Information Asymmetries, Volatility, Liquidity, and the Tobin Tax

by Danilova and Julliard

Discussion

Pietro Veronesi

The University of Chicago Booth School of Business
Main Contribution and Outline of Discussion

• Main contribution of the paper (Abstract):

“Information asymmetries and trading costs, in a financial market model with dynamic information, generate a self-exciting equilibrium price process with stochastic volatility, even if news have constant volatility.”
Main Contribution and Outline of Discussion

• Main contribution of the paper (Abstract):

 "Information asymmetries and trading costs, in a financial market model with dynamic information, generate a self-exciting equilibrium price process with stochastic volatility, even if news have constant volatility."

• Paper proposes a noisy rational expectations model with
 – Asymmetric information between traders and market maker
 – Trading costs
 – Optimal trading decisions: trade/no trade + trading amount
Main Contribution and Outline of Discussion

• Main contribution of the paper (Abstract):

 “Information asymmetries and trading costs, in a financial market model with dynamic information, generate a self-exciting equilibrium price process with stochastic volatility, even if news have constant volatility.”

• Paper proposes a noisy rational expectations model with
 – Asymmetric information between traders and market maker
 – Trading costs
 – Optimal trading decisions: trade/no trade + trading amount

• Optimal trading decisions generate implications for
 – Stochastic volatility, liquidity, trading volume

• Cost of trading \implies trading choices \implies Tobin tax implications
Model (Schematics)

- All agents are risk neutral and with random arrival (e.g. Poisson)
Model (Schematics)

- All agents are risk neutral and with random arrival (e.g. Poisson)
 1. Informed agents (I with prob $1 - q$) observe fundamentals
 2. Uninformed agents (U with prob q) observe some other signal
 - Both types of agents decide how much to trade at Bid/Ask
Model (Schematics)

- All agents are risk neutral and with random arrival (e.g. Poisson)
 1. Informed agents (I with prob $1 - q$) observe fundamentals
 2. Uninformed agents (U with prob q) observe some other signal
 - Both types of agents decide how much to trade at Bid/Ask
 3. Competitive market maker only observes trades, sets Bid/Ask prices, and pay transaction costs δ
Model (Schematics)

- All agents are risk neutral and with random arrival (e.g. Poisson)
 1. Informed agents \((I \text{ with prob } 1 - q)\) observe fundamentals
 2. Uninformed agents \((U \text{ with prob } q)\) observe some other signal
 - Both types of agents decide how much to trade at Bid/Ask
 3. Competitive market maker only observes trades, sets Bid/Ask prices, and pay transaction costs \(\delta\)
- Market maker cannot learn types from trades because it is assumed

 \[
 \text{CDF of } I \text{'s trades} = \text{CDF of } U \text{'s trades}
 \]
Model (Schematics)

• All agents are risk neutral and with random arrival (e.g. Poisson)
 1. Informed agents (I with prob $1 - q$) observe fundamentals
 2. Uninformed agents (U with prob q) observe some other signal
 – Both types of agents decide how much to trade at Bid/Ask
 3. Competitive market maker only observes trades, sets Bid/Ask prices, and pay transaction costs δ

• Market maker cannot learn types from trades because it is assumed

 \[
 \text{CDF of } I\text{'s trades} = \text{CDF of } U\text{'s trades}
 \]

• Market maker can partially invert the trading strategy, estimate fundamentals, and set bid / ask prices as functions of trade size

 \[
 A_t(v) = \frac{q}{q - \delta} \left(1 - \alpha v^{\frac{q-\delta}{1-q}}\right) Z_t^M; \quad B_t(v) = \frac{q}{q + \delta} \left(1 - \beta v^{\frac{q+\delta}{1-q}}\right)^+ Z_t^M
 \]
• As \(q \) increases (more noise), A/B functions become steeper.

