Technical Appendix

to accompany

Entrepreneurial Learning, the IPO Decision, and the
Post-IPO Drop in Firm Profitability

Lubos Péstor Lucian Taylor
University of Chicago, University of Chicago
CEPR, and NBER

Pietro Veronesi
University of Chicago,
CEPR, and NBER

September 24, 2007



Learning: The learning dynamics in this paper are the same as in Pastor and Veronesi
(2003, Lemma 1). We report here only the most relevant equations. Let N, = (log(m), p;)’,
which follows the process

where

r—1ig2 0 0 0 o1 0
Ay = 27ml ) By = . Cy = C Sy =( " ;

Define the vector of orthogonalized expectation errors:
dit - E_l [dNt - Et (dNt)]

The Kalman-Bucy filter (e.g. Liptser and Shiryayev (1977)) implies that p, = F[p] and 67 =
E; [(p — pi)?] follow the processes in equation (27). Conditional on the agents’ information,

the processes for m; and p; are given by
dm >
-t = —rdt — 0'7r71dX17t
Tt

doe = ¢(pr—pr)dt + O-p,ld)?l,t + O-p,2d)/€2,t

Market value: Let o, = (0,1,0) and 0, = (0,,1,0,2). The firm’s market value is given by

Mt :BtZ (phﬁha\hT_t) (Al)
where
Z (1, pr, 00, T — t) = 6Q0(T—t)+Q1(T—t)ﬁt+Q2(T—t)ﬁt+%Q2(T—t)23t2 (A2)
and
o,0’ 0.0 1 e
Qo(s) = —rs+ 2255623(5)— ¢pQ2(S)§ Q1 (s) = p (1-e ¢);
1 — e 203
Q2(5) = s—0Q1(s); Qs3(s) =5+ 2% —2Q (s).

Utility from selling the firm: After the IPO, the entrepreneur can invest in bonds, in a
stock market index (which is perfectly correlated with the state price density (11)), or in his
own firm, thereby retaining a stake in the firm. Given market completeness, we can use the
Cox and Huang (1989) results to obtain the intertemporal utility from the IPO independently
of the portfolio allocation. Specifically, from Cox and Huang (1989), the optimal investment
strategy is the one that supports the solution to the static maximization problem

T 1—y Wl—“/
max F; {/ e=Plu=t) Cu__ gy 4 ne_ﬁ(T_t)L] (A3)
t L—n L=y
subject to
T Ty T
Wt = Et |i/ —cudu + —WT:| (A4)
t Tt Tt



The first-order conditions are

e Pt = Tu) and e_ﬁ(T_t)nW;’:W—T)\

Tt Ty

where A is a Lagrange multiplier determined by the budget constraint. Thus,

1 _1
Cy = (ﬂ) )\_%e_g("_t); and WT:(W—T) W)\_%n% —5T=) (A5)

Tt Ty

Substitute ¢, and Wy in the budget constraint (A4) to obtain
. 11 11
[ () e
t T T

1
E [ T(ﬁu)le S (u—t) ( )WTl L 5 —t):|
t ‘/; T dU‘l' 7776 v

Thus, substituting back A in the optimal consumption ¢, and wealth Wr in (A5), and the
resulting formulas in the utility function, we obtain

Wt - )\_%Et

This yields A :

2=

\-

:Wt

T cl= Wl—“f
V(W,t) = E [ / e Alut) u du+ne—ﬁ<T H_T } (A6)
t 1- L=~
e[ () e () e
1—7 ‘ e ur

Given the stochastic discount factor in (11), for every u >t

/7_71
E't (E) v ] _ 61;—”(7"—1—%%03“1)@—15) (A8)

Uv

The value function after the IPO, V' (W;, t) in (31), then follows, as we use the Fubini theorem
to invert the order of integration in (A7), use result (A8), and solve for the resulting the
integral, finding that

g(T'—t) = {Et

Q.E.D.



Selling the whole firm in an IPO is optimal: We provide two proofs.

Proof #1. From (A5), the optimal consumption depends only on the systematic shocks
dXi ¢, which are perfectly correlated with the returns on publicly-traded stocks (the stock
market). Investing any amount in the entrepreneur’s (tiny) firm would make the entrepreneur’s
consumption driven also by the firm’s idiosyncratic shocks d X5 ;, which would make the con-
sumption path suboptimal.

