Technical Appendix

to accompany

Political Uncertainty and Risk Premia

Ľuboš Pástor
University of Chicago,
CEPR, and NBER

Pietro Veronesi
University of Chicago,
CEPR, and NBER

September 24, 2011
Proof of Lemma 1. The same argument leading to equation (IA.8) in the Internet Appendix of Pastor and Veronesi (2011) implies that conditional on policy \(n, n = 0, 1, \ldots, N \), being chosen at time \(\tau \), aggregate capital is given by
\[
B_T = B_\tau e^{(\mu_n + g_n - \frac{1}{2} \sigma_n^2)(T - \tau) + \sigma (Z_T - Z_\tau)}
\]
Thus, exploiting \(W_T = B_T \) we have
\[
E_\tau \left[\frac{W_T^{1 - \gamma}}{1 - \gamma} \middle| \text{policy } n \right] = \frac{B_\tau^{1 - \gamma}}{1 - \gamma} e^{(1 - \gamma)(T - \tau) \mu_n + \frac{1}{2}(1 - \gamma)^2(T - \tau)^2 \sigma_n^2 + (\mu - \gamma \frac{3}{2} \sigma^2)(T - \tau)(1 - \gamma)}
\]
It follows immediately that
\[
E_\tau \left[\frac{W_T^{1 - \gamma}}{1 - \gamma} \middle| \text{policy } n \right] > E_\tau \left[\frac{W_T^{1 - \gamma}}{1 - \gamma} \middle| \text{policy } m \right]
\]
if and only if
\[
\widetilde{\mu}^n = \mu_n + \frac{1}{2} (1 - \gamma)(T - \tau) \sigma_n^2 > \mu_m + \frac{1}{2} (1 - \gamma)(T - \tau) \sigma_m^2 = \tilde{\mu}^m
\]
Q.E.D.

Proof of Proposition 1. The government chooses policy \(n \in \{0, 1, \ldots, N\} \) if and only if for all \(m \neq n, m = 0, 1, \ldots, N \),
\[
E_\tau \left[\frac{C^n W_T^{1 - \gamma}}{1 - \gamma} \middle| \text{policy } n \right] > E_\tau \left[\frac{C^m W_T^{1 - \gamma}}{1 - \gamma} \middle| \text{policy } m \right]
\]
where recall that \(C^0 = 1 \). The same calculations as in Lemma 1 lead to the inequality
\[
\mu_n - \frac{\sigma_n^2}{2} (T - \tau)(\gamma - 1) - \frac{c^n}{(\gamma - 1)(T - \tau)} > \mu_m - \frac{\sigma_m^2}{2} (T - \tau)(\gamma - 1) - \frac{c^m}{(\gamma - 1)(T - \tau)}
\]
(B1)
The claim follows from the definitions of \(\tilde{\mu}^n \) and \(\tilde{c}^n \) in equations (15) and (23). Q.E.D.

Proof of Corollary 1. Immediate from Proposition 1 and equations (16) and (17).

Proof of Corollary 2. As of time \(t \), we have for each \(n = 1, \ldots, N \)
\[
c^n \sim N(\tilde{c}_n, \sigma_n^2)
\]
(B2)
Given the condition in Proposition 1 that policy \(n \in \{1, \ldots, N\} \) is chosen if and only if
\[
\tilde{\mu}^n - \tilde{c}^n > \tilde{\mu}^m - \tilde{c}^m \quad m \neq n, m = 1, \ldots, N
\]
(B3)
\[
\tilde{\mu}^n - \tilde{c}^n > x_\tau
\]
(B4)
the conditional probability at \(t \) that policy \(n \) is chosen at \(\tau \) is given by

\[
p_t^n = \Pr \left(\tilde{\mu}^n - \tilde{c}^n > \tilde{\mu}^m - \tilde{c}^m \text{ for } m \neq n \right)
\]

\[
= \int_{-\infty}^{\infty} \Pr \left(\tilde{c}^n - \tilde{\mu}^n + \tilde{\mu}^m < \tilde{c}^m \text{ for } m \neq n \left| \tilde{c}^n \right. \right) \phi_{\tilde{c}^n} \left(\tilde{c}^n \right) d\tilde{c}^n
\]

\[
= \int_{-\infty}^{\infty} \Pi_{m \neq n} \Pr \left(\tilde{c}^n - \tilde{\mu}^n + \tilde{\mu}^m < \tilde{c}^m \right) \Pr \left(\tilde{\mu}^n - \tilde{c}^n > x_\tau \left| \tilde{c}^n \right. \right) \phi_{\tilde{c}^n} \left(\tilde{c}^n \right) d\tilde{c}^n
\]

where we used the fact that \(\tilde{c}^m \)'s are independent of each other as well as of \(x_\tau \). Moreover, from the definition of \(x_\tau = \hat{g}_\tau - \frac{\sigma^2}{2} (T - \tau) (\gamma - 1) \) (see equation (16)) we have \(x_\tau \left| \tilde{g}_t \right. \sim N \left(\hat{g}_\tau - \frac{\sigma^2}{2} (T - \tau) (\gamma - 1), \tilde{\sigma}^2 - \sigma^2 \right) \).

