Heterogeneity and Asset Prices: A Different Approach

by Nicolae Garleanu and Stavros Panageas

Discussion

Pietro Veronesi

The University of Chicago Booth School of Business
Main Contribution and Outline of Discussion

• Main contribution of the paper:

1. Develop a macro-asset pricing framework that links volatile asset prices and high risk premiums to non-volatile, but persistent movements in the cross-sectional income and consumption distributions.

2. Propose a novel empirical approach to infer low frequency, time-series movements in the marginal agent’s consumption [...] by utilizing [...] cross-sectional information.

Main Contribution and Outline of Discussion

Main contribution of the paper:

1. Develop a macro-asset pricing framework that links volatile asset prices and high risk premiums to non-volatile, but persistent movements in the cross-sectional income and consumption distributions.
2. Propose a novel empirical approach to infer low frequency, time-series movements in the marginal agent’s consumption [...] by utilizing [...] cross-sectional information.

Outline of discussion

1. Locally riskless consumption and volatile asset prices
2. Limited Risk Sharing
3. Comments
Locally Riskless Consumption and Stochastic Prices. Power Utility

- Standard endowment economy but with riskless dividend (≡ consumption):
 \[
 \frac{dD_t}{D_t} = g_t \, dt
 \]
Locally Riskless Consumption and Stochastic Prices. Power Utility

- Standard endowment economy but with riskless dividend (= consumption):
 \[\frac{dD_t}{D_t} = g_t \, dt \]
- Let
 \[dg_t = k(\bar{g} - g_t) \, dt + \sigma_g dB_t \]
Locally Riskless Consumption and Stochastic Prices. Power Utility

- Standard endowment economy but with riskless dividend (= consumption):
 \[\frac{dD_t}{D_t} = g_t \, dt \]

- Let
 \[dg_t = k(\bar{g} - g_t)\, dt + \sigma_g dB_t \]

- Power utility:
 \[u(C_t, t) = e^{-\rho t} C_t^{1-\gamma} / (1 - \gamma) \]
Locally Riskless Consumption and Stochastic Prices. Power Utility

- Standard endowment economy but with riskless dividend (= consumption):
 \[\frac{dD_t}{D_t} = g_t \, dt \]

- Let
 \[dg_t = k(\bar{g} - g_t) \, dt + \sigma_g dB_t \]

- Power utility:
 \[u(C_t, t) = e^{-\rho t} C_t^{1-\gamma} / (1 - \gamma) \]

- Then:

 Interest Rate:
 \[r(g_t) = \rho + \gamma g_t \]

 P/D ratio:
 \[\frac{P_t}{D_t}(g_t) = \int_0^\infty e^{A_0(s) + (1-\gamma)k^{-1}(1-e^{-ks})(g_t-\bar{g})} \, ds \]
Locally Riskless Consumption and Stochastic Prices. Power Utility

• Standard endowment economy but with riskless dividend (= consumption):
 \[\frac{dD_t}{D_t} = g_t \, dt \]

• Let
 \[dg_t = k(\overline{g} - g_t)dt + \sigma_g dB_t \]

• Power utility:
 \[u(C_t, t) = e^{-\rho t} C_t^{1-\gamma} / (1 - \gamma) \]

• Then:

 Interest Rate:
 \[r(g_t) = \rho + \gamma g_t \]

 P/D ratio:
 \[\frac{P_t}{D_t}(g_t) = \int_0^\infty e^{A_0(s) + (1-\gamma)k^{-1}(1-e^{-ks})(g_t-\overline{g})} ds \]

 Return process:
 \[\frac{dP_t + D_t dt}{P_t} = r(g_t) dt + \sigma_P(g_t) dB_t \]

• where
 \[\sigma_P(g_t) = \frac{\int_0^\infty (1 - \gamma)k^{-1}(1 - e^{-ks})e^{A_0(s)+(g_t-\overline{g})} ds}{\int_0^\infty e^{A_0(s)+(1-\gamma)k^{-1}(1-e^{-ks})(g_t-\overline{g})} ds} \]
Locally Riskless Consumption and Stochastic Prices. Power Utility

• Standard endowment economy but with riskless dividend (= consumption):
 \[\frac{dD_t}{D_t} = g_t \, dt \]