Proof #2. Consider the setting on page 42 of the paper, Proof 2. In this subsection we
fill in the details of the proof. First, given the pricing formula for the firm’s stock (equation
(28) in the paper), an application of Ito’s Lemma shows that the return process after the
IPO is (see Pastor and Veronesi (2003, Proposition 2)):

dj\j\z L= (r + ugt) dt + ol dX14 + 0%y, dXoy
where
Phe = Ofyom=(1—e 00 % (A10)
0};“ = (1—e?T) %
Ohas = (1—e?T) % +(¢(T —t) =1+ 7T af% (A11)

Substitute the return processes in the budget equation (see paper, page 42, after eq. (29)):

AW, = (We (Bupn + 0k, +70) = o) dt + W (on + 0l o, ) dXs + Wb 0y A X
(A12)
The Hamilton, Jacobi, Bellman (HJB) equation corresponding to problem in equation (29)
in the paper is then:
¢ ov . oV . 192V

Och;?:(;{g’l—V_ﬁv+ 5 —l—a [th]+§—8W2

E; [dW}]

We now solve the HJB equation. First, substitute (A12) to find

1—y
C; av av

_I_%aa;vz W2 (<9t03 + 91{0{3,1,1&)2 + (9‘{0{372”5)2)

The first order condition (FOC) with respect to consumption is

(Wt <9t,UR +6] ,URt + 7’) - Ct)

¢ = 68;‘// (A13)



The FOC with respect to 6,

ov 0*V

BT + 2 Wi <9t03 + 9{0{2717,5) op =10

The FOC with respect to 9[

oV o0*V
6W ét + a3 o2 Wi <<9t0R + QZU{B,M) U{%,l,t + <QZU£,2,t) U{%,z,t) =0

Substitute the equilibrium expected return pp = o,0r and ,ugt = UWU};M to find

oV 0*V

70Ok + o5 2 Wi <9t03 + 0; O'th) orp = 0 (Al4)
oV 0*V
aWUWU{z 1t Wim a2 ((9150}% + 950{2,1,15) U{%,l,t + (950{2,2,15) U{%,z,t) =0

We now see that these two equations are satisfied by 9[ =0and 6, = % Indeed, by setting
R
0/ = 0 the two FOC equations become

AN

ot gy Vit = 0
oV 52V

aWUW + Wtawzeta}g = 0

That is, they become the same equation which is in fact satisfied by the usual solution

V.
Orn
et — oW

W oy ow2OR
To conclude the proof, we conjecture (and verify later) the value function is given by

Wi

VW=

Tty (A15)

Taking the first derivatives with respect to wealth and time

ov. W 9] dV o2V

- = - = - 7. - _ —y—1 ¥

Using also the fact that the risk premium is pur = 0,05 we have o, = g‘—ﬁ, which leads to the

standard result
6, = HE

2
YOR

Thus, to conclude, the optimal portfolio allocation in the two stocks is



As a final step, we can substitute everything back into the HJB equation, and after some
tedious algebra, we find the ordinary differential equation

oJ
=14+ == Al
0=1+ 5 +aJ (A16)

1— 2
N Cte) (r __B o )
g L=y 2
The solution of (A16) subject to the final condition J(T') = n'/7 is

(1 + n%a) eT=1) 1

a

where

J(t) =

obtaining the value function in (31) in the paper. Q.E.D.

Lemma A.1: Given the process (10) and dB; = p;B;dt, for every u > t we have

Bl_ Bl—“/ L
Et{ ol = |B] 1iVZO(Pt>Pt,Ut;U—t)

where B
70 (pe, P, 5 8) = 6Q0(S)+(1—’Y)Q1(S)Pt+(1_7)Q2(S)ﬁt+%(1_7)2Q2(5)28t2; (A17)

Q; (.) are given above, and

Qols) = s+ (1 -2

Larne (A18)

Proof of Lemma A.1: First, we compute
E [e”" BBy, p| = E [0 i, 7]

where we define p, = (1 — v)log (B:). p: follows the process dp; = (1 — 7y)pedt. Define the
vector Z; = [pt, pt], which follows the process

(0N (01-9) « [0 0
() (LT ) = (05

Standard results imply

where

ZU|Zt ~ N(:uZ (Zt>u - t)>EZ (u - t))

where
puz (s) = \Il(s)Zo—l—/ W (s—t)Adt
0

S,(s) = /OS\II(s—t)EE’\II(s—t)/dt

bt



In our setting

so that we obtain the explicit formulas

pzi(s) = pe+ (1 —=7)Q1(s)p: +p(1 —7)Q2(s)