We note two properties:

1. As \(\hat{g}_t \rightarrow \infty \), then \(p_t^n \rightarrow 0 \) for all \(n \in \{1, \ldots, N\} \), as \(\Phi_x \left(\tilde{\mu}^n - \tilde{c}^n \left| \tilde{g}_t \right. \right) \rightarrow 0 \).

2. As \(t \rightarrow \tau \) we have

\[
\Phi_x \left(\tilde{\mu}^n - \tilde{c}^n \left| \tilde{g}_t \right. \right) = \int_{\tilde{\mu}^n - \tilde{c}^n}^{\infty} \phi_x \left(x \left| \tilde{g}_t \right. \right) dx \rightarrow 1_{\{x_\tau < \tilde{\mu}^n - \tilde{c}^n\}} \tag{B5}
\]

so that

\[
p_t^n = \int_{-\infty}^{\infty} \Pi_{m \neq n} \left(1 - \Phi_{\tilde{c}^m} \left(\tilde{c}^n + \tilde{\mu}^m - \tilde{\mu}^n \right) \right) \Phi_x \left(\tilde{\mu}^n - \tilde{c}^n \left| \tilde{g}_t \right. \right) \phi_{\tilde{c}^n} \left(\tilde{c}^n \right) d\tilde{c}^n
\]

\[
= \int_{-\infty}^{\tilde{\mu}^n - x_\tau} \Pi_{m \neq n} \left(1 - \Phi_{\tilde{c}^m} \left(\tilde{c}^n + \tilde{\mu}^m - \tilde{\mu}^n \right) \right) \phi_{\tilde{c}^n} \left(\tilde{c}^n \right) d\tilde{c}^n
\]

\[
= p_t^n \tag{B6}
\]

Q.E.D.

Proof of Lemma A1. Using the same arguments as to obtain equation (IA.20) in the Internet Appendix of Pastor and Veronese (2011), after the announcement of policy \(n \) at time \(\tau^+ \), the state price density is given by

\[
E_{\tau^+}[\pi_{T}\mid\text{policy } n] = \pi_{\tau^+}^n = \lambda^{-1} B_{\tau^+}^{-\gamma} e^{-\gamma \mu^+_\gamma} e^{-\gamma \mu^+ \gamma} (T - \tau) e^{-(\gamma \mu^+ + \frac{1}{2} \gamma^2 \gamma^2)(T - \tau) + \frac{\gamma^2}{2} (T - \tau)^2 \gamma^2_{\gamma, n}} \tag{B6}
\]

Therefore, using also \(B_{\tau} = B_{\tau^+} \), the state price density at \(\tau \) is

\[
\pi_{\tau} = \sum_{n=0}^{N} p_t^n \pi_{\tau^+}^n
\]

2
Therefore, we have

\[\lambda^{-1} \sum_{n=0}^{N} p_n^\tau B^{-\gamma}_\tau e^{-\gamma \mu_n^\tau (T-\tau)} e^{-\mu_{\gamma}^\tau (T-\tau)} \left(B_{\tau-\gamma} \right)^\tau \]

Using the definition \(\mu_n^0 = \check{g}_\tau \) in equation (18) and the condition

\[p_\tau^0 = 1 - \sum_{n=1}^{N} p_n^\tau \] (B7)

we can rewrite the state price density at \(\tau \) as

\[\pi_\tau = \lambda^{-1} B^{-\gamma}_\tau e^{-\gamma \mu_\tau^\gamma (T-\tau)} \left(B_{\tau+} \right)^\tau \times \left(1 + \sum_{n=1}^{N} p_n^\tau \left(e^{-\gamma (\mu_n^\tau - \check{g}_\tau)} \right) \left(B_{\tau+} \right)^\tau \right) \]

Similarly, after the announcement of policy \(n, n = 0, 1, ..., N \), at time \(\tau+ \), we have

\[E_{\tau+} \left[B^{-\gamma}_\tau B_\tau^\gamma | \text{policy n} \right] = N^{i,n}_{\tau+} B^{-\gamma}_\tau B_\tau^\gamma \times e^{\left(1-\gamma \right) \mu_\tau^\gamma (T-\tau)} e^{\left(1-\gamma \right) \mu_\tau^\gamma (T-\tau)} \left(B_{\tau+} \right)^\tau \] (B8)

