A New Class of Non-linear Term Structure Models

by Eraker, Wang and Wu

Discussion

Pietro Veronesi

The University of Chicago Booth School of Business
Main Contribution and Outline of Discussion

- Main contribution of the paper:
 - Proposes a new non-linear interest rate class of models
 - Based on Eraker and Wang non-linear model for volatility (on Journal of Econometrics)
 - Still preliminary version, so still developing main contribution
 - Better fit of term structure data?
 - Closed-form likelihood function for estimation?
 - Other?
Main Contribution and Outline of Discussion

• Main contribution of the paper:
 – Proposes a new non-linear interest rate class of models
 * Based on Eraker and Wang non-linear model for volatility (on Journal of Econometrics)
 – Still preliminary version, so still developing main contribution
 * Better fit of term structure data?
 * Closed-form likelihood function for estimation?
 * Other?

• Outline of discussion
 1. Review of new modeling device
 2. Review of other non-linear models
 3. Additional comments on the model
Model

- Short-term rate
 \[r_t = f(x_t) \]

- State variable \(x_t \) follows some type of “easy process”
 \[dx_t = \mu(x)dt + \sigma(x)dW_t \]

- “Easy” here means that we can use it to do some cool inversion later on
Model

- Short-term rate
 \[r_t = f(x_t) \]

- State variable \(x_t \) follows some type of “easy process”
 \[dx_t = \mu(x)dt + \sigma(x)dW_t \]

- “Easy” here means that we can use it to do some cool inversion later on

- Issue: How do we solve for
 \[B(t, T) = \mathbb{E}^Q \left[e^{-\int_t^T f(x_u)du} \right] \]?

- Change of numeraire: Define new numeraire \(N = G(x) \) and let
 \[P(x, t; T) = \frac{B(x; t, T)}{G(x)} \]

- Then we know
 \[\mu(x)G''(x) + \frac{1}{2}\sigma^2(x)G'''(x) = G(x)f(x) \]
Model

- Therefore, we can define a new measure N so that

$$dx_t = \left(\mu(x) + \sigma^2(x) \frac{G'(x)}{G(x)} \right) dt + \sigma(x)dW_t^N$$
Model

• Therefore, we can define a new measure N so that

$$dx_t = \left(\mu(x) + \sigma^2(x) \frac{G'(x)}{G(x)} \right) dt + \sigma(x)dW^N_t$$

$$\implies B(x, t; T) = G(x) E^N \left[\frac{1}{G(x_T)} | x \right]$$
Model

• Therefore, we can define a new measure N so that

$$dx_t = \left(\mu(x) + \sigma^2(x) \frac{G''(x)}{G(x)}\right) dt + \sigma(x)dw^N_t$$

$$\implies B(x, t; T) = G(x)E^N \left[\frac{1}{G(x_T)} \right] |x|$$

• Eraker, Wong, and Wu show that one can write this as

$$B(x, t; T) = \frac{1}{2\pi} G(x) \int_{-\infty}^{\infty} \frac{1}{\hat{G}(u)} \phi(t, u; x_t; T) du$$

where $\phi(.)$ is conditional characteristics function of x under new measure, and $1/\hat{G}(u)$ is the Fourier transform of $1/G(x)$.

• \implies Judicious choices of $G(x)$, $\mu(x)$, $\sigma(x)$, $f(x)$ leads to closed form formulas.
Model

• Therefore, we can define a new measure N so that

$$dx_t = \left(\mu(x) + \sigma^2(x) \frac{G'(x)}{G(x)}\right) dt + \sigma(x) dW^N_t$$

$$\Rightarrow B(x, t; T) = G(x) E^N \left[\frac{1}{G(x_T)} | x \right]$$

• Eraker, Wong, and Wu show that one can write this as

$$B(x, t; T) = \frac{1}{2\pi} G(x) \int_{-\infty}^{\infty} 1/\tilde{G}(u) \phi(t, u; x_t; T) du$$

where $\phi(.)$ is conditional characteristics function of x under new measure, and $1/\tilde{G}(u)$ is the Fourier transform of $1/G(x)$.

• \Rightarrow Judicious choices of $G(x), \mu(x), \sigma(x), f(x)$ leads to closed form formulas.