As for the variance, we only need to find the variance of p,. Thus, since the (1,1) element
in the integrand is

/ I (1 B 7)2 —$s\2 /
W (s—t) XX (s—t) e = 7(1—6 )70,0,
we have
20,07,
op(u) =e Xy (s)e) = —L°F / e )2y
0

_ 0,0, ( 1—6_2¢S_21—6_¢S)
o

pi—Bu—t)+(1—7) Q1 (u—t) pr+5(1—7) Q2 (u— t>+;uzﬂcz3<u t)

This implies

E|: ﬁ(u t+pu|p p:| = ¢

Finally, given p ~ N (p;, 02), we obtain
B [e_ﬁ(u_t)Bl_”Bt} —E [ Bu—t) +pu|p} Btl—“/eao(u—t)+(1—7)Q1(u—t)pt—i—(l—v)Qz(u—t)ﬁt—i—%(1—*/)2Q2(u—t)23?

where |
G () = —s + 3 L%

5 s ()

Q.E.D.

Utility from Keeping the Firm: From Lemma A.1, the utility from owning the firm from
T to T is given by

T 1— 1—y
B B,
VO(B,,7) = E, al_"’/ e~Alu=T) du+776_5(T L _
T 1- 1_7
Bl T L L
= T e [ 206 pedtu - )tz (o5 T - 1) fa19)
- T

Q.E.D.

IPO Condition: We restate the condition, for better referencing. An IPO takes place at
time 7 if and only if

~

T
f(I'=71,6,,0,) <a'™ Z (pryPryOryopu—1;T) du, A20
p p
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where

1— —(r— LT~ °0%) T—1 —GTFJ; T—1 ya- T—7)252
FT 0y = LTI ER QTR Ot
(A21)
A (0rsPrsGryopiu— 73 T) = Qo (u=TT)+(1=7) Q1 (u=:T)pr +(1-7)Q2(u=7:T)pr + 5 (1-7)* Qs (u—7:T)5?
(A22)
Above, the g function is given in equation (A9) and
@O(U—7’§T) = @0(“‘7) _@O(T_T)
Qu—7T) = Qi(u—7)-Q:1(T—7)<0
Q(u—7T) = Qa(u—7)—Q2(T—7)<0
Qs (u—7;T) = Qg(u—7‘)2—Qg(T—7‘)2 <0
Proof. An IPO occurs at 7 if and only if
V(M.,7)>VO(B,,T). (A23)

Using the closed-form expressions for V and V?, we obtain

1—v 1—v
MT T

g(T—71)>

T
UZO(pﬂﬁﬂa\T;T_T)‘l'al_ﬁ// Zo(p77ﬁ77a\7';u_7-)du
1=~ L=y .

Substitute M, from equation (Al) and delete common terms (remembering that v > 1) to
obtain the condition

T
Z (p7'> ﬁ7787'; T - T)l_ﬁ{ 9 (T - 7-)_7720 (pT> ﬁ7'7 5'\7—; T - T) <a'? / z° (p7'> ﬁT) 5'\7-; C T) du
’ (A24)
From the definition of Z(.) and Z9(.) in (A2) and (A17) we can write
Z (p7'> ﬁT?aT; T— T)l_ﬁ/ = ZO (p7'> ﬁT? a\ﬂ'; T— T) X

(1) (= (7= 122 ) (=) 47 25 Qy (T =)= 222 Q5 (T—7) ) + 5y (1—7) @a(T—7)?52
¥ b ¢

Xe

Thus, substituting for Z ()' ™" we have that (A24) becomes
T
ZO (pt> ﬁh a\t; T— 7-) .f (T - T, 6}, Uﬁ) < al_ﬁ/ / ZO (Pﬂ ﬁT? 6,\72_’ C 2 7-) du

where f (T —71,0,,0,) is defined in (A21). Dividing through by Z° we obtain the claim.
The definitions of @); stem immediately from the computation of the ratio



Z9 (pr, pry05u —7) /29 (pr, pry 05T — 7). The inequality signs stem from the fact that
Q1 (s) and @3 (s) are increasing functions of s. Thus it immediately follows that for v > 1

7 07
0 > (0 and

— >0
dpr op-

Q.E.D.