Therefore, we have

\[E_\tau \left[B^{-\gamma}_\tau B_\tau^\gamma \right] = \sum_{n=0}^{N} p_n^\tau N^{i,n}_{\tau+} \]

\[= B^{-\gamma}_\tau B_\tau^\gamma \times \left(\sum_{n=0}^{N} p_n^\tau \right) \left(B_{\tau+} \right)^\tau \times \left(e^{\left(1-\gamma \right) \mu_\tau^\gamma (T-\tau)} \right) \left(B_{\tau+} \right)^\tau \]

The claim follows from taking the ratio \(M^\tau_\tau = \frac{E_\tau \left[B^{-\gamma}_\tau B_\tau^\gamma \right]}{\pi_\tau} = \frac{E_\tau \left[\tau B^{-\gamma}_\tau B_\tau^\gamma \right]}{\pi_\tau} \). Q.E.D.

Proof of Lemma A2. From (B6) and (B8) we obtain that if policy \(n, n = 0, 1, ..., N \), is selected at \(\tau+ \), then

\[M^\tau_\tau = \frac{E_{\tau+} \left[B^{-\gamma}_\tau B_\tau^\gamma | \text{policy n} \right]}{E_{\tau+} \left[B^{-\gamma}_\tau \right] | \text{policy n}} = \left(B_{\tau+} \right)^\tau e^{\left(1-\gamma \right) \mu_\tau^\gamma (T-\tau)} \left(B_{\tau+} \right)^\tau \] (B9)

Q.E.D.
Proof of Proposition 2. From Lemmas A1 and A2, the gross announcement return from announcing policy n is

$$1 + R^n (\tilde{g}_\tau) = e^{(\mu^n - \tilde{g}_\tau)(T-\tau) + \frac{1}{2}\gamma^2(T-\tau)^2(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)} \times \left(1 + \sum_{n=1}^{N} p^n \left(e^{-\gamma(\mu^n - \tilde{g}_\tau)(T-\tau) + \frac{1}{2}\gamma^2(T-\tau)^2(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)} - 1 \right) \right)$$

Similarly, recalling the notation $\mu^0_g = \tilde{g}_\tau$ and $\sigma_{g,0} = \tilde{\sigma}_\tau$, from Lemma A1 and A2 the gross announcement return from announcing no policy change is

$$1 + R^0 (\tilde{g}_\tau) = \frac{\left(1 + \sum_{n=1}^{N} p^n \left(e^{-\gamma(\mu^n - \tilde{g}_\tau)(T-\tau) + \frac{1}{2}\gamma^2(T-\tau)^2(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)} - 1 \right) \right)}{\left(1 + \sum_{n=1}^{N} p^n \left(e^{(1-\gamma)(\mu^n - \tilde{g}_\tau)(T-\tau) + \frac{(1-\gamma)^2(T-\tau)^2(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)}{2}} - 1 \right) \right)}$$

Therefore, we can write more compactly, for $n = 1, \ldots, N$,

$$1 + R^n (\tilde{g}_\tau) = e^{(\mu^n - \tilde{g}_\tau)(T-\tau) + \frac{1}{2}\gamma^2(T-\tau)^2(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)} \times \left(1 + R^0 (\tilde{g}) \right)$$

We can express all the formulas in terms of $\tilde{\mu}^n$ and x_τ. Using the definitions

$$\tilde{\mu}^n + \frac{\sigma_{g,n}^2}{2} (T-\tau) (\gamma - 1) = \mu^n$$

$$x_\tau + \frac{\tilde{\sigma}_\tau^2}{2} (T-\tau) (\gamma - 1) = \tilde{g}_\tau$$

we have

$$(\mu^n - \tilde{g}_\tau) = (\tilde{\mu}^n - x_\tau) + \frac{(\sigma_{g,n}^2 - \tilde{\sigma}_\tau^2)}{2} (T-\tau) (\gamma - 1)$$

The claim of Proposition 2 then follows quickly. Q.E.D.

Proof of Corollary 3. Immediate from Proposition 2. Q.E.D.

Proof of Corollary 4. Immediate from Corollary 3: for any two policies n and m with $\tilde{\mu}^n = \tilde{\mu}^m$, the result follows from equation (31). Q.E.D.

