Iso-Utility Case

We now return to the two-policy setting from Section 3.1. andadd the iso-utility assumption
(e� L = e� H ). Under that assumption, we obtain even clearer predictions for the signs of the
partial derivatives and thus also for� �;H , � �;L , � M;H , � M;L , and, last but not least, for the
political risk premium.

Corollary B3: In the iso-utility case (e� L = e� H ), the limiting expressions whenbgt ! �1
simplify to
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where using
�
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g

�
= 1

2

�
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�
(T � � ) ( 
 � 1) we have the simpler expression for

G1 given by
G1 = e



2 (� 2

g;H � � 2
g;L )(T � � )2

� 1 > 0

In this case,G1 > 0, and therefore an increase in the political cost of the high-risk policy
H is always good news as it decreases the marginal utility of the representative agent. An
increase in the cost of policyH of course does not change expected utility, as both policies
yield the same utility.

We conclude by deriving a closed-form expression for the political risk premium in the
iso-utility case whenbgt ! �1 . That is equation (A5) in the paper.

Corollary B4: If N = 2, e� L = e� H , and bgt ! �1 , then
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This is equation (A5) in the paper.

Given our parameters
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= 0:5623
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and hence

Political Risk Premium = 2 � (0:5623)2 � :14=:052 = 2:53%

This is indeed the value that we see in Figure 3 in the paper.

3.3. More On the Signs of � �;n and � M;n for N > 2

The earlier subsections of Section 3. of this Technical Appendix provide some useful results
on the signs of� �;n and � M;n . Most important, Corollary B2 provides the necessary and
su�cient parametric conditions for these signs to be positive or negative in the special case
of two new policies and very poor economic conditions (N = 2 and bgt ! �1 ).

In general, though, it is impossible to determine the signs of � �;n and � M;n solely as a
function of the model's parameters. The reason is that thesesigns generally depend not only
on the parameters but also on the prevailing beliefs about the political costs of the various
policies as well as the state of the economy. In particular, how the market responds to a
given political signal about a given policy depends not onlyon the parameters of that policy
but also on the beliefs about the alternative policies that are also available.

This section presents a simple example that illustrates this point. In this example, the
signs of� �;n � and � M;n � for a given policyn� can be positive or negative, depending on the
agents' current beliefs about the political costs of policies other thann� .

Example: ConsiderN new policies that are ordered by their utility scores:

e� 1 � e� 2 � : : : � e� N ;

so that policy 1 is the most desirable. Assume that economic conditions are so poor that
the probability of retaining the old policy is zero (i.e.,bgt ! �1 , so that p0

t ! 0; as a result,P N
n=1 pn

t = 1). Pick a policy n� 2 f 2; :::; N � 1g that has a positive adoption probability,
pn �

t > 0. In addition to policy n� , there is only one other policy with a positive adoption
probability. Consider two scenarios:

(1) The other positive-probability policy, denoted bym� ; is less desirable (m� > n � );
(2) The other positive-probability policy, denoted bym�� , is more desirable (m�� < n � ).

In other words, we assume that after some learning about political costs, investors have
determined that only two new policies are realistically on the table: policiesn� and m�

(Scenario 1), or policiesn� and m�� (Scenario 2).

We now determine the signs of� M;n � and � �;n � under the two belief scenarios.

Scenario 1 : For all n =2 f n� ; m� g, let bcn
t ! 1 , so that pn

t ! 0. Thus, in the limit,
pn �

t + pm �

t = 1, and we are e�ectively in the two-policy case from Section3.1. Let m� > n � ,
so that e� n �

� e� m �
, which means that Condition 2 holds forH = m� and L = n� . Since
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Condition 2 implies both Conditions 1 and 3, the results fromCorollary B2 hold as well.
Speci�cally, we have

� �;m � < 0

� �;n � > 0

� M;m � > 0

� M;n � < 0 :