Proof of Proposition 1: Part (a) stems from the fact that the Left Hand Side (LHS) of
(A20) is independent of «, while the Right Hand Side (RHS) of (A20) is decreasing in « (for
v >1). Part (b) and (c) stem directly from the original condition (A23). From the formulas
(A1) and (31), it is immediate to see that the LHS of (A23) is increasing in both 7, and 0,2,
because market value M, in (Al) is. Similarly, from (32) and (A17) the RHS of (A23) is

A~

instead decreasing in both o, and 0,,. Part (d) stems from the fact that the function Z on
the RHS of (A20) is increasing in both p, and p,, while the LHS of (A20) does not depend
on them. Q.E.D.

Lemma A.2: Define z; = p; — p;. This variable follows the process
dl’t = —QSl’tdt + 0'p71d5€1 + O'Ltd)?g

with
o

Oyt = 0p2 — 0 ——
g 0p,2

Define the function

T
h(z:,pr) = O‘I_ﬁ// Z (prs pry 07, u — 7, T) du

T
= al_“’/ Z(xry pry0ryu—T1,7T)du

where

A (27,7, 0r u— 7, T) = eéo(u—TvTH(l—“/)(@1(u—77T)rr+(u—T)ﬁr)+%(l—v)zéa(u—TvT)?f?

Then, the function A (x,, p-) is monotonically increasing in both arguments.

Proof of Lemma A.2: First, from the definition of @2 (u—7,T) in Proposition 3, we can
rewrite

Q:(u—7T) = (u=T)— Q1 (u—7,7T)

Simple substitution then shows

Z\(pT,ﬁT,a’\T,u—T,T) = Z($T>//0\7>87>U_T>T)



From the definition of h, we have

oh r ~ —

B = Oél_ﬁ// (1 _7) Ql (U_T)Z(ifwﬁwa\za?i—ﬂT) du >0
T, -

oh r —

% = ozl_“’/ (1= (u=T)Z (xr,pr,02u—7,T)du >0
pT T

The inequality signs follow from the fact that v > 1, @1 < 0 (see Proposition 3) and
(u—T)<0. QE.D.
Proposition 2 (Endogenous IPO Cutoff Rule): Define the cutoff p (z,) by
p (z;) such that h (z,,p(x,)) = f(T —7,0-,0,)
Then, an TPO takes place at 7 if and only if

7 > plar) (A25)

Proof of Proposition 2: We can restate the IPO condition as
f(T—r1,0.,0,) <h(z:,pr)
Since h (x,, pr) is increasing in both arguments, we have the equivalence
h(erf) > (T =7.57.0,) <= v > pla7)

The statement of the proposition follows. Q.E.D.

Lemma A.3: Let Zt = (bt,l't,ﬁt)/, Then

ZT|Zt ~ N(:uZ (Zt>7 _t)>S (t77))

where
Hz1 = Et [bq—] = bt + Ql (’7‘ — t) Ty + (’7‘ — t) ﬁt (A26)
pze = Eplz,] = xe 0 (A27)
pzz = Eilp:] = pi (A28)
and -
S(t,7) = / U (1 —u)Xz,2,,P (T — u) du (A29)
t
where
I
TH)=10 e 0 (A30)
00 1

9



In particular,

1— et 2 2 —2¢(T—t)~2  ~2
S22(t, '7-) = T (Up,l ‘l’ Up,2) ‘l’ (6 U — 0, )
523 (t, ’7') = Sgg(t, ’7') = 6'\72_ _‘z’(T_t)/a\f;
Sgg(t, ’7') = 3? — 6'\2

Proof of Lemma A.3: By definition, Z; follows the process
dZ; = BZdt + % 4,dX

where
01 1 0 0
B={0 —¢ 0 |; and ¥y = 0o 0p2-5;.%
00 0 0 %

Without loss of generality, let ¢ = 0. The vector uz(7) and the matrix S(0, 7) are then the
solutions to (see e.g. Duffie (2001, page 293))

d
127 _ gy, (r)
dr
with 1 (0) = Zo and to
dS;OT’ ")~ BS(0,7)+S(0,7)B + X2:%, (A31)
with S(0,0) = 0. Defining the matrix ¥ (7) as the solution to the ODE
dw ()
= BWw A32
ir (7) (A32)

with W (0) = I, then it is simple to verify that the solution for p is given by

pz (1) =¥ (1) Zo

which leads to (A26) -(A28). Similarly, it is simple to verify that the solution S(0,7) of
(A31) is given by (A29). The last step is then to show that the solution to (A32) is (A30).
This can be easily verified by direct computation.

Finally, we can compute the integrals in (A29) explicitly, yielding the formulas for S;;,
1=2,3. Q.E.D.