• Let
 \[dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t \]

• Power utility:
 \[u(C_t, t) = e^{-\rho t} C_t^{1-\gamma} / (1 - \gamma) \]

• Then:
 Interest Rate:
 \[r(g_t) = \rho + \gamma g_t \]

 P/D ratio:
 \[\frac{P_t}{D_t}(g_t) = \int_0^\infty e^{A_0(s) + (1-\gamma)k^{-1}(1-e^{-ks})(g_t-\bar{g})} ds \]

 Return process:
 \[\frac{dP_t + D_t dt}{P_t} = r(g_t) dt + \sigma_P(g_t) dB_t \]

• where
 \[\sigma_P(g_t) = \frac{\int_0^\infty (1 - \gamma)k^{-1}(1 - e^{-ks})e^{A_0(s) + (g_t-\bar{g})} ds}{\int_0^\infty e^{A_0(s) + (1-\gamma)k^{-1}(1-e^{-ks})(g_t-\bar{g})} ds} \]

• ⇒ Volatile prices with locally deterministic consumption
 – Because the riskless rate is time varying
Locally Riskless Consumption and Stochastic Prices. EZ Utility

- Same economy: $dD_t/D_t = g_t \, dt$ with $dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t$
Locally Riskless Consumption and Stochastic Prices. EZ Utility

- Same economy: $\frac{dD_t}{D_t} = g_t \, dt$ with $dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t$
- EZ utility with RRA γ and EIS ψ:

$$f(C_t, V_t) = \frac{\rho(1 - \gamma)}{1 - 1/\psi} V_t \left(\left(\frac{C_t}{((1 - \gamma)V_t)^{1/(1-\gamma)}} \right)^{\frac{1}{\psi}} - 1 \right)$$
Locally Riskless Consumption and Stochastic Prices. EZ Utility

- Same economy: $dD_t/D_t = g_t dt$ with $dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t$
- EZ utility with RRA γ and EIS ψ:

$$f(C_t, V_t) = \frac{\rho(1 - \gamma)}{1 - 1/\psi} V_t \left(\left(\frac{C_t}{((1 - \gamma)V_t)^{1/\psi}} \right)^{1/\psi} - 1 \right)$$

- Then:

Interest Rate: $r(g_t) = \rho + \psi^{-1} g_t$

P/D ratio: $\frac{P_t}{D_t}(g_t) \approx \exp \left(A_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) g_t \right)$
Locally Riskless Consumption and Stochastic Prices. EZ Utility

- Same economy: $dD_t/D_t = g_t \, dt$ with $dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t$
- EZ utility with RRA γ and EIS ψ:

$$f(C_t, V_t) = \frac{\rho (1 - \gamma)}{1 - 1/\psi} V_t \left(\left(\frac{C_t}{(1 - \gamma)V_t^{1/(1-\gamma)}} \right)^{\frac{1}{\psi}} - 1 \right)$$

- Then:

 Interest Rate: $r(g_t) = \rho + \psi^{-1} g_t$

 P/D ratio: $\frac{P_t}{D_t}(g_t) \approx \exp \left(A_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) g_t \right)$

 Return process: $\frac{dP_t + D_t dt}{P_t} \approx (r(g_t) + \mu_P) dt + \sigma_g dB_t$

- where risk premium $\mu_P \approx \left(\frac{1 - 1/\psi}{\eta_1 + h_1} \right) \left(\frac{\gamma - 1/\psi}{\eta_1 + h_1} \right) \sigma_g^2$
Locally Riskless Consumption and Stochastic Prices. EZ Utility