Proof of Proposition 3: To prove this proposition, we need three lemmas:

Lemma B1. Δb_τ and \tilde{g}_τ are perfectly correlated, and we can write

$$\Delta b_\tau = E_t [\Delta b_\tau] + (\tilde{g}_\tau - E_t [\tilde{g}_\tau]) \left[\frac{\sigma^2}{\tilde{\sigma}_\tau^2} + (\tau - t) \right]$$

$$= E_t [\Delta b_\tau] + (x_\tau - E_t [x_\tau]) \left[\frac{\sigma^2}{\tilde{\sigma}_\tau^2} + (\tau - t) \right]$$

Proof of Lemma B1: From Lemma A5 in Pastor and Veronosi (2011), we have that $b_\tau = \log (B_\tau)$ and \tilde{g}_τ have the conditional joint distribution

$$\left(\begin{array}{c} b_\tau - b_t \\ \tilde{g}_\tau \end{array} \right) \sim N \left(\begin{array}{c} E_t [\Delta b_\tau] \\ E_t [\tilde{g}_\tau] \end{array} ; \begin{array}{c} V_b, C_{g,b} \\ C_{g,b}, V_{g} \end{array} \right)$$

(B15)
We now see that \(b_r - b_t \) and \(\hat{g}_r \) are perfectly correlated. In fact,

\[
\text{Corr} = \frac{C_{\hat{g}, b}}{\sqrt{V_b V_{\hat{g}}}} = \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{((\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t)) (\hat{\sigma}_t^2 - \hat{\sigma}_r^2)}}
\]

Using the fact that

\[
\hat{\sigma}_r^2 = \frac{1}{\sigma^2} + \frac{1}{\sigma^2 (\tau - t)} = \frac{\hat{\sigma}_r^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)}
\]

we find

\[
\text{Corr} = \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{((\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t)) \left(\hat{\sigma}_t^2 - \frac{\hat{\sigma}_r^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)}\right)}}
\]

\[
= \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{(\tau - t) (\hat{\sigma}_t^2 (\sigma^2 + \hat{\sigma}_r^2 (\tau - t) - \hat{\sigma}_r^2 \sigma^2))}}
\]

\[
= \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{(\tau - t) (\hat{\sigma}_r^2 (\tau - t))}} = 1
\]

It follows that we can write

\[
\Delta b_r = E_t [\Delta b_r] + \{\hat{g}_r - E_t [\hat{g}_r]\} \frac{C_{b, \hat{g}}}{V_{\hat{g}}} = E_t [\Delta b_r] + \{\hat{g}_r - E_t [\hat{g}_r]\} \sqrt{\frac{V_b}{V_{\hat{g}}}}
\]

\[
= E_t [\Delta b_r] + \{\hat{g}_r - E_t [\hat{g}_r]\} \frac{\hat{\sigma}_t^2 (\tau - t)}{\hat{\sigma}_t^2 - \hat{\sigma}_r^2} = E_t [\Delta b_r] + \{\hat{g}_r - E_t [\hat{g}_r]\} \left[\frac{\sigma^2 / \hat{\sigma}_r^2 + (\tau - t)}{\hat{\sigma}_t^2 - \hat{\sigma}_r^2}\right]
\]

where we also used the equality

\[
\hat{\sigma}_t^2 - \hat{\sigma}_r^2 = \hat{\sigma}_t^2 - \frac{\hat{\sigma}_r^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)} = \frac{(\hat{\sigma}_r^2)^2 (\tau - t)}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)}
\]

From the definition of \(x_r \), it also follows that \(x_r - E_t [x_r] = \hat{g}_r - E_t [\hat{g}_r] \). Q.E.D.
Lemma B2: The conditional distribution of $\Delta b_\tau = b_\tau - b_t = \log(B_\tau/B_t)$ conditional on time-t information and policy n being chosen at time τ is

$$f(\Delta b_\tau | S_t, n \text{ at } \tau) = \frac{\phi_{\Delta b_\tau}(\Delta b_\tau)}{p_t} \int_{-\infty}^{\tilde{x}_n - E_t[x_\tau] - (\Delta b_\tau - E_t[\Delta b_\tau])} \frac{\tilde{\sigma}_n^2}{(\tau-t)^{\sigma^2+\tilde{\sigma}_t^2}} \prod_{m \neq n} (1 - \Phi_{\bar{\eta}_n}(\tilde{c}_n^m - \tilde{\mu}_n + \tilde{\mu}_m)) \phi_{\bar{\eta}_n}(\tilde{c}_n^m) d\tilde{c}_n^m \tag{B18}$$

where $\phi_{\Delta b_\tau}(\Delta b_\tau)$ is the normal density with mean $E_t[\Delta b_\tau] = (\mu + \tilde{g}_t - \frac{1}{2} \sigma^2) (\tau-t)$ and variance $V_b = (\tau-t)^2 \tilde{\sigma}_t^2 + \sigma^2 (\tau-t)$. In addition, $E_t[x_\tau] = \tilde{g}_t - \frac{\sigma^2}{2} (T - \tau) (\gamma - 1)$.