Proposition 3 (Expected drop in profitability): The expected drop in profitability
after the IPO is given by

—¢(T t zt sz zT) T t zta ﬁt) 2)) (b ($T7 /"L-'E (l’) ?0’.’% (t7 T)) dzT
1— fN 1’797 t xtaﬁb 2)) o (zT’Mm (l’) ’0-5% (t’T)) dzT

E [,07— - //0\T|IPO]
(A33)
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where A (.) is the standard normal cdf,

B (1'7—) - ﬁt —a (t7 T; 8152) (xT - 6_¢(T_t)l't)

k (x777;t>xt>ﬁlf>a\1€2) = (A34)
@ =52 (1-bie.ria2y)
the density ® (z.; p, (), 02 (¢t,7)) is normal, with
[y = e oy, (A35)
1— 2¢(T—t) R R
it = I G o) ¢ a5 (As)
and finally,
R 8'3 — e~ ¢(T-1)52
a (t> T; 0152) = 1—e20(T—t) 2 2 ; n
T(Uﬁvl_l_aﬁvz)_l_( o(r— )U —U)
~2 _ —p(r—t)~2
b(t,7;57) = 0r _ ¢ il

VESEE 2+ 02) + (0057 — 52) 57 = 52

Proof of Proposition 3: From Proposition 2, an IPO takes place at 7 if and only if

pr > p(z7)
We then have

Elp. — p-|IPO] = E [2:|p; > p(z,)]
- //xT (7, -1 > p (27)) dp-das

T P (p7>p ) //m{ffﬂﬂ»ﬂ(r )} & (@ fr) dprda

1

- 7'1 o~ o AT T o T d/\Td T
5o e ] ] s} (e @ o) s

1

~ Pr(pr>plan) /xT {/1{ﬁ:ﬁT>g(mT)}‘b(ﬁT|%) dp- | @ (z,) dx,

1 -~
= B gy e e ) e

From Lemma A.3. p, conditional on z, is normally distributed. Specifically

prles ~ N (e +a(t,7) (z: — e_‘z’(T_t)a?t) (07 —32) (1—-0 (t,7‘)2))

11



where a(t, 7) and b(t, 7) are given by

(tr) = 1) G7 — e~ 057
a 77- - = T—t
522 (t, ’7') 1_62;;5 ) (0’31 + 0'572) + ( —2¢(T— t)O' — 0' )
o) = —Sul) el
77- = =
/S22 (t,7) Sss (t,7) \/$ (02, 4 02,) + (e200-0G2 —52)\ /67 — 02

It is then immediate to find
Pr(p; > p(x:)|2z.) = 1=Pr(p: <p(x;)|z:) =1 =N (k (2,7, 20, 0))
where k (x,,7;t, x4, pr) is given in (A34). It then follows that

Pr(p, > p(z,;) = /Pr (Pr > p(z:) |2r) @ (27) das
_ /(1 LN (@ 7ot 50) B (22) das
= 1- /N(k: (xr, 75t 24, 01)) @ (2,) d~

To conclude, we find

[, Pr (ﬁT > p(z-) |[E7—) ® (z,)dr,

Fler = pA1PO] = Pr (5 > p(a:»)
[ 2P (z;)de, — fxT k(z,7it,z4,p¢)) ® (w,) do,
- 1— [N (k [ET,T t,xt,ﬁt)) P (x,)dz,
e 0y, — [, N (k (2, t, 24, p1) D () da,

1_fN x777at>xt>@))®($7) dzT
Q.ED.

Corollary A.1 Let

Yr =br + Q1 (u—7)xr + (u—T) P> (A37)
Then, the joint distribution of (y,,x,, p-) is given by
Yr Yo :uy (0> T, u)
Tr | Lo ~ N oz (0777 u) >E(0>T> U)
ﬁT ﬁ(] Hp (07 T, U)

where pi, (0,7,u) and p; (0,7, u) are given by pzo and puzs in Lemma A.3, respectively,
%i;(0,7,u) = 8;;(0,7), for i,5 = 2,3, S(0,7) is given in Lemma A.3, and finally
S0 (0,7,u) = S11(0,7) + Qi (u—7)?Sas (0,7) + (u — 7)° S35 (0,7)
+2Q; (u—7) S12(0,7) + 2 (u — 7) S13 (0, 7)
+2Q; (u—7) (T — 1) S23 (0, 7)
Y12 (0,7u) = S12(0,7) 4+ Q1 (u—7)Se0(0,7) + (u—7) Sae3 (0, 7)
Yi3(0,7,u) = Si3(0,7) 4+ Q1 (u—7)Se3(0,7) + (u—7) S33(0,7)

12



Proof of Corollary A.1: Immediate from Lemma A.3. Q.E.D.