- Same economy: \(\frac{dD_t}{D_t} = g_t \, dt \) with \(dg_t = k(\bar{g} - g_t)dt + \sigma_g dB_t \)
- EZ utility with RRA \(\gamma \) and EIS \(\psi \):
 \[
 f(C_t, V_t) = \frac{\rho (1 - \gamma)}{1 - 1/\psi} V_t \left(\left(\frac{C_t}{((1 - \gamma)V_t)^{\frac{1}{1-\gamma}}} \right)^\frac{1}{\psi} - 1 \right)
 \]
- Then:
 - Interest Rate: \(r(g_t) = \rho + \psi^{-1} g_t \)
 - P/D ratio: \(\frac{P_t}{D_t}(g_t) \approx \exp \left(A_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) g_t \right) \)
 - Return process: \(\frac{dP_t + D_t dt}{P_t} \approx (r(g_t) + \mu_P) \, dt + \sigma_g dB_t \)
- where risk premium \(\mu_P \approx \left(\frac{1-1/\psi}{\eta_1+h_1} \right) \left(\frac{\gamma-1/\psi}{\eta_1+h_1} \right) \sigma_g^2 \)
- Volatile prices and a risk premium with locally deterministic consumption
 - Because the riskless rate is time varying and agents care about future utility
Locally Riskless Consumption and Stochastic Prices

- More generally, one could choose a generic process for economic growth

\[
\frac{dD_t}{D_t} = g_t dt
\]

with

\[
dg_t = \mu_g(g_t)dt + \sigma_g(g_t)dB_t
\]

- which gives

\[
r_t = \rho + \psi^{-1} g_t
\]
Locally Riskless Consumption and Stochastic Prices

• More generally, one could choose a generic process for economic growth

\[\frac{dD_t}{D_t} = g_t dt \]

with

\[dg_t = \mu_g(g_t) dt + \sigma_g(g_t) dB_t \]

• which gives

\[r_t = \rho + \psi^{-1} g_t \]

• From this, one could reverse engineer (if he/she is very good!)

\[P(g_t) = E_t \left[\int \frac{M_{t+s}}{M_t} D_{t+s} ds | g_t \right] = f(g_t) \]
Locally Riskless Consumption and Stochastic Prices

- More generally, one could choose a generic process for economic growth
 \[\frac{dD_t}{D_t} = g_t dt \]
 with
 \[dg_t = \mu_g(g_t) dt + \sigma_g(g_t) dB_t \]
- which gives
 \[r_t = \rho + \psi^{-1} g_t \]
- From this, one could reverse engineer (if he/she is very good!)
 \[P(g_t) = E_t \left[\int \frac{M_{t+s}}{M_t} D_{t+s} ds | g_t \right] = f(g_t) \]
- Examples:
 - Affine models
 - Affine-Quadratic Models
 - Gabaix Linearity Generating Models
Share Process and Complete Markets

- In a model with complete markets, we could give *any* income process to agents

\[Y_{it} = s_{it} C_t \]
Share Process and Complete Markets

• In a model with complete markets, we could give any income process to agents

\[Y_{it} = s_{it} C_t \]

• So long \(\sum s_{it} = 1 \), the same results as above obtain.
Share Process and Complete Markets

• In a model with complete markets, we could give *any* income process to agents

\[Y_{it} = s_{it} C_t \]

• So long \(\sum_{it} s_{it} = 1 \), the same results as above obtain.

• Agents do have different wealth over time, because their total endowment is different and this difference persists
Share Process and Complete Markets

- In a model with complete markets, we could give any income process to agents
 \[Y_{it} = s_{it} C_t \]

- So long \(\sum_{it} s_{it} = 1 \), the same results as above obtain.

- Agents do have different wealth over time, because their total endowment is different and this difference persists.

- But with complete markets, all agents’ consumption plans have identical marginal rates of substitution.

\[
\iff \quad \text{Aggregation gives the result.}
\]

\[
\implies \quad \text{With complete markets, income distribution has no impact on equilibrium}
\]
Share Processes and Incomplete Markets

- Market incompleteness however make endowments affects the equilibrium
Share Processes and Incomplete Markets

• Market incompleteness however make endowments affects the equilibrium
• In Garleanu and Panageas, market incompleteness comes from OLG economy:
 – Agents cannot trade with those who are not born yet.
Share Processes and Incomplete Markets

- Market incompleteness however make endowments affects the equilibrium
- In Garleanu and Panageas, market incompleteness comes from OLG economy:
 - Agents cannot trade with those who are not born yet.
- The way to see it is to see what happens to aggregate consumption over time

\[C_t = \text{sum of consumption of alive agents} \]
• Market incompleteness however make endowments affects the equilibrium
• In Garleanu and Panageas, market incompleteness comes from OLG economy:
 – Agents cannot trade with those who are not born yet.
• The way to see it is to see what happens to aggregate consumption over time

\[C_t = \text{sum of consumption of alive agents} \]