Note that $f(\Delta b_\tau | S_t, \kappa$ at $\tau)$ does not depend on the current value of log capital, b_t, hence the conditional dependence only on S_t and time t.

Proof of Lemma B2. The conditional CDF is

$$F_{\Delta b_\tau}(\Delta b | S_t, \tilde{x}_n < \tilde{\mu}_n - \tilde{c}_n, \tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m \text{ for } m \neq n) = \frac{\Pr(\Delta b_\tau < \Delta b, \tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m \text{ for } m \neq n | S_t)}{\Pr(\tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m \text{ for } m \neq n | S_t)} \tag{B20}$$

The denominator is just p_t^n from Corollary 2. Consider the numerator. From Lemma B1:

$$\Delta b_\tau - E_t[\Delta b_\tau] = \{x_\tau - E_t[x_\tau]\} (\sigma^2/\tilde{\sigma}_t^2 + (\tau-t))$$

which implies

$$x_\tau = E_t[x_\tau] + (\Delta b_\tau - E_t[\Delta b_\tau]) \frac{\tilde{\sigma}_n^2}{(\sigma^2 + \tilde{\sigma}_t^2 (\tau-t))}$$

Thus, the joint distribution can be written as

$$\Pr(\Delta b_\tau < \Delta b, \tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m | S_t) = \Pr(\Delta b_\tau < \Delta b, E_t[x_\tau] + (\Delta b_\tau - E_t[\Delta b_\tau]) \frac{\tilde{\sigma}_n^2}{(\sigma^2 + \tilde{\sigma}_t^2 (\tau-t))} < \tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m | S_t)$$

$$= \int_{-\infty}^{\infty} \Pr(\Delta b_\tau < \Delta b, \tilde{c}_n - \tilde{\mu}_n - E_t[x_\tau] - (\Delta b_\tau - E_t[\Delta b_\tau]) \frac{\tilde{\sigma}_n^2}{(\sigma^2 + \tilde{\sigma}_t^2 (\tau-t))} < \tilde{c}_n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}_m | S_t) \phi_{\bar{\eta}_n}(\tilde{c}_n) d\tilde{c}_n$$

$$= \int_{-\infty}^{\Delta b} \int_{-\infty}^{\tilde{c}_n - E_t[x_\tau] - (\Delta b_\tau - E_t[\Delta b_\tau])} \frac{\tilde{\sigma}_n^2}{(\sigma^2 + \tilde{\sigma}_t^2 (\tau-t))} \prod_{m \neq n} [1 - \Phi_{\bar{\eta}_n}(\tilde{c}_n^m - \tilde{\mu}_n + \tilde{\mu}_m)] \phi_{\bar{\eta}_n}(\tilde{c}_n^m) d\tilde{c}_n^m d\Delta b_\tau$$

where we exploited the independence across \tilde{c}_m and with respect to Δb_τ. Substituting into (B20) and taking the first derivative with respect to Δb, we obtain the density (B19). Q.E.D.
Lemma B3: The distribution of \hat{g}_t conditional on time-t information and no new policy being chosen at time τ is

$$f(\hat{g}_t|\text{no policy change at } \tau) = \frac{\phi_{\hat{g}_t}(\hat{g}_t|\hat{g}_t)\prod_{n=1}^{N} (1 - \Phi_{\mathcal{G}}(\hat{\mu}_n^n - \hat{g}_t + \frac{\hat{\sigma}_n^2}{2}(T - \tau)(\gamma - 1)))}{p_t^n}$$

(B21)

where $\phi_{\hat{g}_t}(\hat{g}_t|\hat{g}_t)$ is the conditional normal density of \hat{g}_t, namely, $N(\hat{g}_t, \hat{\sigma}_t^2 - \hat{\sigma}_t^2)$.

Proof of Lemma B3: The conditional CDF is given by

$$F_{\hat{g}_t}(g|\text{no policy change at } \tau) = F_{\hat{g}_t}(g|x_t > \hat{\mu}_n^n - \hat{\sigma}_n^2 \text{ for all } n) = \Pr(\hat{g}_t < g \& \hat{g}_t > \hat{\mu}_n^n - \hat{\sigma}_n^2 (T - \tau)(\gamma - 1) \text{ for all } n)$$

$$= \frac{\prod_{n=1}^{N} p_t^n}{p_t^n} \int_{-\infty}^{\infty} \prod_{n=1}^{N} (1 - \Phi_{\mathcal{G}}(\hat{\mu}_n^n - \hat{g}_t + \frac{\hat{\sigma}_n^2}{2}(T - \tau)(\gamma - 1))) \phi_{\hat{g}_t}(\hat{g}_t|\hat{g}_t) d\hat{g}_t$$

$$= \int_{-\infty}^{\infty} 1_{[\hat{g}_t < g]} \prod_{n=1}^{N} (1 - \Phi_{\mathcal{G}}(\hat{\mu}_n^n - \hat{g}_t + \frac{\hat{\sigma}_n^2}{2}(T - \tau)(\gamma - 1))) \phi_{\hat{g}_t}(\hat{g}_t|\hat{g}_t) d\hat{g}_t$$

Taking the first derivative with respect to g, we obtain the density (B21). Q.E.D.