Scenario 2 : For all n =2 f n� ; m�� g, let bcn
t ! 1 , so that pn

t ! 0. Thus, in the limit,
pn �

t + pm ��

t = 1, and we are e�ectively in the two-policy case from Section3.1. Let m�� < n � ,
so that e� n �

� e� m ��
, which means that Condition 2 holds forH = n� and L = m�� . Since

Condition 2 implies both Conditions 1 and 3, the results fromCorollary B2 hold as well.
Speci�cally, we have

� �;n � < 0

� �;m �� > 0

� M;n � > 0

� M;m �� < 0

Note that for our reference policyn� , we have� M;n � < 0 in Scenario 1 but� M;n � > 0 in
Scenario 2. In addition,� �;n � > 0 in Scenario 1 but� �;n � < 0 in Scenario 2. Even though the
model's parameters are the same in the two scenarios, the belief con�gurations are di�erent.
The intuition behind these results is as follows.

In Scenario 1,n� is the more desirable of the two policies. A higher perceivedpolitical
cost of policyn� is bad news because it increases the likelihood that the lessdesirable policy
m� will be adopted. Therefore, a positive political shockdcn �

> 0 depresses stock prices
(� M;n � < 0) and increases marginal utility (� �;n � > 0).

In Scenario 2,n� is the less desirable of the two policies. A higher perceivedpolitical
cost of policy n� is good news because it increases the likelihood that the more desirable
policy m�� will be adopted. Therefore, a positive political shockdcn �

> 0 boosts stock prices
(� M;n � > 0) and reduces marginal utility (� �;n � < 0).

This example illustrates that in general, current beliefs about policy options play a crucial
role in determining whether news about the political cost ofa given policy is good or bad
from the investors' perspective. What matters is not only the parameters of the given policy
but also the agents' beliefs about the relative likelihoodsof the alternative policies. In other
words, the same news about the same policy can be good or bad, depending on what we
currently believe about the alternative policies.
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4. Model Extension: Di�erent Signal Precisions

In this section, we analyze an extension of our model in whichwe allow the precisions of
political signals to vary across policies. This extension con�rms our basic results and also
provides a few additional insights.

The value of h in equation (11) in the paper is policy-independent, so thatpolitical
signals are equally precise for each policy. In practice, however, signal precisions are likely to
vary across policies. While some policies are widely debated on the public stage, others are
discussed behind closed doors. To capture this heterogeneity, we generalize equation (11):

dsn
t = cndt + hndZn

c;t ; n = 1; : : : ; N; (B40)

where thehn values vary across policies. We consider the two-policy case (N = 2):

dsH
t = cH dt + hH dZH

c;t (B41)

dsL
t = cL dt + hL dZL

c;t ; (B42)

with hH 6= hL . We take the parameter values from Table 1, as before. We holdthe hn value
of one policy �xed at 5%, as in Table 1, and vary thehn value for the other policy to 10%
and in�nity. We solve the model numerically and plot the risk premium components as a
function of bgt , similar to Figure 3 in the paper. The resulting �gure is shown below.
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Figure B1. The equity risk premium and its components: Di�er ent signal precisions.
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Note that the political risk premium has two components, onedriven by learning about
cH (shown in yellow at the top) and the other driven by learning about cL (shown in red,
second from the top).

Our �rst �nding is that the political risk premium continues to depend onbgt in a manner
very similar to that in Figure 3. For all combinations of hL and hH considered here, the
political risk premium is substantial, well in excess of 1% per year, whenbgt is very low, while
it is zero whenbgt is high. The basic implications of our model thus generalizeto a setting
with di�erent signal precisions.

More interesting, we also consider the risk premia induced by learning about CL and CH

separately instead of pooling them into a single political risk premium. For both n = H and
n = L, we �nd that when hn increases, the risk premium for signals aboutCn decreases.
The reason is simple: whenhn increases, those signals become less precise. In the limit,
when hn ! 1 , the risk premium for Cn signals disappears. However, the total political
risk premium, which is the sum of theL and H components, does not change much ashn

increases. For example, whenhL increases, theL component decreases, but at the same time
the H component increases and largely picks up the di�erence. Theweakness of the signals
about policy L makes the signals about policyH more price-relevant, and vice versa.

