Technical Appendix

to accompany

Political Uncertainty and Risk Premia

Ľuboš Pástor
University of Chicago,
CEPR, and NBER

Pietro Veronesi
University of Chicago,
CEPR, and NBER

July 4, 2012
Proof of Lemma 1: The same argument leading to equation (IA.8) in the Internet Appendix of Pastor and Veronesi (2012) implies that conditional on policy \(n, n = 0, 1, \ldots, N, \) being chosen at time \(\tau, \) aggregate capital is given by

\[
B_T = B_\tau e^{(\mu_g - \frac{1}{2} \sigma^2)(T-\tau) + \sigma (Z_T - Z_\tau)}
\]

Thus, exploiting \(W_T = B_T \) we have

\[
E_\tau \left[\frac{W_T^{1-\gamma}}{1-\gamma} \right]_{\text{policy } n} = \frac{B_\tau^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(T-\tau)\mu_g + \frac{1}{2} (1-\gamma)^2 (T-\tau)^2 \sigma_{g,n}^2 + (\mu - \frac{1}{2} \sigma^2)(T-\tau)(1-\gamma)}
\]

It follows immediately that

\[
E_\tau \left[\frac{W_T^{1-\gamma}}{1-\gamma} \right]_{\text{policy } n} = \frac{B_\tau^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(T-\tau)\mu_g + \frac{1}{2} (1-\gamma)^2 (T-\tau)^2 \sigma_{g,n}^2 + (\mu - \frac{1}{2} \sigma^2)(T-\tau)(1-\gamma)}
\]

if and only if

\[
\tilde{\mu}^n = \mu_g^n + \frac{1}{2} (1-\gamma)(T-\tau)\sigma_{g,n}^2 > \mu_g^m + \frac{1}{2} (1-\gamma)(T-\tau)\sigma_{g,m}^2 = \tilde{\mu}^m
\]

Q.E.D.

Proof of Proposition 1. The government chooses policy \(n \in \{0, 1, \ldots, N\} \) if and only if for all \(m \neq n, m = 0, 1, \ldots, N, \)

\[
E_\tau \left[\frac{C_n W_T^{1-\gamma}}{1-\gamma} \right]_{\text{policy } n} > E_\tau \left[\frac{C_m W_T^{1-\gamma}}{1-\gamma} \right]_{\text{policy } m}
\]

where recall that \(C^0 = 1. \) The same calculations as in Lemma 1 lead to the inequality

\[
\mu^n_g - \frac{\sigma_{g,n}^2}{2} (T-\tau) (\gamma - 1) - \frac{\epsilon^n}{(\gamma - 1) (T-\tau)} > \mu^m_g - \frac{\sigma_{g,m}^2}{2} (T-\tau) (\gamma - 1) - \frac{\epsilon^m}{(\gamma - 1) (T-\tau)}
\]

(B1)

The claim follows from the definitions of \(\tilde{\mu}^n \) and \(\tilde{c}^n \) in equations (15) and (23). Q.E.D.

Proof of Corollary 1. Immediate from Proposition 1 and equations (16) and (17).

Proof of Corollary 2. As of time \(t, \) we have for each \(n = 1, \ldots, N \)

\[
c^n \sim N \left(\tilde{c}_n, \tilde{\sigma}_{c,t}^2 \right)
\]

(B2)

Recall from Proposition 1 that policy \(n \in \{1, \ldots, N\} \) is chosen if and only if

\[
\tilde{\mu}^n - \tilde{c}^n > \tilde{\mu}^m - \tilde{c}^m \quad m \neq n, \ m = 1, \ldots, N
\]

(B3)

\[
\tilde{\mu}^n - \tilde{c}^n > x_\tau,
\]

(B4)

where we define

\[
x_\tau = \tilde{\mu}^0 = \tilde{g}_\tau - \frac{\tilde{\sigma}_\tau^2}{2} (T-\tau) (\gamma - 1)
\]

(B5)
Therefore, the conditional probability at \(t \) that policy \(n \) is chosen at \(\tau \) is given by

\[
p^n_t = \Pr \left(\tilde{\mu}^n - \tilde{c}^n > \tilde{\mu}^m - \tilde{c}^m \text{ for } m \neq n \right)
\]
\[
= \int_{-\infty}^{\infty} \Pr \left(\tilde{c}^n - \tilde{\mu}^n + \tilde{\mu}^m < \tilde{c}^m \text{ for } m \neq n \bigg| \tilde{c}^n \right) \phi_{\tilde{c}^n} (\tilde{c}^n) \, d\tilde{c}^n
\]
\[
= \int_{-\infty}^{\infty} \Pi_{m \neq n} \Pr (\tilde{c}^n - \tilde{\mu}^n + \tilde{\mu}^m < \tilde{c}^m | \tilde{c}^n) \Pr (\tilde{\mu}^n - \tilde{c}^n > x_{\tau} | \tilde{c}^n) \phi_{\tilde{c}^n} (\tilde{c}^n) \, d\tilde{c}^n
\]

where we used the fact that \(\tilde{c}^m \)'s are independent of each other as well as of \(x_{\tau} \). Moreover, from the definition of \(x_{\tau} = \hat{\gamma}_\tau - \frac{\tilde{\sigma}_t^2}{2}(T - \tau)(\gamma - 1) \) (see equation (16)) we have \(x_{\tau} | \tilde{\gamma}_t \sim N \left(\hat{\gamma}_t - \frac{\tilde{\sigma}_t^2}{2}(T - \tau)(\gamma - 1), \tilde{\sigma}_t^2 - \tilde{\sigma}_\tau^2 \right) \).