Proof of Proposition 3: We know that

$$\pi_t = E_t[\pi_{t+}] = \sum_{n=0}^{N} E_t[\pi_{t+}|n \text{ at } \tau] p_t^n$$

(B22)

Note that for $n = 1, \ldots, N$

$$E_t[\pi_{t+}|n \text{ at } \tau] = E_t\left[\lambda^{-1} B_{\tau+}^{-\gamma} e^{-\gamma \mu_{\mathcal{G}}(T-\tau)} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]}|n \text{ at } \tau\right]$$

$$= \lambda^{-1} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]} e^{-\gamma B_x E_t[e^{-\gamma(b_{t-} - b_t)}]|n \text{ at } \tau}$$

$$= \lambda^{-1} B_{\tau+}^{-\gamma} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]} \left[\int_{-\infty}^{\infty} e^{-\gamma \Delta b_r} f(\Delta b_r|S_t, n \text{ at } \tau) d\Delta b_r\right]$$

Similarly, for $n = 0$ we have

$$E_t[\pi_{t+}|0 \text{ at } \tau] = E\left[\lambda^{-1} B_{\tau+}^{-\gamma} e^{-\gamma \hat{g}_r(T-\tau)} e^{-\gamma \mu_{\mathcal{G}}(T-\tau)} e^{-\gamma \mu_{\mathcal{G}}(T-\tau)} e^{-\gamma B_t[(T-\tau)-\delta_{\mathcal{G}} n]}|0 \text{ at } \tau\right]$$
\[E = \lambda^{-1}e^{-\gamma(\gamma+1)\sigma^2}(T-t) + \frac{\sigma^2}{T}(T-t)^2\sigma_t^2 e^{-\gamma\eta} E_t \left[e^{-\gamma\Delta b_T - \gamma\hat{S}_T} \right] \]
\[= \lambda^{-1}e^{-\gamma(\gamma+1)\sigma^2}(T-t) + \frac{\sigma^2}{T}(T-t)^2\sigma_t^2 e^{-\gamma\eta} \times \]
\[\times E_t \left[e^{-\gamma(E_1[\Delta b_T] + (\hat{S}_T - E_1[\hat{S}_T]))\sigma_t^2} \right] \]
\[= \lambda^{-1}B_t^{-\gamma}e^{-\gamma\hat{S}_T(T-t)} e^{-\gamma(\gamma+1)\sigma^2}(T-t) + \frac{\sigma^2}{T}(T-t)^2\sigma_t^2 \]
\[\times \int_{-\infty}^{\infty} e^{-\gamma(E_1[\Delta b_T] + (\hat{S}_T - E_1[\hat{S}_T]))\sigma_t^2} f(\hat{S}_T | 0 \text{ at } \tau) d\hat{S}_T \]

The result follows from comparing the terms in Equations (36) and (A3) with the ones above, and defining in this proposition \(\mu_0^0 = \hat{S}_T \) and \(\sigma_{g,0}^2 = \sigma_\tau^2 \). Q.E.D.

Proof of Proposition 4: The result follows from an application of Ito’s Lemma to equation (36), and recalling that \(\pi_t \) is a martingale, and thus \(E_t[d\pi_t/\pi_t] = 0 \). Q.E.D.

Proof of Corollary 5: From property 1 in the proof of Corollary 2, for a given distribution of \(\hat{\tau}^n \), we have \(p_i^0 \to 1 \) as \(\hat{\tau} \to \infty \). It follows that the state price density converges to one that assigns zero probability to a policy change:

\[\pi_t \to \Omega(S_t) = E_t[\pi_{T+} | 0 \text{ at } n] = \lambda^{-1}E_t[B_T^{-\gamma} | 0 \text{ at } n] \]
\[= \lambda^{-1}B_t^{-\gamma}e^{-\gamma\hat{S}_T(T-t)} e^{-\gamma(\gamma+1)\sigma^2}(T-t) + \frac{\sigma^2}{T}(T-t)^2\sigma_t^2 \]

Since this state price density does not depend on any \(\hat{\tau}^n \), we have \(\frac{1}{\Omega(S_t)} \frac{\partial \Omega(S_t)}{\partial n} = 0 \). Q.E.D.