Utility from Starting a Private Firm at 0: The value function at time 0 is given by

‘/E]O (B(])O) =

where

Bé_ﬁ{ 1— [ 0 ~ A2

- X {a /0 Z° (po, po, 52.u) du (A38)
L P [g (T — 7) eCo(rD)+C1(r. D)o+ Ga (1 T)io v (Zl?o, fo. 52,7, T) (A39)
. /T al—«,eéo(r,uHGl (ru)zo+G2(Tu)po fyn (Io, ﬁo, 33, T, u) du (A40)
+77;60(T,T)+G1 (m, )20 +Ga (m,T)po pm ( 0, o, 33, T, T)} } (A41)

HY ($0>ﬁ0>5\g>7> U) = /6G3(T7u)m7 (1 - N (k2 (ITaTau; 0>$0>ﬁ0783))) P ($T; o (l’) >Ui (t77)) dx

(A42)

HY (o0, 53 7vn) = [ eSO (b (o, 7,030,200 53)) @ (2 1), 0 (8.7)) i A3)

with

k2 ($T7T7u; 550>,50>5\g) =k (ITaT; $07ﬁ0>a\g) - (1 - 7) az (7-? u) \/(a\g - 6-\72_) (1 —b (077)2)

In the formulas above,

Go (T, u)

=) (@l =7+ @l )32

—_

+§ (1-— 7)2 (05 (7,u) + a3 (1, u) (6\3 - 6\3) (1 —b (7‘)2))

Qo(u—7)+3 (1-7? (Q2(u—7)"52 + oy (r,u) + a3 (r,u) (35 — 52) (L= b(r)?))

2
(1—7) (Q1 () — a1 (1,u) e —a(0,7) ay (1, ) e_¢7)
(1=7)u
(1 =) (a1 (7 u) + az (1,u) a (7))
S (T, u) — B (T, 1) S[_2}372:3] (0,7) Xp2:31] (7, 1) (A44)
31,23 (7, %) Sigis 0.5 (0, 7) [1,0) (A45)
31,23 (7,4) Sipis 0.5 (0,7) [0, 1) (A46)

Proof: The value function is given by

T Cl—’*{ Wl—’\{
V¢ (By,0) = FEy / e Pttt + ne T L (A47)
0 1—2 1—x
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T 1—

_ 5 { / ooelaB) (A48)
0 1—7

+e PTE, [V (M, 7) |pr > p] Pr(pr > p) (A49)

+ e TEy [VO (B, 7)|p- < p| Pr (P < p) (A50)

First, Lemma A.1 immediately implies that (A48) equals (A38). Next, we compute

EO [V (MT)7T) |ﬁ7' > £($7):|

Bl—ﬁ/ ~ - 521~
= By | By = )1 T e () T F QTR 5 ()
_ 9(1T - T)6(1—“/){QO(T_T)+%Q2(T_T)2872—}E‘O [0 |5, > ()] (A51)
-7 -

where y, is defined in (A37). The second equality stems from the fact that conditional on an
IPO, the agent will receive M, and will optimally invest in stocks and bonds. The remaining
equalities stem from the earlier results about the form of V(M,,7) and the market value
itself. We then need to compute

B[, > plen)] = [0 (vl > p(e) do,

The computation of this conditional expectation integral is tedious, but it follows directly
from the application of Bayes rule, and the joint normality of all of the variables. The
following derivations are given for convenience. First, we start from

® (15> ) = [ [@l5a) @ Gl > plan) dpda,

- / / ® (y|5 x)l{mfﬁ:ﬁf>e<mf>}®(“”””p Y i
Yr|Pr, Tt Pr (ﬁq- > B(I’T)) PraTr

Substitute, to find
E [ 5 > p(a,)] = / D (yo |y > p () dys

.00 €T Q(I77ﬁ7—)
-/ / @ (v, ) PP} d,dp.dy,
Pr (p- > p(ar))

— A=y p

- = (Wp ey ) ] T 1 e @ ) ® ) ey
_ (1-1)y- G ~ —~ N
- B G / / [ / DD (|2 e | L, oy ® () ® () didp,

