Name: OUTLINE SOLUTIONS

University of Chicago
Graduate School of Business

Business 410: Business Statistics

Special Notes:

1. This is a closed-book exam. You may use an 8 × 11 piece of paper for the formulas.

2. Throughout this paper, \(N(\mu, \sigma^2) \) will denote a normal distribution with mean \(\mu \) and variance \(\sigma^2 \).

3. This is a 1 hr 30 min exam.

Honor Code: By signing my name below, I pledge my honor that I have not violated the GSB Honor Code during this examination.

Signature:
Problem A. True or False: Please Explain your answers in detail. Partial credit will be given (50 points)

1. Selection bias is not a problem when you are estimating a population mean.

 False. When sampling to estimate a population mean, you need to be certain to select a random sample, or selection bias may effect your results. The Dewey/Truman election example is the classic example of selection bias.

2. The sample mean, \(\bar{x} \), approximates the population mean for large random samples.

 True. The CLT states that the \(\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \), or the best guess for the population mean is \(\bar{x} \).

3. The expectation of \(X \) minus 2\(Y \) is just the expectation of \(X \) minus twice the expectation of \(Y \), that is \(E(X - 2Y) = E(X) - 2E(Y) \).

 True. The plug-in rule states that \(E(aX + bY) = aE(X) + bE(Y) \). Plug in \(A = 1 \) and \(B = -2 \). Hence \(E(X - 2Y) = E(X) + E(-2Y) = E(X) - 2E(Y) \)

4. In a random sample of 100 NCAA basketball games, the team leading after one quarter won the game 72 times.
 Then a 95% confidence interval for the proportion of teams leading after the first quarter that go on to win is approximately \((0.6, 0.84)\).

 False. The 95% CI is approximately equal to
 \[
 .72 \pm 1.96 \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = 0.72 \pm 1.96 \times 0.045 = (0.63, 0.81)
 \]
5. For the same sample, a 95% prediction interval for a particular team winning is also (0.6, 0.84).

False. The prediction interval is equal to

\[
0.72 \pm 2\sqrt{\hat{p}(1 - \hat{p})}\sqrt{1 + 1/n}
\]

In this case, that contains the entire interval (0,1).

6. The probability that a standard normal distribution is more than 1.96 standard deviations from the mean is 0.05.

True. In a normal distribution, 2.5% of the population is more than 1.96 standard deviations below the mean, and 2.5% is more than 1.96 standard deviations above the mean. Hence 5% of the distribution is more than 1.96 standard deviations from the mean.

7. In playing poker in Vegas, from 100 hours of play, you make an average of $50 per hour with a standard deviation of $10. A 95% confidence interval for your mean gain per hour is approximately $ (48, 52).

True. The CI is given by 50 \pm 2 \times \frac{10}{\sqrt{100}} = (48, 52)

8. Thirty six different kinds of ice cream can be found at Ben and Jerry’s. There are 58,905 different combinations of four choices of ice cream.
True. Combinations are given by $36!/(36 - 6)!6! = 58,905$.

9. If $P(A \cap B) = 0.4$ and $P(B) = 0.8$, then $P(A|B) = 0.5$.

True. $P(A|B) = P(A \cap B)/P(B)$ by Bayes rule.

10. If two events A and B are independent then both $P(A|B) = P(A)$ and $P(B|A) = P(A)$.

False. $P(B|A) = P(A)$. Note that the statement is true if (and only if) $P(A) = P(B)$.

4
Problem B. (20 points)

1. A real estate firm in Florida offers a free trip to Florida for potential customers. Experience has shown that of the people who accept the free trip, 5% decide to buy a property.

 • If the firm brings 1000 people, what is the probability that at least 125 will decide to buy a property?

In order to find the probability that at least 125 decide to buy, the binomial distribution would require calculating the probabilities for 125-1000. Instead, we use the normal approximation for the binomial.

 \[
 \mu = np = 50.
 \]

 \[
 \sigma = \sqrt{np(1 - p)} = \sqrt{1000 \times .05 \times .95} = \sqrt{47.5} = 6.89
 \]

Calculating the Z-score for 125: \(Z = \frac{125 - 50}{6.89} = 10.9 \). and \(P(Z \geq 10.9) = 0 \).

2. In October 1992, the ownership of the San Francisco Giants considered a sale of the franchise that would have resulted in a move to Florida. A survey from the San Francisco Chronicle found that in a random sample of 625 people, 50.7% would be disappointed by the move.

 • Find a 95% confidence interval of the population proportion

 The 95% CI is found by

 \[
 \hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = .507 \pm 1.96 \sqrt{\frac{.507 \times .493}{625}} = .507 \pm 2 \times .020 = (.467, .547)
 \]
Problem C. (20 points)
In the game Chuck-a-Luck you pick a number from 1 to 6. You roll three dice. If your number doesn’t appear on any dice, you lose $1. If your number appears exactly once, you win $1. If your number appears on exactly two dice, you win $2. If your number appears on all three dice, you win $3.
Hence every outcome has how much you win or lose on the game, namely $-1, 1, 2$ or 3.

- Fill in the blanks in the pdf and cdf values

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>F(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>

Explain your reasoning carefully.

1. PDF: This is a binomial experiment with $n=3$ and $p=1/6$. Plugging in for $x = 0$:

$$P(x = 0) = (5/6)^3 = .5787$$
$$P(x = 1) = 3(1/6) \times (5/6)^2 = .3472$$
$$P(x = 2) = 3(1/6)^2 \times (5/6)^1 = .0694$$
$$P(x = 3) = (1/6)^3 = .0046$$

2. CDF: The values for this are the probabilities that X is less than or equal to a given value:

$$F(x = 0) = P(x \leq 0) = .5787$$
$$F(x = 1) = P(x \leq 1) = P(x = 0) + P(x = 1) = .9259$$
$$F(x = 2) = .9954$$
$$F(x = 3) = 1$$

- Compute the expected value of the game, $E(X)$.

The expected value is

$$\sum_x xP_X(x) = -1 \times 0.5787 + 1 \times 0.3472 + 2 \times 0.0694 + 3 \times 0.0046 = -\$0.08.$$

You expect to lose 8 cents per game.
Problem D. (20 points)
A market research survey finds that in a particular week 28% of all adults watch a financial news television program; 17% read a financial publication and 13% do both.

- Fill in the blanks in the following joint probability table

<table>
<thead>
<tr>
<th></th>
<th>Watches TV</th>
<th>Doesn’t Watch</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reads</td>
<td>.13</td>
<td>.04</td>
<td>.17</td>
</tr>
<tr>
<td>Doesn’t Read</td>
<td>.15</td>
<td>.68</td>
<td>.83</td>
</tr>
<tr>
<td></td>
<td>.28</td>
<td>.72</td>
<td>1.00</td>
</tr>
</tbody>
</table>

All probabilities come from the given probabilities and the fact that the sum of the column/row probabilities must add to 1.

- What is the probability that someone who watches a financial TV program read a publication oriented towards finance?

\[
P(reads|TV) = \frac{P(reads \cap TV)}{P(TV)} = \frac{.13}{.28} = .4643
\]

- What is the probability that someone who reads a finance publication watches a financial TV program.

\[
P(TV|reads) = \frac{P(reads \cap TV)}{P(reads)} = \frac{.13}{.17} = .7647
\]

- Why aren’t the answers to the above questions equal?

The reason for the difference is the denominators of the equations are different. This is an example of a base rate issue, it is more likely that someone who reads watches TV because fewer people read. This is not a condition of independence.