We note two properties:

1. As \(\hat{\gamma}_t \to \infty \), then \(p^n_t \to 0 \) for all \(n \in \{1, \ldots, N\} \), as \(\Phi_x (\tilde{\mu}^n - \tilde{c}^n | \tilde{\gamma}_t) \to 0 \).

2. As \(t \to \tau \) we have

\[
\Phi_x (\tilde{\mu}^n - \tilde{c}^n | \tilde{\gamma}_t) = \int_{\tilde{\mu}^n - \tilde{c}^n}^{\infty} \phi_x (x | \tilde{\gamma}_t) \, dx \to 1_{\{x_{\tau} < \tilde{\mu}^n - \tilde{c}^n\}} \quad (\text{B6})
\]

so that

\[
p^n_t = \int_{-\infty}^{\infty} \Pi_{m \neq n} (1 - \Phi_{\tilde{c}^m} (\tilde{c}^n + \tilde{\mu}^m - \tilde{\mu}^n)) \Phi_x (\tilde{\mu}^n - \tilde{c}^n | \tilde{\gamma}_t) \phi_{\tilde{c}^n} (\tilde{c}^n) \, d\tilde{c}^n
\]
\[
= \int_{-\infty}^{\infty} \Pi_{m \neq n} (1 - \Phi_{\tilde{c}^m} (\tilde{c}^n + \tilde{\mu}^m - \tilde{\mu}^n)) \phi_{\tilde{c}^n} (\tilde{c}^n) \, d\tilde{c}^n
\]
\[
= p^n_{\tau}
\]

Q.E.D.

Proof of Lemma A1. Using the same arguments as to obtain equation (IA.20) in the Internet Appendix of Pastor and Veronesi (2012), after the announcement of policy \(n \) at time \(\tau^+ \), the state price density is given by

\[
E_{\tau^+} [\pi_T | \text{policy } n] = \pi^n_{\tau^+} = \lambda^{-1} B_{\tau^+} e^{-\gamma \mu^\gamma (T-\tau)} e^{-\gamma \mu^\gamma \frac{1}{2}(\gamma + 1) \sigma^2 (T-\tau) + \frac{\tilde{\sigma}_t^2}{2}(T-\tau)^2 \sigma^2_{\sigma_n}} \quad (\text{B7})
\]

Therefore, using also \(B_{\tau} = B_{\tau^+} \), the state price density at \(\tau \) is

\[
\pi_\tau = \sum_{n=0}^{N} p^n_{\tau^+} \pi^n_{\tau^+}
\]
The claim follows from taking the ratio
\[M_{n} = \frac{E_{\tau} [B_{\tau}^{-\gamma} B_{\tau}^{i} | \text{policy } n]}{E_{\tau} [B_{\tau}^{-\gamma} B_{\tau}^{i} | \text{policy } n]} = \frac{E_{\tau} [\pi_{\tau} B_{\tau}^{i}]}{\pi_{\tau} B_{\tau}^{i}}. \]

Proof of Lemma A2. From (B7) and (B9) we obtain that if policy \(n, n = 0, 1, \ldots, N \), is selected at \(\tau + \), then
\[M_{n}^{i} = \frac{E_{\tau+} [B_{\tau}^{-\gamma} B_{\tau}^{i} | \text{policy } n]}{E_{\tau+} [B_{\tau}^{-\gamma} B_{\tau}^{i} | \text{policy } n]} = B_{\tau}^{i} e^{(\gamma \sigma^{2} + \mu^{n}_{\tilde{g}})(\tau - T) + \frac{1}{2} \gamma^{2}(T - \tau)^{2} \sigma^{2}_{g,n}} \]
Lemma B1. \(\Delta b_r \) and \(\hat{g}_r \) are perfectly correlated, and we can write

\[
\Delta b_r = E_t[\Delta b_r] + (\hat{g}_r - E_t[\hat{g}_r]) \left[\sigma^2 / \sigma^2_t + (\tau - t) \right] \\
= E_t[\Delta b_r] + (x_r - E_t[x_r]) \left[\sigma^2 / \sigma^2_t + (\tau - t) \right]
\]