 – More noise \(\implies \) less information \(\implies \) more risk
Figure 2: Ask and Bid equilibrium prices for different shares \((q)\) of uninformed traders.

- As \(q\) increases (more noise), A/B functions become steeper.
 - More noise \(\implies\) less information \(\implies\) more risk

- Bid/Ask functions move over time, as

\[
 z_i^M = (1 - q) \z_i + q z_{i-1}^M
\]

\(Prob. \ I\) Last Trade Valuation \(Prob. \ U\)
Model (Schematics)

- Four price frequencies

1. **Tick-by-tick**: prices depend on z_i^M, which affects Bid/Ask
Model (Schematics)

- Four price frequencies

1. **Tick-by-tick**: prices depend on z_i^M, which affects Bid/Ask
2. **Medium frequency** (business time): Poison intensity \rightarrow infinity
 - Price \rightarrow self-exciting at trading times.
 - Constant volatility on trading time scale
Model (Schematics)

- Four price frequencies

1. **Tick-by-tick**: prices depend on z_i^M, which affects Bid/Ask
2. **Medium frequency** (business time): Poison intensity \rightarrow infinity
 - Price \rightarrow self-exciting at trading times.
 - Constant volatility on trading time scale
3. **Low frequency** (calendar time): Price volatility depend on number of trades between two sampling times.
Model (Schematics)

- Four price frequencies

1. **Tick-by-tick**: prices depend on z_i^M, which affects Bid/Ask

2. **Medium frequency** (business time): Poison intensity \rightarrow infinity
 - Price \rightarrow self-exciting at trading times.
 - Constant volatility on trading time scale

3. **Low frequency** (calendar time): Price volatility depend on number of trades between two sampling times.

4. **Ultra-low frequency** (calendar time): Price volatility is constant.
Model (Schematics)

- Four price frequencies

1. **Tick-by-tick**: prices depend on z_i^M, which affects Bid/Ask
2. **Medium frequency** (business time): Poison intensity → infinity
 - Price → self-exciting at trading times.
 - Constant volatility on trading time scale
3. **Low frequency** (calendar time): Price volatility depend on number of trades between two sampling times.
4. **Ultra-low frequency** (calendar time): Price volatility is constant.

- Distinction between 3 and 4 is not clear.
 - Both stem from same limiting argument, but different scaling.
 * Low frequency considers time-varying numbers of trades?
 * Wouldn’t the limiting number of trades over a given interval be the same?
Comments – 1

- Paper as it stands is a tour-de-force
- It is quite well written, considering the amount of math involved
- Message is a bit unfocused (see below), and in fact, it is not clear exactly what the paper tries to explain.
- However, it seems to me it is onto something interesting.
 - Combination of market microstructure with dynamics and learning is interesting
 - Implications about cross-section could be intriguing, if developed further
 - The results on the limit as number of trades goes to infinity are quite interesting, although at the moment they quite a bit unclear still.
• Volatility of stock returns is definitely time varying and stochastic
• Volatility of stock returns is definitely time varying and stochastic

• How much is due to asymmetric information?
• How much of this time variation can this mechanism explain?
• Can we think of the mechanism as an “add-on” of more fundamental variation in volatility?
Comments – 3

• What could be special about this mechanism compared to other mechanisms (habits, fundamental volatility, learning)?
Comments – 3

• What could be special about this mechanism compared to other mechanisms (habits, fundamental volatility, learning)?