This complementarity between the signals aboutCH and CL is easiest to see whenbgt is
very low. In that case, a policy change is essentially certain, so the probabilities of policies
H and L add up to one. Therefore, it does not matter whether we learn from the CH shocks
or the CL shocks; they a�ect the policy probabilities in the same way.For intermediate
values ofbgt , we do �nd some asymmetry between policiesH and L: the risk premium is
larger when the signals about policyH |the riskier policy|are relatively more precise.
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5. Model Extension: Policy-Unrelated Business Cycles

This extension, described in Section 6 in the paper, introduces an additional persistent source
of variation in pro�tability that is unrelated to governmen t policy. In this appendix, we �rst
�ll in the details of the calculations that are omitted from the paper. We then show the
plots that summarize the main results.

We modify the pro�tability process from the paper's equation (1) as follows:

d� i
t = ( � t + gt ) dt + �dZ t + � 1dZ i

t ;

where� t follows the mean-reverting process

d� t = � (� � � t ) dt + � � dZ�;t :

Agents do not observe� t , but they learn about it by observingd� i
t and an additional signal:

dSt = � tdt + � SdZS;t : (B43)

Above, � , � , � � , and � S are known constants, anddZ�;t and dZS;t are Brownian motions
uncorrelated with all others.

5.1. Learning

The set of unknown quantities includes political costs,� t , and gt . Learning about political
costs proceeds in the same way as in the paper. Below, we characterize learning about� t

and gt . Recall that gt = g0 is constant until time � .

We assume that the prior distribution for � t and g0 at time 0 is jointly normal:
�

� 0

g0

�
� N

�
b� 0

bg0
;
�

b� 2
�; 0 b� �g; 0

b� �g; 0 b� 2
g;0

��
:

Standard arguments for Bayesian learning in continuous time yield the following:

Proposition B3: The posterior distribution at any time t � � is given by
�

� t

g0

�
� N

�
b� t

bgt
;
�

b� 2
�;t b� �g;t

b� �g;t b� 2
g;t

��
;

where the posterior means follow

db� t = � (� � b� t ) dt + � � 1
�
b� 2

�t + b� �g;t
�

dbZ1;t + � � 1
S b� 2

�t dbZ2;t (B44)

dbgt = � � 1 �
b� �g;t + b� 2

gt

�
dbZ1;t + � � 1

S b� �g;t dbZ2;t (B45)
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and the posterior variances and covariances follow

db� 2
�;t

dt
= � 2� b� 2

�;t + � 2
� �

�
� � 2

�
b� 2

�t + b� �g;t
� 2

+ � � 2
S

�
b� 2

�;t

� 2
�

db� �g;t

dt
= � � b� �g;t �

�
� � 2

�
b� 2

�t + b� �g;t

� �
b� �g;t + b� 2

gt

�
+ � � 2

S b� 2
�;t b� �g;t

�

db� 2
gt

dt
= �

�
� � 2

�
b� �g;t + b� 2

gt

� 2
+ � � 2

S b� 2
�g;t

�
:

Above, the new Brownian motions
�

dbZ1;t ; dbZ2;t

�
re
ect expectation errors:

dbZ1;t = � � 1

�
dBt

B t
� E t

�
dBt

B t

��

dbZ2;t = � � 1
S [dSt � E t [dSt ]] :

Note that both new Brownian motions a�ect both posterior means in equations (B44) and
(B45). In the special limiting case� S ! 1 , the second Brownian motion drops out because
the signal dSt is then in�nitely imprecise. In that special case, equations (B44) and (B45)
simplify to

db� t = � (� � b� t ) dt + � � 1
�
b� 2

�t + b� �g;t
�

dbZ1;t

dbgt = � � 1
�
b� �g;t + b� 2

gt

�
dbZ1;t ;

and the posterior means become instantaneously perfectly correlated. In particular, news
about aggregate pro�tability (dbZ1;t ) a�ects both b� t and bgt . The magnitudes of these e�ects
depend on the degree of uncertainty aboutb� t and bgt . If b� 2

�;t is small relative to b� 2
gt, the

update on bgt is larger than the update onb� t , and vice versa. In addition,b� t is a�ected by
mean reversion. A higher value of� implies stronger mean reversion and, consequently, a
relatively weaker in
uence ofdbZ1;t . Furthermore, a higher� implies lower uncertainty about
b� t .