Proof of Lemma B1: From Lemma A5 in Pastor and Veronesi (2012), we have that \(b_r = \log(B_r) \) and \(\hat{g}_r \) have the conditional joint distribution

\[
\left(\begin{array}{c}
 b_r - b_t \\
 \hat{g}_r
\end{array} \right) \sim N \left(\begin{array}{c}
 E_t[\Delta b_r] \\
 E_t[\hat{g}_r]
\end{array} ; \begin{array}{c}
 V_{b, C_{g,b}} \\
 C_{g,b, V_{\hat{g}}}
\end{array} \right)
\]

where

\[
E_t[\Delta b_r] = \left(\mu + \hat{g}_t - \frac{1}{2} \sigma^2 \right) (\tau - t) \\
E_t[\hat{g}_r] = \hat{g}_t \\
V_b = (\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t) \\
V_{\hat{g}} = \hat{\sigma}_t^2 - \hat{\sigma}_t^2 \\
C_{\hat{g}, b} = \hat{\sigma}_t^2 (\tau - t)
\]

We now see that \(b_r - b_t \) and \(\hat{g}_r \) are perfectly correlated. In fact,

\[
Corr = \frac{C_{\hat{g}, b}}{\sqrt{V_b V_{\hat{g}}}} = \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{((\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t)) (\hat{\sigma}_t^2 - \hat{\sigma}_t^2)}}
\]

Using the fact that

\[
\hat{\sigma}_t^2 = \frac{1}{\hat{\sigma}_t^2 + \frac{1}{\sigma} (\tau - t)} = \frac{\hat{\sigma}_t^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)}
\]

we find

\[
Corr = \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{((\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t)) \left(\hat{\sigma}_t^2 - \frac{\hat{\sigma}_t^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)} \right)}}
\]

\[
= \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{(\tau - t) \left(\hat{\sigma}_t^2 (\sigma^2 + \hat{\sigma}_t^2 (\tau - t)) - \hat{\sigma}_t^2 \sigma^2 \right)}}
\]

\[
= \frac{\hat{\sigma}_t^2 (\tau - t)}{\sqrt{(\tau - t) \left(\hat{\sigma}_t^2 (\tau - t) \right)}} = 1
\]

It follows that we can write

\[
\Delta b_r = E_t[\Delta b_r] + \{ \hat{g}_r - E_t[\hat{g}_r] \} \frac{C_{b, \hat{g}} V_{\hat{g}}}{V_b} = E_t[\Delta b_r] + \{ \hat{g}_r - E_t[\hat{g}_r] \} \sqrt{\frac{V_b}{V_{\hat{g}}}}
\]

\[
= E_t[\Delta b_r] + \{ \hat{g}_r - E_t[\hat{g}_r] \} \frac{\hat{\sigma}_t^2 (\tau - t)}{\hat{\sigma}_t^2 - \hat{\sigma}_t^2} = E_t[\Delta b_r] + \{ \hat{g}_r - E_t[\hat{g}_r] \} \left[\sigma^2 / \sigma^2_t + (\tau - t) \right]
\]
where we also used the equality

\[
\hat{\sigma}_t^2 - \hat{\sigma}_\tau^2 = \frac{\hat{\sigma}_t^2 \sigma^2}{\sigma^2 + \hat{\sigma}_t^2 (\tau - t)} = \frac{(\hat{\sigma}_t^2)^2 (\tau - t)}{\sigma^2 + (\hat{\sigma}_t^2)^2 (\tau - t)}
\]

From the definition of \(x_\tau \), it also follows that \(x_\tau - E_t[x_\tau] = \hat{g}_\tau - E_t[\hat{g}_\tau] \). Q.E.D.

Lemma B2: The conditional distribution of \(\Delta b_\tau = b_\tau - b_t = \log (B_\tau/B_t) \) conditional on time-\(t \) information and policy \(n \) being chosen at time \(\tau \) is

\[
f (\Delta b_\tau | S_t, n \text{ at } \tau) = \frac{\phi_{\Delta b_\tau} (\Delta b_\tau)}{p_t^n} \int_{-\infty}^{\infty} \frac{\hat{\sigma}_n^2}{(\tau - t)\hat{\sigma}_t^2 + \sigma^2} \Pi_{m \neq n} (1 - \Phi_{\tilde{c}^n} (\tilde{c}^n - \tilde{\mu}_n^m + \tilde{\mu}_m^m)) \phi_{\tilde{c}^n} (\tilde{c}^n) d\tilde{c}^n
\]

(B14)

where \(\phi_{\Delta b_\tau} (\Delta b_\tau) \) is the normal density with mean \(E_t [\Delta b_\tau] = (\mu + \hat{g}_\tau - \frac{1}{2} \sigma^2) (\tau - t) \) and variance \(V_b = (\tau - t)^2 \hat{\sigma}_t^2 + \sigma^2 (\tau - t) \). In addition, \(E_t [x_\tau] = \hat{g}_\tau - \frac{\hat{\sigma}_n^2}{\tau } (T - \tau) (\gamma - 1) \).