The joint normality of (y,, z,, p-) and the rules of the conditional normal distribution imply

y7—| (ﬁﬂ {L’T) ~ N (:uy (ﬁﬂ [L’q—) 705 (T))
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where o7(7,u) is given by (A44), and
ty (Prsx:) = ao (0, 7,u) + a1 (0,7, u) z + az (0,7, u) pr
where a;, 1 = 1,2 are given by (A45) and (A46), and
ap (0, 7,u) = by+ (Q1 (u) —ay (0,7, u) e_¢7) o+ (u — a2 (0,7,u)) po

From now on, we suppress the time indices in a;, and other variables, unless it is necessary
for clarity. Since

/ B (15 2,) dy, = B [0 [ ,] = el-Mm(Bran o500 0300) (a5

we obtain

/6(1_”%@ (y7|ﬁ7 > p ($7)) dy

— 1 / [/OO LDy (Pra) 3105 (DG (5 |7, d@] o (x,)dz,

Pr (pr > p(z-)) plar)

(1-)ao+ (172037, T) = _
¢ (1-7)arz- (1-mazpr g (5. >
e e S (pr|z,)dp, | ® (x;)dx, (A53)

Pr (5 > p(z,)) p(r)
Recall now that
prlzr ~ N (po +a(0,7) (z- — e_w:co) (6 —a7) (1= (0,7‘)2))
We now use the rule

/ P (z;b, s*) do = e 2k s kb (1 =N (a,b+ ks*, s))
S L (1 -N (a —b_ k:s)) (A54)

S

which implies

p(xr)

= 3 a3 (3807) (1007 )+ (1Bl el o (1 A (ky (21,730, 20, 0, 52) )
_ 6%(1_%2&% (3(2)_872_)(l—b((]ﬂ')z)"'(l_ﬁ/)az (ﬁg—a(O,T)e*@'mo)+(1—“{)a2a(0,7)m7—
x (1 =N (k2 (zr, 730,20, P0,03)))
where
p(ar) = o —a (0.7) (w- — e ay)
VG =53 (1-b0.7?)
=2 =~ 2
~ (=) an/(6 52 (1 - b(0.7))

=k (20, 730,20,70,83) — (1= 7) a2/ (33 — 32) (1 - b(0,7)°)

. ~ /\2 _
ko (IT,T, O,zo,po,ao) =
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We can finally compute the integral in (A53) as

‘/e@ﬂwwf[/ =000 (5 |,) dpy | @ () s
P

(zr)
= 6%(1 7)%a} (8(% —o7 ) (l_b(oﬂ')z)'i'(l—“/)az (ﬁo—a(O,T)e*WmO)

% /6(1—~/)(a1+a2a(077))17 (1 — N (kf2 (Iﬂ 75 07 Zo, ﬁ(b 8’3))) ® (I’T) dzT

Thus, putting all together, we obtain
6(1—«/)(0,0—1—(12(ﬁg—a(O,r)e"ng))—l—%(l 7)?(02+a3(53-52) (1-b(0,7)%))

Pr (9. > p(z-))
x HY (I07ﬁ0783777 u)

E [6(1—v)y7|@ > £($7):| _

X

where HY(.) is given in (A42). Substituting this expression in (A51) and using the identity

ag+az (Po — a(0,7) e *xg) = bo+ (Q1(T) —are™® —a(0,7)aze™®) xo + Ty
(A55)

we finally find that (A49) equals (A39).

We now move to compute the expected utility conditional on no IPO at 7. We have

Ey [VO (B, 7) |pr < 3(177)}

T
= — 1 ol / Qo (u=7)+5(1-7)* Q2 (u—7)?52 E, [60 NCrF+Qulu=)zr+(u=)pr) |5 < ,o(:cT)} du
Y T
+1 n QO(T—T)—i-%(1—«,)2Q2(T—7—)28$E [ (1= (br+Q1 (T —7)zr+(T—7)pr) 7y < ,0(937)}
-7
and then

Ep [e00Crt@utun)ert(uen)in) |5 o (3.)]
= B[ (5 < p(ar)]

= / D (y,|pr < p (1)) dys

T 0D €T @ (I7—7ﬁ7—)
:///Wl% 8 (47 ) rPPrse) dx,dp.dy,
Pr (p- < p(a7))

_ A=y)yr
- Pr (,07— < ,0 IT /// K ® (y-|pr, z7) 1{m7pp7<p(m }é(pTuT) (z7) dz-dprdy;

— A=y p = o = -
Pr (5, < p(a,)) // U ® Wrlprs ) dy- | 1o <pian)} @ (rlr) @ (2r) dirdpr
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Using (A52), we obtain
By [ |5, < p (a)]