5.2. The Government's Policy Decision

We show below that the government's decision rule in this extended model is very similar
to the decison rule in the basic model in the paper. For eachn = 0; :::; N , we rede�ne the
utility score of policy n at time � as follows:

e� n = � n
g �

b� 2
g;n

2
(
 � 1) (T � � ) � (
 � 1) Q1 (�; T ) b� �g;n ;

where

Q1 (t; T ) =
1 � e� � (T � t )

�
:
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This utility score is the same as the utility score in the paper, except for one additional
term, (
 � 1) Q1 (�; T ) b� �g;n . This term involves b� �g;n , the covariance between� � and gn as
of time � . For n = 0, this covariance is given by the posterior covarianceb� �g;� because some
learning about g0 takes place before time� . For n > 0, this is a prior covariance.

Proposition B4: The government chooses policyn at time � if and only if the following
condition holds for all policiesm 6= n; m 2 f 0; 1; : : : ; Ng:

e� n � ecn > e� m � ecm ;

where
ecn =

cn

(
 � 1) (T � � )
n = 0; 1; : : : ; N :

The government's decision rule is thus identical to the rulein Proposition 1 in the paper,
except for the slightly rede�ned utility score.

Corollary B5: A policy change occurs at time� if and only if

bg� < max
n2f 1;::;N g

f e� n � ecng +
b� 2

�

2
(
 � 1) (T � � ) + ( 
 � 1) Q1 (�; T ) b� �g;� :

This rule is the same as in Corollary 1 the paper, except for the extra term at the end, which
re
ects the persistent variation in � t introduced here.

5.3. Stock Prices

First, we establish the pricing results immediately after the policy decision at time� .

Proposition B5: The stochastic discount factor at time� + conditional on policy n
being chosen is given by

� n
� + = E � +

�
B � 


T j n at �
�

= B � 

� exp

�
1
2


 (1 + 
 ) � 2 (T � � ) � 
 � (T � � ) + � 2
�


 2

2
Q (� ; T) � 
Q 1 (� ; T) (b� t � � )

� 
� n
g (T � � ) +

1
2


 2Q1 (�; T )2 b� 2
�;� +

1
2


 2 (T � � )2 b� 2
g;n + 
 2Q1 (�; T ) (T � � ) b� �g;n

�
;

whereQ1 (t; T ) is given above andQ (t; T ) is equal to

Q (t; T) =
�
(T � t) +

1 � e� 2� (T � t )

2�
� 2Q1 (t; T)

�
:

Proposition B6 : The M/B at time � + conditional on policy n being chosen is
�

M
B

� n

� +

= exp
�

� 
� 2 (T � t) + � (T � � ) + � 2
�

1
2

(1 � 2
 ) Q (t; T) + Q1 (� ; T) (b� t � � )

+ � n
g (T � � ) +

1
2

(1 � 2
 ) Q1 (�; T )2 b� 2
�;� +

1
2

(1 � 2
 ) (T � � )2 b� 2
g;n

+ (1 � 2
 ) Q1 (�; T ) (T � � ) b� �g;n g :
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Next, we provide the pricing results before time� , which are the focus of this paper.