Note that \(f (\Delta b_\tau | S_t, \kappa \text{ at } \tau) \) does not depend on the current value of log capital, \(b_t \), hence the conditional dependence only on \(S_t \) and time \(t \).

Proof of Lemma B2. The conditional CDF is

\[
F_{\Delta b_\tau} (\Delta b|S_t, \Delta b \in \{x_\tau - E_t[x_\tau] \} (\sigma^2/\hat{\sigma}_t^2 + (\tau - t))
\]

which implies

\[
x_\tau = E_t[x_\tau] + \{\Delta b_\tau - E_t[\Delta b_\tau]\} \frac{\hat{\sigma}_t^2}{(\sigma^2 + \hat{\sigma}_t^2 (\tau - t))}
\]

Thus, the joint distribution can be written as

\[
Pr \left(\Delta b_\tau < \Delta b, \frac{x_\tau - \tilde{\mu}_n - \tilde{c}^n}{\tilde{c}^n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}^m} \middle| S_t \right)
\]

\[
= Pr \left(\Delta b_\tau < \Delta b, \frac{E_t [x_\tau] + \{\Delta b_\tau - E_t[\Delta b_\tau]\} \frac{\hat{\sigma}_t^2}{(\sigma^2 + \hat{\sigma}_t^2 (\tau - t))}}{\tilde{c}^n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}^m} \middle| S_t \right)
\]

\[
= \int_{-\infty}^{\infty} Pr \left(\Delta b_\tau < \Delta b, \frac{\tilde{c}^m < \tilde{\mu}_n - E_t [x_\tau] - \{\Delta b_\tau - E_t[\Delta b_\tau]\} \frac{\hat{\sigma}_t^2}{(\sigma^2 + \hat{\sigma}_t^2 (\tau - t))}}{\tilde{c}^n - \tilde{\mu}_n + \tilde{\mu}_m < \tilde{c}^m} \middle| \tilde{c}^n, S_t \right) \phi_{\tilde{c}^n} (\tilde{c}^n) d\tilde{c}^n
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pi_{m \neq n} \left[1 - \Phi_{\tilde{c}^n} (\tilde{c}^n - \tilde{\mu}_n^m + \tilde{\mu}_m^m) \right] \phi_{\tilde{c}^n} (\tilde{c}^n) d\tilde{c}^n \phi_{\Delta b_\tau} (\Delta b_\tau) d\Delta b_\tau
\]

5
where we exploited the independence across \(\hat{\gamma}^m \) and with respect to \(\Delta b_r \). Substituting into (B16) and taking the first derivative with respect to \(\Delta b \), we obtain the density (B15). Q.E.D.

Lemma B3: The distribution of \(\hat{g}_r \) conditional on time-\(t \) information and no new policy being chosen at time \(\tau \) is

\[
 f (\hat{g}_r | \text{no policy change at } \tau) = \frac{\phi_{\hat{g}_r} (\hat{g}_r | \hat{g}_t) \prod_{n=1}^{N} \left(1 - \Phi_{\hat{g}_n} (\mu^n - \hat{g}_r + \frac{\sigma_r^2}{2} (T - \tau) (\gamma - 1) \right)}{p_t^0} \tag{B17}
\]

where \(\phi_{\hat{g}_r} (\hat{g}_r | \hat{g}_t) \) is the conditional normal density of \(\hat{g}_r \), namely, \(N(\hat{g}_t, \sigma_t^2 - \sigma_r^2) \).

Proof of Lemma B3: The conditional CDF is given by

\[
 F_{\hat{g}_r} (g| \text{no policy change at } \tau) \\
 = F_{\hat{g}_r} (g| \tau > \mu^n - \hat{\gamma}^n \text{ for all } n) \\
 = \frac{\Pr \left(\hat{g}_r < g \& \hat{g}_r > \mu^n - \hat{\gamma}^n + \frac{\sigma_r^2}{2} (T - \tau) (\gamma - 1) \text{ for all } n \right)}{\Pr (\tau > \mu^n - \hat{\gamma}^n \text{ for all } n)} \\
 = \frac{\int_{-\infty}^{\hat{g}_r} \Pr \left(\hat{g}_r < g \& \hat{g}_r > \mu^n - \hat{\gamma}^n + \frac{\sigma_r^2}{2} (T - \tau) (\gamma - 1) \right) \phi_{\hat{g}_r} (\hat{g}_r | \hat{g}_t) \, d\hat{g}_r}{p_t^0} \\
 = \frac{\int_{-\infty}^{\hat{g}_r} \prod_{n=1}^{N} \left(1 - \Phi_{\hat{g}_n} \left(\mu^n - \hat{g}_r + \frac{\sigma_r^2}{2} (T - \tau) (\gamma - 1) \right) \right) \phi_{\hat{g}_r} (\hat{g}_r | \hat{g}_t) \, d\hat{g}_r}{p_t^0}
\]

Taking the first derivative with respect to \(g \), we obtain the density (B17). Q.E.D.