Proof of Proposition 5: The proof is identical to the proof of Proposition 3, except that we have to calculate

\[E_t[\pi_{T+} M_{T+}^i | n \text{ at } \tau] = \sum_{n=0}^{N} p_i^0 E_t[\pi_{T+} M_{T+}^i | n \text{ at } \tau] \]

From (B8), for \(n = 1, \ldots, N \):

\[E_t[\pi_{T+} M_{T+}^i | n \text{ at } \tau] = \lambda^{-1}E_t[N_{T+}^i | n \text{ at } \tau] \]
\[= \lambda^{-1}E_t[B_T^{-\gamma}B_{T+}^i \times e^{(1-\gamma)\mu_0^0(T-t)} e^{(1-\gamma)\mu_0^0(\gamma-1)\sigma^2}(T-t) + \frac{(1-\gamma)^2}{2}(T-t)^2\sigma_{0,n}^2 | n \text{ at } \tau] \]
\[= \lambda^{-1}e^{(1-\gamma)\mu_0^0(T-t)} e^{(1-\gamma)\mu_0^0(\gamma-1)\sigma^2}(T-t) + \frac{(1-\gamma)^2}{2}(T-t)^2\sigma_{0,n}^2 E_t[e^{-\gamma b_T + b_t} | n \text{ at } \tau] \]

Now, recall

\[\frac{B_T^i}{B_T^i} = \frac{B_T}{B_T} e^{-\frac{1}{2}\sigma_t^2(T-t) + \sigma_1(Z_t - Z_t^i)} \]

(B23)

which implies

\[e^{b_t^i} = e^{b_t^0 + b_t - \frac{1}{2}\sigma_t^2(T-t) + \sigma_1(Z_t - Z_t^i)} \]

(B24)
For \(n = 1, \ldots, N \), we then have:

\[
E_t \left[\pi_{\tau+} M^t_{\tau+} \mid n \text{ at } \tau \right] = \lambda^{-1} B_t^{-\gamma} B^t \left[e^{(1-\gamma)\mu_{n}^\phi(T-\tau)} e^{\left((1-\gamma)\mu + \frac{1}{2}(\gamma-1)\sigma^2\right)(T-\tau) + \frac{(1-\gamma)^2}{2} (T-\tau)^2 \sigma_{\phi,n}^2} \mid n \text{ at } \tau \right]
\]

\[
E_t \left[e^{(1-\gamma)\Delta \tau_{\tau+}} \mid n \text{ at } \tau \right] = \lambda^{-1} B_t^{-\gamma} B^t \left[e^{(1-\gamma)\mu_{n}^\phi(T-\tau)} e^{\left((1-\gamma)\mu + \frac{1}{2}(\gamma-1)\sigma^2\right)(T-\tau) + \frac{(1-\gamma)^2}{2} (T-\tau)^2 \sigma_{\phi,n}^2} \right]
\]

\[
\int e^{(1-\gamma)\Delta \tau_{\tau+}} f \left(\Delta \tau_{\tau+}, n \text{ at } \tau \right) d\Delta \tau_{\tau+}
\]

Similarly, for \(n = 0 \), we have:

\[
E_t \left[\pi_{\tau+} M^t_{\tau+} \mid 0 \text{ at } \tau \right] = \lambda^{-1} E_t \left[M^t_{\tau+} \mid 0 \text{ at } \tau \right]
\]

\[
= \lambda^{-1} e^{(1-\gamma)\mu + \frac{1}{2}(\gamma-1)\sigma^2(T-\tau) + \frac{(1-\gamma)^2}{2} (T-\tau)^2 \sigma_{\phi,n}^2} \left[e^{(1-\gamma)\Delta \tau_{\tau+} + (1-\gamma)\hat{\gamma} e(T-\tau)} \mid 0 \text{ at } \tau \right]
\]

\[
\times E_t \left[e^{(1-\gamma) \left(E_t[\Delta \tau_{\tau+}] + \hat{\gamma} e - E_t[\hat{\gamma} e] \right) \sqrt{\frac{\sigma^2}{\sigma^2}}} \right] \left[(1-\gamma)\hat{\gamma} e(T-\tau) \mid n \text{ at } \tau \right]
\]

\[
= \lambda^{-1} B_t^{-\gamma} B^t \left[e^{(1-\gamma)\hat{\gamma} e(T-\tau) + \left((1-\gamma)\mu + \frac{1}{2}(\gamma-1)\sigma^2\right)(T-\tau) + \frac{(1-\gamma)^2}{2} (T-\tau)^2 \sigma_{\phi,n}^2} \right]
\]

\[
\times \int e^{(1-\gamma) \left(E_t[\Delta \tau_{\tau+}] + \hat{\gamma} e - E_t[\hat{\gamma} e] \right) \sqrt{\frac{\sigma^2}{\sigma^2}}} + (1-\gamma)(\hat{\gamma} e(T-\tau)) f \left(\hat{\gamma} e, S_t, n \text{ at } \tau \right) d\hat{\gamma} e
\]