Proposition B7: The stochastic discount factor at timet < � is given by

� t = B � 

t exp

�
1
2


 (1 + 
 ) � 2 (T � � ) � 
 � (T � � ) + � 2
�


 2

2
Q (� ; T) +

1
2


 2Q1 (�; T )2 b� 2
�;�

�

 ( St ; t) ;

where


 ( St ; t) = E
h
e� 
 � b� � 
Q 1 ( � ;T )( b� � � � ) � 
� n

g (T � � )+ 1
2 
 2(T � � )2 b� 2

g;n + 
 2 Q1( �;T )( T � � )b� �g;n jSt

i
;

� b� = b� � bt , and the state variables areSt = [ b� t ; bgt ; bc1;t ; ::; bcN;t ; t].

The dynamics of the stochastic discount factor are as follows:

d� t

� t
= � �; 1;tdbZ1;t + � �; 2;tdbZ2;t +

NX

n=1

� �;c;n;t dbZ n
c;t :

where

� �; 1;t =
�
� 
� +

1



@

@b� t

� � 1
�
b� 2

�t + b� �g;t
�

+
1



@

@bgt

� � 1
�
b� �g;t + b� 2

gt

�
�

� �; 2;t =
�

1



@

@b� t

� � 1
S b� 2

�t +
1



@

@bgt

� � 1
S b� �g;t

�

� �;c;n;t =
1



@

@bcn

t
b� 2

c;n;t h
� 1

The �rst variable, � �; 1;t , represents the price of risk associated with the economic shocks
from our basic model, namely, shocks associated with surprises in aggregate pro�tability.
The third variable, � �;c;n;t , is the price of risk associated with the political shocks from our
basic model. The second variable,� �; 2;t , is new|it captures the additional economic shocks
associated with the signaldSt .

Proposition B8: The M/B at time t < � is given by

M t

B t
= exp

�
� 
� 2 (T � � ) + � (T � � ) + � 2

�
1
2

(1 � 2
 ) Q (� ; T) +
1
2

(1 � 2
 ) Q1 (�; T )2 b� 2
�;�

�
H (St )

 ( St)

;

where

H (St) = E
h
e(1� 
 )� b� +(1 � 
 )Q1( � ;T )( b� � � � )+(1 � 
 ) � n

g (T � � )+ 1
2 (1� 
 )2(T � � )2 b� 2

g;n +(1 � 
 )2 Q1(�;T )( T � � )b� �g;n jSt

i
:

The stock return process is given by

dM t

M t
= � M;t dt + � M 1;tdbZ1t + � M 2;tdbZ2t +

X
� M;c;n;t dbZ n

c;t ;
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where

� M 1;t = � +
�

1
H

@H
@b� t

�
1



@

@b� t

�
� � 1

�
b� 2

�t + b� �g;t
�

+
�

1
H

@H
@bgt

�
1



@

@bgt

�
� � 1

�
b� �g;t + b� 2

gt

�

� M 2;t =
�

1
H

@H
@b� t

�
1



@

@b� t

�
� � 1

S b� 2
�t +

�
1
H

@H
@bgt

�
1



@

@bgt

�
� � 1

S b� �g;t

� M;c;n;t =
�

1
H

@H
@bcn

t
�

1



@

@bcn

t

�
b� 2

c;n;t h
� 1 :

The risk premium has the same expression as in the paper, withone additional term:

� M;t = � M 1;t � �; 1;t + � M 2;t � �; 2;t +
X

n

� M;c;n;t � �;c;n;t :

Given the large number of state variables, we compute 
 (St ) and H (St ) by Monte
Carlo integration. This method is e�cient because we know the joint distribution of the
relevant stochastic variables, namely, �b� ; b� � and bg� . (The variable bg� appears in the relevant
expectations because� 0

g = bg� .) This joint distribution as of time t < � is given by
0

@
� b�

b� �

bg�

1

A � N

0

@

0

@
(b� t � � ) Q1 (t; � ) + ( � + bgt ) ( � � t)

� + ( b� t � � ) e� � (� � t )

bgt

1

A ;
Z

� ( s) � ( s)0ds

1

A ;

where

� ( s) =

0

@
� 0

� � 1
�
b� 2

�s + b� �g;s

�
� � 1

S b� 2
�s

� � 1
�
b� �g;s + b� 2

g;s

�
� � 1

S b� �g;s

1

A :

We can compute
R

� ( s) � ( s)0ds numerically, construct a large number of draws of �b� ; b� �

and bg� from their joint distribution, and calculate the relevant expectations by averaging
across those draws. We also simulate the political costsbcn;� by drawing them from their
normal distributions.