Proof of Proposition 2: We know that

\[
 \pi_t = E_t \left[\pi_{\tau^+} \right] = \sum_{n=0}^{N} E_t \left[\pi_{\tau^+} | n \text{ at } \tau \right] p_t^n \tag{B18}
\]

Note that for \(n = 1, \ldots, N \)

\[
 E_t \left[\pi_{\tau^+} | n \text{ at } \tau \right] = E_t \left[\lambda^{-1} B_{\tau^+}^{-\gamma} e^{-\gamma \mu^n_{\tau^+} (T - \tau)} e^{-\gamma \mu^n_{\tau^+} (T - \tau) - \gamma \mu^n_{\tau^+} (T - \tau) + \frac{\sigma_r^2}{2} (T - \tau)^2 \sigma_{g,n}^2 | n \text{ at } \tau} \right] \\
 = \lambda^{-1} e^{-\gamma \mu^n_{\tau^+} (T - \tau) - \gamma \mu^n_{\tau^+} (T - \tau) + \frac{\sigma_r^2}{2} (T - \tau)^2 \sigma_{g,n}^2} \times E_t \left[e^{-\gamma (b_{\tau^+} - b_t)} | n \text{ at } \tau \right] \\
 = \lambda^{-1} B_t^{-\gamma} e^{-\gamma \mu^n_{\tau^+} (T - \tau) + \frac{\sigma_r^2}{2} (T - \tau)^2 \sigma_{g,n}^2} \int_{-\infty}^{\infty} e^{-\gamma \Delta b_r} f (\Delta b_r | S_t, n \text{ at } \tau) \, d\Delta b_r
\]
Similarly, for \(n = 0 \) we have

\[
E_t \left[\pi_{\tau+} | 0 \text{ at } \tau \right] = E \left[\lambda^{-1} B_T^{-\gamma} e^{-\gamma \hat{\theta}_r (T-\tau)} e^{-\mu \Gamma \gamma (1+\gamma) \sigma^2} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 | 0 \text{ at } \tau \right]
= \lambda^{-1} e^{-\mu \Gamma \gamma (1+\gamma) \sigma^2} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 e^{-\hat{\theta}_0} E_t \left[e^{-\gamma \hat{\theta}_r (T-\tau)} | 0 \text{ at } \tau \right]
= \lambda^{-1} e^{-\mu \Gamma \gamma (1+\gamma) \sigma^2} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 e^{-\hat{\theta}_0} \times
E_t \left[\gamma \left(\pi_{\tau+} + \left[\tau e^{-\gamma \hat{\theta}_r (T-\tau)} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 \right] \right] \right] \times \int_{-\infty}^{\infty} e^{-\gamma \left(\pi_{\tau+} + \left[\tau e^{-\gamma \hat{\theta}_r (T-\tau)} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 \right] \right]} f \left(\hat{\theta}_r | 0 \text{ at } \tau \right) d\hat{\theta}_r
\]

The result follows from comparing the terms in Equations (36) and (A3) with the ones above, and defining in this proposition \(\mu_0^0 = \hat{\theta}_t \) and \(\sigma_{g,0}^2 = \tilde{\sigma}_T^2 \). Q.E.D.

Proof of Proposition 3: The result follows from an application of Ito's Lemma to equation (36), and recalling that \(\pi_t \) is a martingale, and thus \(E_t [d\pi_t / \pi_t] = 0 \). Q.E.D.

Proof of Corollary 3: From property 1 in the proof of Corollary 2, for a given distribution of \(\tilde{c}^n \), we have \(p^i_t \to 1 \) as \(\tilde{g}_t \to \infty \). It follows that the state price density converges to one that assigns zero probability to a policy change:

\[
\pi_t \to \Omega(S_t) = E_t \left[\pi_{\tau+} | 0 \text{ at } n \right] = \lambda^{-1} E_t \left[B_T^{-\gamma} | 0 \text{ at } n \right]
= \lambda^{-1} B_T^{-\gamma} e^{-\gamma \hat{\theta}_r (T-t)} e^{-\mu \Gamma \gamma (1+\gamma) \sigma^2} (T-t) + \frac{\gamma}{2} (T-t)^2 \sigma^2 e^{-\hat{\theta}_0}
\]

Since this state price density does not depend on any \(\tilde{c}_t^n \), we have \(\frac{1}{\Omega(S_t)} \frac{\partial \Omega(S_t)}{\partial \tilde{c}_t^n} = 0 \). Q.E.D.