• Example:

$$\mu(x) = k(\theta - x); \quad \sigma(x) = \sigma \sqrt{x}; \quad G(x) = x^\alpha e^{\beta x};$$

$$r_t = f(x_t) = \frac{a}{x} + bx + c$$

• Estimated non-linear model does better than CIR model
Other Non-Affine Models

- **Linear-quadratic models** (e.g. Ahn, Dittmar, Gallant 2002)

 (factors) \(d\mathbf{X}_t = \mathbf{K} (\theta - \mathbf{X}_t) \, dt + \mathbf{\Sigma} d\mathbf{W}_t \)

 (short rate) \(r_t = \delta_0 + \delta_1 \mathbf{X}_t + \frac{1}{2} \mathbf{X}'_t \delta_2 \mathbf{X}_t \)

 – Closed form formulas for bond prices

 \[
 B(\mathbf{X}_t, t; T) = \exp \left(A(t, T) + \mathbf{B}(t, T)' \mathbf{X}_t + \frac{1}{2} \mathbf{X}'_t \mathbf{C}(t, T) \mathbf{X}_t \right)
 \]
Other Non-Affine Models

- **Linear-quadratic models** (e.g. Ahn, Dittmar, Gallant 2002)

 (factors) \[dX_t = K (\theta - X_t) \, dt + \Sigma dW_t \]

 (short rate) \[r_t = \delta_0 + \delta'_1 X_t + \frac{1}{2} X'_t \delta_2 X_t \]

 – Closed form formulas for bond prices

 \[B(X_t, t; T) = \exp \left(A(t, T) + B(t, T)'X_t + \frac{1}{2} X'_t C(t, T) X_t \right) \]

- **Linearity-generating model** (Gabaix (2007), Pancost (2015))

 (factors) \[dX_t = [-\mu - \phi X_t + X'_t X'_t \delta_1 + \Sigma(X_t) \sigma(X)] \, dt + \Sigma(X dW_t \]

 (SDF) \[\frac{dM_t}{M_t} = -[\delta_0 + \delta'_1 X_t] \, dt - \sigma(X_t) dW_t \]

 – Closed form formulas for bond prices

 \[B(X_t, t; T) = A(t, T) + B(t, T)'X_t \]
Other Non-Affine Models

• **Habit-based Term Structure Models** (Buraschi and Jiltsov (2007))

 (Inverse Surplus) \[dY_t = k(Y - Y_t)dt - (Y_t - \lambda)\sigma_y dW_t \]

 (Money Shocks) \[d\ell_{i,t} = k_i(\theta_i - \ell_{i,t})dt + \ell_{i,t}\sigma_i dW_{i,t} \]

– Closed form formula for bond prices

\[
B(t, T) = e^{h(T-t)}\frac{\sum_{i=1}^{2} A_{i,0} + A_{i,1}Y_t + A_{i,2}\ell_i + A_{i,3}Y_t\ell_i}{\sum_{i=1}^{2} B_{i,0} + B_{i,1}Y_t + B_{i,2}\ell_i + B_{i,3}Y_t\ell_i}
\]
Other Non-Affine Models

- **Habit-based Term Structure Models** (Buraschi and Jiltsov (2007))

 (Inverse Surplus) \(dY_t = k(\overline{Y} - Y_t) dt - (Y_t - \lambda) \sigma_y dW_t \)

 (Money Shocks) \(d\ell_{i,t} = k_i(\overline{\theta}_i - \ell_{i,t}) dt + \ell_{it} \sigma_i dW_{i,t} \)

 – Closed form formula for bond prices

\[
B(t, T) = e^{h(T-t)} \sum_{i=1}^{2} \frac{A_{i,0} + A_{i,1}Y_t + A_{i,2} \ell_i + A_{i,3}Y_t \ell_i}{\sum_{i=1}^{2} B_{i,0} + B_{i,1}Y_t + B_{i,2} \ell_i + B_{i,3}Y_t \ell_i}
\]

- **State-dependent, learning-based models** (Veronesi (2004))

 (beliefs) \(d\pi_t = \Lambda' \pi_t dt + \pi_t \cdot (\nu - 1_n \pi_t' \nu) dW_t \)

 – Closed form formula for bond prices

\[
B(t, T) = \frac{\pi_t' Q(T - t) \pi_t'}{\pi_t' k}
\]
Zero-Lower Bound

- Need of non-linear models to deal with interest rates at zero lower bound

- **Shadow rate models** (Black (1995), Xia and Wu (2014))