We calibrate the model for the two-policy case and the parameter values in Table 1. We
choose� = 10% for consistency with Table 1.

In the baseline parameterization, we choose� = 0:35 and � � = 2%, which correspond
to estimates of the mean-reverting process for aggregate pro�tability reported in P�astor and
Veronesi (2006). We set the prior varianceb� 2

�; 0 = � � and the prior covarianceb� �g;n = 0 for
all n. We set this prior covariance between� � and gn equal to zero, for simplicity, because
there is no obvious reason to make a di�erent assumption. In the baseline parameterization,
we choose� S = 5%.

We construct a large number of plots, listed on the followingpage, to examine the sen-
sitivity of the results to changes in the baseline parameterization. In particular, we vary
the baseline values of� S, � c, � g, � � , T � � , � , and h. The main conclusion is that our
basic results about the political risk premium and its dependence on economic conditions
are remarkably robust.
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The subsequent pages show the following plots for the business cycle extension:

Figure B2. The equity risk premium and its components: The e�ect of � S.

Figure B3. Stock prices and risk premia:� S = 5%.

Figure B4. Stock prices and risk premia:� S ! 1 .

Figure B5. The equity risk premium and its components: The e�ect of � c.

Figure B6. The equity risk premium and its components: The e�ect of � g.

Figure B7. The equity risk premium and its components: The e�ect of � � .

Figure B8. The equity risk premium and its components: The e�ect of T � � .

Figure B9. The equity risk premium and its components: The e�ect of � .

Figure B10. The equity risk premium and its components: The e�ect of h.

Figure B11. Stock exposures to political shocks,� M;H and � M;L : The e�ect of � c.

Figure B12. Stock exposures to political shocks,� M;H and � M;L : The e�ect of � g.

Figure B13. Stock exposures to political shocks,� M;H and � M;L : The e�ect of � � .

Figure B14. Stock exposures to political shocks,� M;H and � M;L : The e�ect of T � � .

Figure B15. Stock exposures to political shocks,� M;H and � M;L : The e�ect of � .

Figure B16. Stock exposures to political shocks,� M;H and � M;L : The e�ect of h.

Figure B17. Prices of risk for political shocks,� �;H and � �;L : The e�ect of � c.

Figure B18. Prices of risk for political shocks,� �;H and � �;L : The e�ect of � g.

Figure B19. Prices of risk for political shocks,� �;H and � �;L : The e�ect of � � .

Figure B20. Prices of risk for political shocks,� �;H and � �;L : The e�ect of T � � .

Figure B21. Prices of risk for political shocks,� �;H and � �;L : The e�ect of � .

Figure B22. Prices of risk for political shocks,� �;H and � �;L : The e�ect of h.

Figure B23. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function of� c.

Figure B24. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function of� g.

Figure B25. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function of� � .

Figure B26. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function ofT � � .

Figure B27. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function of� .

Figure B28. � �;H , � �;L , � M;H , � M;L , and RP components forbgt ! �1 as a function ofh.

38



0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

Economic conditions (ĝt + 7̂t )
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Figure B2. The equity risk premium and its components: Polic y-unrelated business cycles.
The e�ect of � S .
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Figure B3. Stock prices and risk premia: Policy-unrelated b usiness cycles. � S = 5%
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Figure B4. Stock prices and risk premia: Policy-unrelated b usiness cycles. � S ! 1
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Figure B5. The equity risk premium and its components: The e� ect of � c.
From the model extension on policy-unrelated business cycles.
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P
e

rc
e

n
t

p
e

r
ye

a
r

s
g
  =   0.03

 

 