Proof of Proposition 4: The proof is identical to the proof of Proposition 2, except that we have to calculate

\[
E_t \left[\pi_{\tau+} M_{\tau+}^i \right] = \sum_{n=0}^{N} p^n_i E_t \left[\pi_{\tau+} M_{\tau+}^i | n \text{ at } \tau \right]
\]

From (B9), for \(n = 1, \ldots, N \):

\[
E_t \left[\pi_{\tau+} M_{\tau+}^i | n \text{ at } \tau \right] = \lambda^{-1} E_t \left[N_{\tau+}^i | n \text{ at } \tau \right]
= \lambda^{-1} E_t \left[B_T^{-\gamma} B_{\tau+}^i \times e^{-\mu \Gamma \gamma (1+\gamma) \sigma^2} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 n | n \text{ at } \tau \right]
= \lambda^{-1} e^{(1-\gamma) \mu \Gamma \gamma (1+\gamma) \sigma^2} (T-\tau) + \frac{\gamma}{2} (T-\tau)^2 \sigma^2 n e^{-\hat{\theta}_0} E_t \left[e^{-\gamma \hat{\theta}_r + \hat{b}_t} | n \text{ at } \tau \right]
\]

Now, recall

\[
\frac{B_t^i}{B_t} = \frac{B_t}{B_t} e^{-\frac{\gamma}{2} (T-\tau) + \sigma (Z_t^i - Z_t^i)}
\]

(B19)
which implies
\[e^{h_t^i} = e^{b_t^i + b_t - \frac{1}{2} \sigma^2_{\pi_t} (T - \tau) + \sigma_1 (Z_t^i - Z_i^t)} \]
(B20)

For \(n = 1, \ldots, N \), we then have:
\[
E_t \left[\pi_{\tau+} M_{\tau+}^i | \pi_t \right] = \lambda^{-1} B_t^{-\gamma} \pi^i_t (T - \tau) e^{\left(1 - \gamma\right) \mu + \frac{1}{2} \gamma (\gamma - 1) \sigma^2 \left(T - \tau \right) + \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(T - \tau \right)^2 \sigma_{\pi_t}^2} E_t \left[e^{(1 - \gamma) \Delta b_{\tau}} | n \right. at \tau \left. \right]\]
\[
= \lambda^{-1} B_t^{-\gamma} \pi^i_t (T - \tau) e^{\left(1 - \gamma\right) \mu + \frac{1}{2} \gamma (\gamma - 1) \sigma^2 \left(T - \tau \right) + \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(T - \tau \right)^2 \sigma_{\pi_t}^2} \int e^{(1 - \gamma) \Delta b_{\tau}} f \left(\Delta b_{\tau}, S_t, n \right) d\Delta b_{\tau}
\]

Similarly, for \(n = 0 \), we have:
\[
E_t \left[\pi_{\tau+} M_{\tau+}^i | 0 \right. at \tau \left. \right] = \lambda^{-1} E_t \left[N_{\pi_{\tau+}}^i | 0 \right. at \tau \left. \right]\]
\[
= \lambda^{-1} E_t \left[B_t^{-\gamma} B_t^i \times e^{\left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) e^{\left(1 - \gamma\right) \mu + \frac{1}{2} \gamma (\gamma - 1) \sigma^2 \left(T - \tau \right) + \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(T - \tau \right)^2 \sigma_{\tilde{g}_{\tau}}^2} E_t \left[e^{-\gamma b_{\tau} + b_0^t + \left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau)} | 0 \right. at \tau \left. \right]\]
\[
= \lambda^{-1} e^{\left(1 - \gamma\right) \mu + \frac{1}{2} \gamma (\gamma - 1) \sigma^2 \left(T - \tau \right) + \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(T - \tau \right)^2 \sigma_{\tilde{g}_{\tau}}^2} E_t \left[\left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) \right] E_t \left[\left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) \right]
\]
\[
\times E_t \left[e^{\left(1 - \gamma\right) \left(E_t [\Delta b_{\tau}] + [\tilde{g}_{\tau} - E_t [\tilde{g}_{\tau}]] \sqrt{\frac{\lambda \sigma_{\tilde{g}_{\tau}}^2}{\gamma}} \right) + \left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) | n \right. at \tau \left. \right]
\]
\[
= \lambda^{-1} B_t^{-\gamma} B_t^i e^{\left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) + \left(1 - \gamma\right) \mu + \frac{1}{2} \gamma (\gamma - 1) \sigma^2 \left(T - \tau \right) + \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(T - \tau \right)^2 \sigma_{\tilde{g}_{\tau}}^2}
\]
\[
\times \int e^{\left(1 - \gamma\right) \left(E_t [\Delta b_{\tau}] + [\tilde{g}_{\tau} - E_t [\tilde{g}_{\tau}]] \sqrt{\frac{\lambda \sigma_{\tilde{g}_{\tau}}^2}{\gamma}} \right) + \left(1 - \gamma\right) \tilde{g}_{\tau} (T - \tau) | n \right. at \tau \left. \right) f \left(\tilde{g}_{\tau} | S_t, n \right) d\tilde{g}_{\tau}
\]

The result follows from comparing the terms in Equations (41) and (A4) with the ones above, and defining in this proposition \(\mu^0_{\gamma} = \tilde{g}_{\tau} \) and \(\sigma_{\tilde{g}_{\tau}, 0}^2 = \sigma_{\tau}^2 \). Q.E.D.