• Therefore, the change in aggregate consumption:

\[
dC_t = -\lambda C_t \, dt + \lambda \int_{-\infty}^{t} e^{-\lambda(t-s)} dC_{t,s} + \lambda C_{t,t} \, dt
\]

Death Survivors New agents
Share Processes and Incomplete Markets

• Market incompleteness however make endowments affects the equilibrium

• In Garleanu and Panageas, market incompleteness comes from OLG economy:
 – Agents cannot trade with those who are not born yet.

• The way to see it is to see what happens to aggregate consumption over time

\[C_t = \text{sum of consumption of alive agents} \]

• Therefore, the change in aggregate consumption:

\[
dC_t = -\lambda C_t \, dt + \lambda \int_{-\infty}^{t} e^{-\lambda(t-s)} \, dC_{t,s} \quad + \quad \lambda C_{t,t} \, dt
\]

 \underline{Death} \quad \underline{Survivors} \quad \underline{New agents}

• For existing agents:

\[
dC_{t,s} / C_{t,s} = (r_t - \rho) \, dt
\]
Share Processes and Incomplete Markets

• Market incompleteness however make endowments affects the equilibrium

• In Garleanu and Panageas, market incompleteness comes from OLG economy:
 – Agents cannot trade with those who are not born yet.

• The way to see it is to see what happens to aggregate consumption over time
 \[C_t = \text{sum of consumption of alive agents} \]

• Therefore, the change in aggregate consumption:
 \[dC_t = -\lambda C_t \, dt + \lambda \int_{-\infty}^{t} e^{-\lambda(t-s)} \, dC_{t,s} + \lambda C_{t,t} \, dt \]
 - Death
 - Survivors
 - New agents

• For existing agents:
 \[dC_{t,s}/C_{t,s} = (r_t - \rho) \, dt \]

• It then follows:
 \[r_t = g + \rho + \lambda - \lambda (C_{t,t}/Y_t) \]
Share Processes and Incomplete Markets

- Market incompleteness however make endowments affects the equilibrium
- In Garleanu and Panageas, market incompleteness comes from OLG economy:
 - Agents cannot trade with those who are not born yet.
- The way to see it is to see what happens to aggregate consumption over time

\[C_t = \text{sum of consumption of alive agents} \]

- Therefore, the change in aggregate consumption:

\[dC_t = \underbrace{-\lambda C_t \ dt} + \underbrace{\lambda \int_{-\infty}^{t} e^{-\lambda(t-s)} dC_{t,s}} + \underbrace{\lambda C_{t,t} \ dt} \]

Death \hspace{1cm} Survivors \hspace{1cm} New agents

- For existing agents: \[\frac{dC_{t,s}}{C_{t,s}} = (r_t - \rho)dt \]
- It then follows:

\[r_t = g + \rho + \lambda - \lambda \left(\frac{C_{t,t}}{Y_t} \right) \]

- And \(C_{t,t} \) depend on \(t \) new endowments:

\[\left(\frac{C_{t,t}}{Y_t} \right) = \frac{\rho + \lambda}{\lambda} \text{[PV Human and Financial Capital of Cohort } t] \]
Share Processes and Incomplete Markets – 2

• Note the achievement:

 1. Output growth is literally constant $dY_t/Y_t = gdt$
Share Processes and Incomplete Markets – 2

• Note the achievement:

1. Output growth is literally constant \(\frac{dY_t}{Y_t} = g dt \)

2. But interest rates are stochastic due to the flow of new people

\[r_t = g + \rho + \lambda \left(1 - \frac{C_{t,t}}{Y_t} \right) \]

– If newborn are born richer, interest rates decline
– (Recall in complete markets, \(\lambda = 0 \) and \(r_t = g + \rho \))
Share Processes and Incomplete Markets – 2

• Note the achievement:

1. Output growth is literally constant \(\frac{dY_t}{Y_t} = gdt \)

2. But interest rates are stochastic due to the flow of new people

\[r_t = g + \rho + \lambda \left(1 - \frac{C_{t,t}}{Y_t} \right) \]