0 0.05 0.1 0.15 0.2
0

2

4

6

8

Economic conditions (ĝt + 7̂t )
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Figure B6. The equity risk premium and its components: The e� ect of � g.
From the model extension on policy-unrelated business cycles.
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P
e

rc
e

n
t

p
e

r
ye

a
r

s
m
  =   0.03

 

 

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

Economic conditions (ĝt + 7̂t )
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Figure B7. The equity risk premium and its components: The e� ect of � � .
From the model extension on policy-unrelated business cycles.
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Figure B8. The equity risk premium and its components: The e� ect of T � � .
From the model extension on policy-unrelated business cycles.
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Figure B9. The equity risk premium and its components: The e� ect of � .
From the model extension on policy-unrelated business cycles.
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Figure B10. The equity risk premium and its components: The e �ect of h.
From the model extension on policy-unrelated business cycles.
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Figure B11. Stock exposures to political shocks, � M;H and � M;L : The e�ect of � c.
From the model extension on policy-unrelated business cycles.
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s

M

s
M

 :  s
g
  =   0.02

 

 
s

ML

s
MH

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Economic conditions (ĝt + 7̂t )
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Figure B12. Stock exposures to political shocks, � M;H and � M;L : The e�ect of � g.
From the model extension on policy-unrelated business cycles.
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Figure B13. Stock exposures to political shocks, � M;H and � M;L : The e�ect of � � .
From the model extension on policy-unrelated business cycles.
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Figure B14. Stock exposures to political shocks, � M;H and � M;L : The e�ect of T � � .
From the model extension on policy-unrelated business cycles.

51



0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Economic conditions (ĝt + 7̂t )
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Figure B15. Stock exposures to political shocks, � M;H and � M;L : The e�ect of � .
From the model extension on policy-unrelated business cycles.
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Figure B16. Stock exposures to political shocks, � M;H and � M;L : The e�ect of h.
From the model extension on policy-unrelated business cycles.
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Figure B17. Prices of risk for political shocks, � �;H and � �;L : The e�ect of � c.
From the model extension on policy-unrelated business cycles.

54



0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Economic conditions (ĝt + 7̂t )
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Figure B18. Prices of risk for political shocks, � �;H and � �;L : The e�ect of � g.
From the model extension on policy-unrelated business cycles.
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s

p

s
p
 :  s

m
  =   0.02

 

 
s

pL

s
pH

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Economic conditions (ĝt + 7̂t )
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s
p

s
p
 :  s

m
  =   0.04

 

 
s

pL

s
pH

Figure B19. Prices of risk for political shocks, � �;H and � �;L : The e�ect of � � .
From the model extension on policy-unrelated business cycles.
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Figure B20. Prices of risk for political shocks, � �;H and � �;L : The e�ect of T � � .
From the model extension on policy-unrelated business cycles.
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Figure B21. Prices of risk for political shocks, � �;H and � �;L : The e�ect of � .
From the model extension on policy-unrelated business cycles.
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Figure B22. Prices of risk for political shocks, � �;H and � �;L : The e�ect of h.
From the model extension on policy-unrelated business cycles.
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Figure B23. Key pricing quantities in very poor economic con ditions as a function of � c.
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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Figure B24. Key pricing quantities in very poor economic con ditions as a function of � g.
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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Figure B25. Key pricing quantities in very poor economic con ditions as a function of � � .
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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Figure B26. Key pricing quantities in very poor economic con ditions as a function of T � � .
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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Figure B27. Key pricing quantities in very poor economic con ditions as a function of � .
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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Figure B28. Key pricing quantities in very poor economic con ditions as a function of h.
Panel A: Prices of risk for political shocks, � �;H and � �;L .
Panel B: Stock exposures to political shocks,� M;H and � M;L .
Panel C: The components of the political risk premium corresponding to signals about the political costs of
policy H versus policyL .
Panel D: The economic versus political components of the total risk premium. The political risk premium is
due to signals about the political costs of policyH versus policyL . The economic risk premium is the sum
of all other risk premium components (capital shocks, impact shocks, signal S shocks).
From the model extension on policy-unrelated business cycles.
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