Proof of Proposition 5. The claim follows from an application of Ito’s Lemma to the price \(M_t^i \) in Proposition 4, and the equilibrium restriction \(\mu^i_M = -\text{Cov}_t \left(\frac{dM^i_t}{M^i_t}, \frac{d\pi_t}{\pi_t} \right) \). Q.E.D.

Proof of Proposition 6. From Lemmas A1 and A2, the gross announcement return from announcing policy \(n \) is
\[
1 + R^n (\tilde{g}_{\tau}) = e^{\left(\mu^n - \tilde{g}_{\tau}\right) (T - \tau) + \frac{1}{2} \sigma^n_{\tilde{g}_{\tau}} (T - \tau)^2 \left(\sigma_{\tilde{g}_{\tau}, n}^2 - \sigma_{\tilde{g}_{\tau}}^2 \right)} \times
\]
\[
\left(\frac{1 + \sum_{n=1}^{N} P^n_{\tau} \left((1 - \gamma) \left(\mu^n_{\gamma} - \tilde{g}_{\tau} \right) (T - \tau) + \frac{1}{2} \sigma^n_{\tilde{g}_{\tau}} (T - \tau)^2 \left(\sigma_{\tilde{g}_{\tau}, n}^2 - \sigma_{\tilde{g}_{\tau}}^2 \right) - 1 \right) }{1 + \sum_{n=1}^{N} P^n_{\tau} \left((1 - \gamma) \left(\mu^n_{\gamma} - \tilde{g}_{\tau} \right) (T - \tau) + \frac{1}{2} \sigma^n_{\tilde{g}_{\tau}} (T - \tau)^2 \left(\sigma_{\tilde{g}_{\tau}, n}^2 - \sigma_{\tilde{g}_{\tau}}^2 \right) - 1 \right) } \right)
\]
Similarly, recalling the notation $\mu_g^n = \tilde{g}_r$ and $\sigma_{g,0} = \hat{g}_r$, from Lemma A1 and A2 the gross announcement return from announcing no policy change is

$$1 + R^0 (\tilde{g}_r) = \frac{\left(1 + \sum_{n=1}^N p^n_r \left(e^{-\gamma (\mu_g^n - \tilde{g}_r) (T - \tau) + \frac{\sigma_{g,n}^2}{2} (T - \tau)^2 (\sigma_{g,n}^2 - \tilde{g}_r^2) - 1} \right) \right)}{\left(1 + \sum_{n=1}^N p^n_r \left(e^{(1-\gamma) (\mu_g^n - \tilde{g}_r) (T - \tau) + \frac{\sigma_{g,n}^2}{2} (T - \tau)^2 (\sigma_{g,n}^2 - \tilde{g}_r^2) - 1} \right) \right)}$$

(B21)

Therefore, we can write more compactly, for $n = 1, \ldots, N$,

$$1 + R^n (\tilde{g}_r) = e^{(\mu_g^n - \tilde{g}_r) (T - \tau) + \frac{1}{2} \frac{\sigma_{g,n}^2}{\tau} (T - \tau)^2 (\sigma_{g,n}^2 - \tilde{g}_r^2)} \times (1 + R^0 (\tilde{g})) \quad (B22)$$

We can express all the formulas in terms of $\tilde{\mu}^n$ and x_τ. Using the definitions

$$\tilde{\mu}^n + \frac{\sigma_{g,n}^2}{2} (T - \tau) (\gamma - 1) = \mu_g^n \quad (B23)$$

$$x_\tau + \frac{\sigma_{g}^2}{2} (T - \tau) (\gamma - 1) = \tilde{g}_r \quad (B24)$$

we have

$$(\mu^n - \tilde{g}_r) = (\tilde{\mu}^n - x_\tau) + \frac{(\sigma_{g,n}^2 - \tilde{\sigma}_r^2)}{2} (T - \tau) (\gamma - 1) \quad (B25)$$

The claim of Proposition 6 then follows quickly. Q.E.D.

Proof of Corollary 4. Immediate from Proposition 6. Q.E.D.

Proof of Corollary 5. Immediate from Corollary 4: for any two policies n and m with $\tilde{\mu}^n = \tilde{\mu}^m$, the result follows from equation (31). Q.E.D.

Proof of Proposition 7. The expression for the jump risk premium follows immediately from

$$J (S_r) = \sum_{n=1}^N p^n_r R^n (x_\tau)$$

where $R^n (x_\tau)$ are given in Proposition 6. We now see that

$$J (S_r) = -\text{Cov}_\tau \left(\frac{M^n_{r+}}{M^n_r} - 1, \frac{\pi^{r+}}{\pi^r} - 1 \right) = - \{ E_r [J_M J_\pi] - E_r [J_M] E_r [J_\pi] \}$$

where, if policy n is chosen, we denote $J^n_M = \frac{M^n_{r+}}{M^n_r}$ and $J^n_\pi = \frac{\pi^{r+}}{\pi^r}$. Recall from Proposition 6 that