 (factors) \[dX_t = K (\theta - X_t) \, dt + \Sigma dW_t \]

 (short shadow rate) \[s_t = \delta_0 + \delta'_1 X_t \]

 (short rate) \[r_t = \max(s_t, 0) \]

 - Approximate bond pricing formulas from Xia and Wu
Zero-Lower Bound

- Need of non-linear models to deal with interest rates at zero lower bound

- **Shadow rate models** (Black (1995), Xia and Wu (2014))

 (factors) \[dX_t = K (\theta - X_t) \, dt + \Sigma dW_t \]

 (short shadow rate) \[s_t = \delta_0 + \delta_1 X_t \]

 (short rate) \[r_t = \max(s_t, 0) \]

- Approximate bond pricing formulas from Xia and Wu

- **VARG-Zero Models** (Monfort, Pegoraro, Renne, Rousellet 2014)

 (factors) \[X_{j,t} | X \sim \gamma_{\nu_j}(\delta_0 + \delta_1 X_t, \mu_j) \]

 (transition) \[\gamma_{\nu_j}(\lambda, \mu) = \text{non-central Gamma distribution} \]

 \[\nu_j = 0 \quad j = 1, \ldots, n; \quad \nu_j \geq 0 \quad j = n + 1, \ldots, M; \]

 (short rate) \[r_t = \sum_{j=1}^{n} \delta_j X_{j,t} \]

- Closed form formula for bond prices

 \[B(X_t, t; T) = \exp(A(t, T) + B(t, T) X_t) \]
Positioning of the paper

• Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model?
 – The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match
 – This is a class of models: Can we choose $f(x)$ so as to deal with the Zero Lower Bound and still get closed form solutions?
Positioning of the paper

• Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model?
 – The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match
 – This is a class of models: Can we choose $f(x)$ so as to deal with the Zero Lower Bound and still get closed form solutions?

• How about the market price of risk?
 – Non-linear (or non-affine) models claim they are better able to fit risk premia, and predict future returns.
 – How would you specify the market price of risk in this setting in order to get good results under the physical measure?
 – Is the flexibility afforded by the model able to generate any new insight?
Positioning of the paper

• Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model?
 – The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match
 – This is a class of models: Can we choose \(f(x) \) so as to deal with the Zero Lower Bound and still get closed form solutions?

• How about the market price of risk?
 – Non-linear (or non-affine) models claim they are better able to fit risk premia, and predict future returns.
 – How would you specify the market price of risk in this setting in order to get good results under the physical measure?
 – Is the flexibility afforded by the model able to generate any new insight?

• Related, how about the issue of unspanned volatility?
 – Non-linear function \(f(x) \) may generate a special relation between interest rate volatility and yields.
 – Can you use the flexibility of the model in order to ensure that volatility does not explain future returns, but it does generate time varying volatility?
Positioning of the paper

• Can the model generate the inversion in bond volatility and yields that we observed in the data?
 – 1980: High yields and high bond return volatility
 – 2010: Low yields and high bond return volatility

• Can the flexibility of the model generate time variation in the covariance between bonds and stocks?
 – 1980: Positive covariance
 – 2010: Negative covariance
A. 5-Year Bond Return Volatility and Yield

Volatility (% per annum)

Yield (%)

B. 5-Year Rolling Correlation Between Bond Volatility and Yield

Correlation

High Volatility - High Yields

High Volatility - Low Yields
Treasury Bonds and Stock Market Return Correlation

Correlation

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

5 year T-bond
10 year T-bond
30 year T-bond
Positioning of the paper

• Can the model generate the inversion in bond volatility and yields that we observed in the data?
 – 1980: High yields and high bond return volatility
 – 2010: Low yields and high bond return volatility

• Can the flexibility of the model generate time variation in the covariance between bonds and stocks?
 – 1980: Positive covariance
 – 2010: Negative covariance

• How about the pricing of derivatives? Would the change in measure also help for pricing interest rate derivatives?
 – I am not sure the methodology can be easily applied to derivatives

\[
V = G(x) E^N \left[\frac{\text{payoff}(x_T)}{G(x_T)} \right]
\]
Overall:

- Overall: It is a promising approach, although it is too early to see through its full potential
 - I am a big fan of non-linear model, especially those that let risk prices change and switch sign over time
 * Such time variation seems needed to just fit the time series data in the past 30 years
- I look forward to receiving a more complete paper and see what the new methodology can really do.