The result follows from comparing the terms in Equations (41) and (A4) with the ones above, and defining in this proposition \(\mu_{\phi}^0 = \hat{\gamma} e \) and \(\sigma_{\phi,n}^2 = \hat{\gamma} e^2 \). Q.E.D.

Proof of Proposition 6. The claim follows from an application of Ito’s Lemma to the price \(M^t_i \) in Proposition 5, and the equilibrium restriction \(\mu_M = \text{Cov}_t \left(\frac{dM^t_i}{M^t_i}, \frac{dP}{P} \right) \). Q.E.D.

Proof of Proposition 7. The expression for the jump risk premium follows immediately from

\[
J(S_t) = \sum_{n=0}^{N} p^n_t R^n(x_t)
\]

where \(R^n(x_t) \) are given in Proposition 2. We now see that

\[
J(S_t) = -\text{Cov}_t \left(\frac{M^n_{\tau+}}{M^t_i} - 1, \frac{\pi_{\tau+}}{\pi_t} - 1 \right) = - \left\{ E_t \left[J_M J_{\pi^n} \right] - E_t \left[J_M \right] E_t \left[J_{\pi^n} \right] \right\}
\]

where, if policy \(n \) is chosen, we denote \(J^n_m = \frac{M^n_{\tau+}}{M^t_i} \) and \(J^n = \frac{\pi_{\tau+}}{\pi_t} \). Recall from Proposition 2 that

\[
J^n_M = 1 + R^n(x_t)
\]
\[
J^n_\pi (x_\tau) = \frac{\pi^n_\tau}{\pi_\tau} = \frac{1}{\left(1 + \sum_{k=1}^{N} p_k^\pi \left(e^{-\gamma (\tilde{\mu}_n - x_\tau)} + \frac{1}{2}(T-\tau) e^\pi e(T-\gamma (\tilde{\mu}_n - x_\tau))^2 - 1 \right) \right)}
\]

This implies that

\[
J^n_\pi (x_\tau) J^0_\pi (x_\tau) = \frac{e^{(1-\gamma)(\tilde{\mu}_n - x_\tau)}(T-\tau)}{\left(1 + \sum_{k=1}^{N} p_k^\pi \left(e^{(1-\gamma)(T-\tau)}(\tilde{\mu}_n - x_\tau) - 1 \right) \right)}
\] for \(n = 1, \ldots, N\)

\[
J^0_\pi (x_\tau) J^0_\pi (x_\tau) = \frac{1}{\left(1 + \sum_{k=1}^{N} p_k^\pi \left(e^{(1-\gamma)(T-\tau)}(\tilde{\mu}_n - x_\tau) - 1 \right) \right)}
\]

It follows that

\[
E_\tau \left[J_\pi (x_\tau) J_\pi (x_\tau) \right] = \sum_{k=1}^{N} p_k^\pi \left\{ \frac{e^{(1-\gamma)(\tilde{\mu}_n - x_\tau)(T-\tau)}}{\left(1 + \sum_{k=1}^{N} p_k^\pi \left(e^{(1-\gamma)(T-\tau)}(\tilde{\mu}_n - x_\tau) - 1 \right) \right)} \right\}
\]

\[
= \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \]

Similarly,

\[
E_\tau \left[J_\pi (x_\tau) \right] = \sum_{k=1}^{N} p_k^\pi \left\{ \frac{e^{-\gamma \tilde{\mu}_n (T-\tau)} e^{\frac{1}{2}(x_n - x_\tau)^2}}{e^{-\gamma x_\tau (T-\tau)} e^{\frac{1}{2}(x_n - x_\tau)^2} J^0_\pi (x_\tau)} \right\} + \left(1 - \sum_{k=1}^{N} p_k^\pi \right) J^0_\pi (x_\tau)
\]

\[
= \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \left[\sum_{k=1}^{N} p_k^\pi \right] \]
Thus, we finally obtain

\[J(x_\tau) = -\text{Cov}_\tau(J_M, J_\pi) = -\left\{ E_\tau [J_M J_\pi] - E_\tau [J_M] E_\tau [J_\pi] \right\} \]
\[= E_\tau [J_M] - 1 \]

Q.E.D.

REFERENCES