$$J^n_M = 1 + R^n (x_\tau)$$

$$= e^{(\tilde{\mu}^n - x_\tau) (T - \tau) - \frac{1}{2} (T - \tau)^2 (\sigma_{g,n}^2 - \tilde{\sigma}_r^2)} \times \left(1 + \sum_{\kappa=1}^N p^n_\kappa \left(e^{-\gamma (T - \tau) (\tilde{\mu}^n - x_\tau) + \frac{\sigma_{g,n}^2}{2} (T - \tau)^2 (\sigma_{g,n}^2 - \tilde{\sigma}_r^2) - 1} \right) \right)$$

$$\left(1 + \sum_{n=1}^N p^n_r \left(e^{(1-\gamma) (T - \tau) (\tilde{g}^n - x_\tau) - 1} \right) \right)$$
We can compute a similar expression now for the stochastic discount factor. From the expressions for $\pi_{\tau+}$ and π_{τ} in the proof of Lemma A1, it follows that for $n = 1, \ldots, N$

$$J^n_{\pi}(x_{\tau}) = \frac{\pi^n_{\tau+}}{\pi_{\tau}} = e^{-\gamma(\bar{\mu}^n - x_{\tau})(T-\tau) + \frac{1}{2}(\sigma^2_{g,n} - \tilde{\sigma}^2)(T-\tau)^2} J^0_{\pi}(x_{\tau})$$

where

$$J^0_{\pi}(x_{\tau}) = \frac{\pi^0_{\tau+}}{\pi_{\tau}} = \frac{1}{1 + \sum_{k=1}^{N} p_{T}^k (e^{-\gamma(\bar{\mu}^0 - x_{\tau})(T-\tau) + \frac{1}{2}(\sigma^2_{g,n} - \tilde{\sigma}^2)(T-\tau)^2} - 1))}$$

This implies that

$$J^n_{\pi}(x_{\tau}) J^n_{M}(x_{\tau}) = \frac{e^{(1-\gamma)(\bar{\mu}^n - x_{\tau})(T-\tau)}}{1 + \sum_{k=1}^{N} p_{T}^k (e^{(1-\gamma)(T-\tau)(\bar{\mu}^n - x_{\tau})} - 1))} \quad \text{for } n = 1, \ldots, N$$

$$J^0_{\pi}(x_{\tau}) J^0_{M}(x_{\tau}) = \frac{1}{1 + \sum_{k=1}^{N} p_{T}^k (e^{(1-\gamma)(T-\tau)(\bar{\mu}^n - x_{\tau})} - 1))}$$

It follows that

$$E_{T} [J^n_{\pi}(x_{\tau}) J^n_{M}(x_{\tau})] = \sum_{k=1}^{N} p_{T}^k \left\{ \frac{e^{(1-\gamma)(\bar{\mu}^n - x_{\tau})(T-\tau)}}{1 + \sum_{k=1}^{N} p_{T}^k (e^{(1-\gamma)(T-\tau)(\bar{\mu}^n - x_{\tau})} - 1))} \right\}
+ \left(1 - \sum_{k=1}^{N} p_{T}^k \right) \frac{1}{1 + \sum_{k=1}^{N} p_{T}^k (e^{(1-\gamma)(T-\tau)(\bar{\mu}^n - x_{\tau})} - 1))}$$

$$= \frac{1}{1 + \sum_{k=1}^{N} p_{T}^k (e^{(1-\gamma)(\bar{\mu}^n - x_{\tau})(T-\tau)} + 1 - \sum_{k=1}^{N} p_{T}^k)}$$

Similarly,

$$E_{T} [J^n_{\pi}(x_{\tau})] = \sum_{k=1}^{N} p_{T}^k \left\{ \frac{e^{-\gamma(\bar{\mu}^n - x_{\tau})(T-\tau) + \frac{1}{2}(\sigma^2_{g,n} - \tilde{\sigma}^2)(T-\tau)^2}}{e^{-\gamma(\mu_{\tau+} - x_{\tau})(T-\tau) + \frac{1}{2}(\sigma^2_{g,n} - \tilde{\sigma}^2)(T-\tau)^2} J^0_{\pi}(x_{\tau})} \right\}
+ \left(1 - \sum_{k=1}^{N} p_{T}^k \right) J^0_{\pi}(x_{\tau})$$

$$= \left[\sum_{k=1}^{N} p_{T}^k e^{-\gamma(\bar{\mu}^n - x_{\tau})(T-\tau) + \frac{1}{2}(\sigma^2_{g,n} - \tilde{\sigma}^2)(T-\tau)^2} + 1 - \sum_{k=1}^{N} p_{T}^k \right] J^0_{\pi}(x_{\tau})$$

$$= 1$$

Thus, we finally obtain

$$J(x_{\tau}) = -Cov_{\tau} (J_M, J_{\pi}) = - \{ E_{T} [J_M J_{\pi}] - E_{T} [J_M] E_{T} [J_{\pi}] \}
= E_{T} [J_M] - 1$$
Q.E.D.

REFERENCES