– If newborn are born richer, interest rates decline
– (Recall in complete markets, \(\lambda = 0 \) and \(r_t = g + \rho \))

3. Stochastic interest rates generate variation in prices and future utility
Share Processes and Incomplete Markets – 2

• Note the achievement:
 1. Output growth is literally constant \(\frac{dY_t}{Y_t} = gd t \)
 2. But interest rates are stochastic due to the flow of new people
 \[r_t = g + \rho + \lambda (1 - C_{t,t}/Y_t) \]
 – If newborn are born richer, interest rates decline
 – (Recall in complete markets, \(\lambda = 0 \) and \(r_t = g + \rho \))
 3. Stochastic interest rates generate variation in prices and future utility
 4. Much more freedom to choose cross-sectional properties of endowment processes, compared to other observables, e.g. growth rates
Share Processes and Incomplete Markets – 2

• Note the achievement:

1. Output growth is literally constant \(dY_t/Y_t = gd_t \)

2. But interest rates are stochastic due to the flow of new people
 \[r_t = g + \rho + \lambda (1 - C_{t,t}/Y_t) \]
 – If newborn are born richer, interest rates decline
 – (Recall in complete markets, \(\lambda = 0 \) and \(r_t = g + \rho \))

3. Stochastic interest rates generate variation in prices and future utility

4. Much more freedom to choose cross-sectional properties of endowment processes, compared to other observables, e.g. growth rates

5. As before, choose appropriately some functions of state variables to solve for prices and returns.
• Note the achievement:
 1. Output growth is literally constant \(\frac{dY_t}{Y_t} = gdt \)
 2. But interest rates are stochastic due to the flow of new people
 \[r_t = g + \rho + \lambda (1 - \frac{C_{t,t}}{Y_t}) \]
 – If newborn are born richer, interest rates decline
 – (Recall in complete markets, \(\lambda = 0 \) and \(r_t = g + \rho \))
 3. Stochastic interest rates generate variation in prices and future utility
 4. Much more freedom to choose cross-sectional properties of endowment pro-
 cesses, compared to other observables, e.g. growth rates
 5. As before, choose appropriately some functions of state variables to solve
 for prices and returns.

• This is pretty cool.
Comments

• Locally riskless consumption?
 – Individual households consumption paths seem to be very volatile
Comments

- Locally riskless consumption?
 - Individual households consumption paths seem to be very volatile
 - Evidence:
 - Survey of 1 agent (me): Smooth income growth.
 Sample 2010 - 2017: Quarterly consumption volatility = 11%
An Individual Monthly Consumption Growth
Comments

• Locally riskless consumption?
 – Individual households consumption paths seem to be very volatile
 – Evidence:
 * Survey of 1 agent (me): Smooth income growth.
 Sample 2010 - 2017: Quarterly consumption volatility = 11%
Comments

- Locally riskless consumption?
 - Individual households consumption paths seem to be very volatile
 - Evidence:
 * Survey of 1 agent (me): Smooth income growth.
 Sample 2010 - 2017: Quarterly consumption volatility = 11%
 * Survey of Consumer Expenditures:

<table>
<thead>
<tr>
<th></th>
<th>Individual Growth Rate (%)</th>
<th>Individual Volatility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>6.04</td>
<td>-0.63</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>-0.59</td>
<td>-0.66</td>
</tr>
</tbody>
</table>

(Source: Santos and Veronesi “Habits and Leverage”, 2017)
• Interest rate dynamics is critical in the model
 – Relation between cohort effects and interest rates?
 – (Too) tight relation between interest rates and prices?
 ∗ Question: Why is high interest rate \textit{positively} related to high P/D ratio? (Figure 8)
 – Term structure implications?
Interest rate dynamics is critical in the model
 – Relation between cohort effects and interest rates?
 – (Too) tight relation between interest rates and prices?
 * Question: Why is high interest rate *positively* related to high P/D ratio?
 (Figure 8)
 – Term structure implications?

Interesting read for sure. Hopefully, the first version (this is the preliminary one) will contain more intuition behind the results to clarify the main forces.