 – Relation between volatility and trading
 * In calendar time, number of trades \implies volatility
 * Is volatility high then when liquidity is high? (lots’ of trading)
Comments – 3

• What could be special about this mechanism compared to other mechanisms (habits, fundamental volatility, learning)?
 – Relation between volatility and trading
 * In calendar time, number of trades \Rightarrow volatility
 * Is volatility high then when liquidity is high? (lots’ of trading)

• How about other models with predictions on trading and volatility
 – Differences of opinion models
 * Variation in differences of opinion \Rightarrow trading and volatility
 – Heterogeneous preferences models
 * Differences in risk aversion \Rightarrow trading and volatility
Comments – 3

- What could be special about this mechanism compared to other mechanisms (habits, fundamental volatility, learning)?
 - Relation between volatility and trading
 * In calendar time, number of trades \implies volatility
 * Is volatility high then when liquidity is high? (lots’ of trading)
- How about other models with predictions on trading and volatility
 - Differences of opinion models
 * Variation in differences of opinion \implies trading and volatility
 - Heterogeneous preferences models
 * Differences in risk aversion \implies trading and volatility
- What is unique about this setting?
 - It must be the time scale. Other theories \implies persistent volatility.
 - This paper \implies high frequency: Even ultra-low frequency must be intraday, I think.
• Much of the paper is about the time series volatility.
• Why not focus more on the cross-section?
• How does Kyle lambda depend on information trading?
Comments – 5

- Back to the critical assumption:

\[CDF \text{ of } I's \text{ trades} = CDF \text{ of } U's \text{ trades} \]
Comments – 5

• Back to the critical assumption:

\[
CDF \text{ of } I \text{'s trades} = CDF \text{ of } U \text{'s trades}
\]

• That is: signals of uninformed are such that market makers cannot figure out informed from uninformed trading.
 – This is a “reverse engineering” assumption.
 – Normally, fundamental economic structure (preferences, information, etc) is defined, and everything else is derived.
Comments – 5

• Back to the critical assumption:

\[
CDF \ of \ I’s \ trades = CDF \ of \ U’s \ trades
\]

• That is: signals of uninformed are such that market makers cannot figure out informed from uninformed trading.
 – This is a “reverse engineering” assumption.
 – Normally, fundamental economic structure (preferences, information, etc) is defined, and everything else is derived.

• Paper defends it by showing that this is equivalent to

\[
CDF \ of \ I’s \ asset \ valuation = CDF \ of \ U’s \ asset \ valuation
\]
Comments – 5

• Back to the critical assumption:

\[\text{CDF of I’s trades} = \text{CDF of U’s trades} \]

• That is: signals of uninformed are such that market makers cannot figure out informed from uninformed trading.

 – This is a “reverse engineering” assumption.
 – Normally, fundamental economic structure (preferences, information, etc) is defined, and everything else is derived.

• Paper defends it by showing that this is equivalent to

\[\text{CDF of I’s asset valuation} = \text{CDF of U’s asset valuation} \]

• “[I]t requires that the uninformed traders’ valuations of the asset do not excessively deviate from the fundamental value of the asset that is observed by the informed agent.”
Comments – 5

- Back to the critical assumption:

 \[
 \text{CDF of } I \text{’s trades} = \text{CDF of } U \text{’s trades}
 \]

- That is: signals of uninformed are such that market makers cannot figure out informed from uninformed trading.
 - This is a “reverse engineering” assumption.
 - Normally, fundamental economic structure (preferences, information, etc) is defined, and everything else is derived.

- Paper defends it by showing that this is equivalent to

 \[
 \text{CDF of } I \text{’s asset valuation} = \text{CDF of } U \text{’s asset valuation}
 \]

- “[I]t requires that the uninformed traders’ valuations of the asset do not excessively deviate from the fundamental value of the asset that is observed by the informed agent.”

- It seems it is even more than this. Valuations are exactly identical.
Conclusion

• I find the paper intriguing
• I wish I could understand better:
 – Nature of assumptions
 – Message of the paper: What volatility / trading are we talking about?
 – Implications for the cross-section or different types of markets.
• It would help a lot to see a “matching” between the model’s predictions and the data
 – The paper emphasize dynamics, but all plots are “static”
 – How much does this “time-clock change” (from trading time to calendar time) matter for volatility?
 – How close is this to the data, for which we do in fact observe both a “trading scale” and a “calendar scale”?