(z+)
- 2 1 / /B G 300" (5 |2.) dpy | @ () d,
PI‘ (pT < B(zT)) —0o0
(1—y)ao+3(1—v)?c2 R plzr) -
_ e - 2 Y /6(1—“/)a1m7 / 6(1_”“2’)7@(70\7@77) dﬁr @(IT) dz.,
PI‘ (pT < E(zT)) —0o0

By using the same rule as in (A54), we obtain

p(zr) R oo . o0 ~
/ e(1="azpr g (pr|z.) dp, = / e(I=7)azpr g (Pr|z,) dpy — / e(I=7azpr ¢ (pr|z+) dp-

—00 [e%S) plzr)

_ 6%(1—«/)20,%(83—872_)(1—b(0,7)2)+(1—~/)a2(ﬁg—a(O,T)e*‘z”'mg)+(1—~/)a2a(0,7)m7

XN (k2 (Iﬂ T, 07 X, ﬁ(b a’\g))
This yields

1= (ao(ru)+az(r,u)(po—a(0,7)e a0 ) )+ (1—)2 (02 (r,u) +a3(r,u) (63—52 ) (1-b(0,7)%) )

X

Ey [ 5, < p(z,)] = Pr (pr < p(z-))

x H" (9, po, 04, T, 1)
Using the identity (A55), we finally find
By [ |5, < p (a,)]

B et=M((@i(w=ar(rme?"—a(0.nas(ru)e” " )zo+upo ) + 5 (1-7)° (o} () +ad(ru) (55-72) (1-0(0.7)%)

Pr (9. < p(z,))
x H" (x0, po, 0, T, 1)

Using this result, and simple substitutions, we show that (A50) indeed equals the sum of
(A40) and (A41), proving the claim. Q.E.D.

Optimal TPO Timing

The entrepreneur chooses the time 7* of the IPO to maximize his utility. At this time,
the entrepreneur sells the firm for its market value and obtains M.« in equation (28). Using
(A7) and (A9), the entrepreneur’s utility from selling the firm at 7* is

~ B,." (1= [Qu(T—7*)+Q1(T=7*)pr+ +Qa(T—7*)p =+ 5 Qo (T—7*)252
V(BT*>pT*>pT*>T*) = 1T g(T_T*)e K 0 T ! T )Prx 2 T )PrxT 32 T UT*]
-7

Note that there is no need to make explicit the dependence of value functions on o2, as this
is a known function of time. For ¢ < 7, the entrepreneur’s value function is

*

T 1—y
v (Bt’ Pt; ﬁt7 t) = max Et |i/ 6_6(s_t) 105 ds + 6_5(7— _t)V (Bq—* s Pr=, ﬁT*) 7-*)
T ¢ -7
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where recall that ¢, = aB; for s < 7*. For t < 7%, the Bellman Equation is

1—y
! oy gy gy ov
— + —F|dB —F —F
1—+ Tt 9B, [dBy] + o [dpe] + i [dpt]
0%V

10%V 10%V
iy sy 2 iy sy ~2 oy ~

By

_l_

1—

with boundary condition V (Br, pr, pr, T) = Bﬂ; and optimality conditions V ( By, pt, pi, t) >

vV (Bt>pt>ﬁt>t) for t < 7-*7 and V (BT*>pT*>ﬁT*>T*) =V (BT*>pT*>ﬁT*>T*)'

Proposition A.1: The value function is V (B, py, pi, t) = B; 7 ® (pt, pr, t) where ®(.) solves

al™r 0P oo
0 =1 +§+((1—v)pt—ﬁ)®+a—pt¢(pt—pt)
10%0 , , ) 10° [, ¢ \> 8 .,
‘|‘§a—p? (O'pJ + Up,2) + 5 85? (O't 0p72) + 8pt8ﬁt (O't ) (A56)

-1

with boundary condition ® (pr, pr,T) = (1 — )" and optimality conditions

t) > 1 (1= [Qo(T—t)+Q1(T—t)pe+Q2(T—t)pr+ 5 Q2 (T—t)%52] for t<1*
-7

P (phﬁh

and equality at ¢t = 7%,
Proof: It is simple to verify that V (By, pi, pr,t) = B, "® (py, pr, t) satisfies the Bellman
equation and all of the boundary conditions. Q.E.D.

Finally, we obtain ®(.) and the optimal IPO time 7* by numerically solving backward
the Partial Differential Equation (A56) with a finite difference method.
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