Low Risk Anomalies?

by Schneider, Wagners, and Zechner

Discussion

Pietro Veronesi

The University of Chicago Booth School of Business
Main Contribution and Outline of Discussion

• Main contribution of the paper:

 – Proposes a skew-based explanation of several low-risk anomalies
 * Use approximate stochastic discount factor that loads on “skewness”
 * Use Merton (1974) model to justify several implications for levered equity
 · Levered equity returns are negatively skewed
 · Levered equity has higher market beta
 · Levered equity returns have less co-skewness with aggregate return
 ⇒ risk premia less than implied by CAPM

 – Test the model’s implications in the data
 * Use ex-ante option-implied skewness as proxy for co-skewness
 * Explain several low-risk strategies:
 (i) Bet-against-beta; (ii) high idiosyncratic risk; (iii) distress anomalies are implied by investors’ preference for low skewness

• Outline of discussion

 2. Comments
Merton (1974) model

- Firm i’s assets are lognormally distributed

$$A_{i,T} = A_{i,0} \times e^{(\mu_A - 1/2 \sigma_A^2)T + \sigma_A \sqrt{T} \epsilon_{i,T}}$$

- Firm issues zero coupon bond with face value K.

Equity holders Payoff at T

- Levered equity is

$$S_t = \text{Call Option}$$

- or, equivalently

$$S_t = A_t + \text{Put Option} - \text{Bonds}$$
Merton (1974) model: Levered Equity and Implicit Put Protection

- Implicit put protection (limited liability) is valuable if aversion to skewness
Merton (1974) model: Levered Equity is Negatively Skewed

A. Levered Equity vs. Leverage

B. Expected Return vs Leverage

C. Skewness vs Leverage

D. Betas vs Leverage
Data: Individual Stocks’ Equity Returns are *Positively Skewed*

- Aggregate stock returns are negatively skewed.
- Individual stock returns are *positively* skewed, on average.

Data: Individual Stocks’ Equity Returns are *Positively Skewed*

Table. Skewness and Leverage

Annual portfolio sort on leverage. The sample is individual stocks that are or used to be in the S&P500 index sampled at daily frequency. The sample is 1964 to 2014 (COMPUSTAT Sample).

<table>
<thead>
<tr>
<th>Lev</th>
<th>Mean</th>
<th>Std</th>
<th>Skew</th>
<th>exKurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.16</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.15</td>
<td>0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.14</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.14</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>0.59</td>
<td>0.14</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>

- Merton (1974) intuition hinges on
 1. Underlying firms’ assets are log-normal
 2. Leverage is exogenous
Data: Individual Stocks’ Equity Returns are Positively Skewed

Table. Skewness and Leverage

Annual portfolio sort on leverage. The sample is individual stocks that are or used to be in the S&P500 index sampled at daily frequency. The sample is 1964 to 2014 (COMPUSTAT Sample).

<table>
<thead>
<tr>
<th>Lev</th>
<th>Mean</th>
<th>Std</th>
<th>Skew</th>
<th>exKurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.16</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.15</td>
<td>0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.14</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.14</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>0.59</td>
<td>0.14</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>

- Merton (1974) intuition hinges on
 1. Underlying firms’ assets are log-normal
 2. Leverage is exogenous

- But this paper is about co-skewness.
Table 5
Skewness by firm size decile and by firm R^3 decile. Reported for each decile are mean firm size, R^3, risk-neutral skewness, and realized return skewness at daily, monthly, and quarterly horizons.

Panel A: Skewness by size decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>Logsize</th>
<th>R^3</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2958</td>
<td>0.0027</td>
<td>0.0791</td>
<td>0.1149</td>
<td>0.0004</td>
<td>0.2922</td>
</tr>
<tr>
<td>2</td>
<td>16.4537</td>
<td>0.0042</td>
<td>0.1640</td>
<td>0.1569</td>
<td>0.0284</td>
<td>−0.0247</td>
</tr>
<tr>
<td>3</td>
<td>17.1150</td>
<td>0.0066</td>
<td>0.1938</td>
<td>0.1593</td>
<td>0.0283</td>
<td>−0.0847</td>
</tr>
<tr>
<td>4</td>
<td>17.6665</td>
<td>0.0105</td>
<td>0.2217</td>
<td>0.1397</td>
<td>0.0271</td>
<td>−0.1518</td>
</tr>
<tr>
<td>5</td>
<td>18.1857</td>
<td>0.0172</td>
<td>0.2137</td>
<td>0.1076</td>
<td>0.0174</td>
<td>−0.1575</td>
</tr>
<tr>
<td>6</td>
<td>18.7247</td>
<td>0.0254</td>
<td>0.1978</td>
<td>0.0682</td>
<td>0.0031</td>
<td>−0.1530</td>
</tr>
<tr>
<td>7</td>
<td>19.2952</td>
<td>0.0367</td>
<td>0.1693</td>
<td>0.0224</td>
<td>−0.0218</td>
<td>−0.1877</td>
</tr>
<tr>
<td>8</td>
<td>19.9304</td>
<td>0.0490</td>
<td>0.1534</td>
<td>−0.0121</td>
<td>−0.0289</td>
<td>−0.1874</td>
</tr>
<tr>
<td>9</td>
<td>20.7692</td>
<td>0.0667</td>
<td>0.1211</td>
<td>−0.0357</td>
<td>−0.0398</td>
<td>−0.1995</td>
</tr>
<tr>
<td>10</td>
<td>22.4310</td>
<td>0.1187</td>
<td>0.0478</td>
<td>−0.0630</td>
<td>−0.0514</td>
<td>−0.2602</td>
</tr>
</tbody>
</table>

Panel B: Skewness by R^3 decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>R^3</th>
<th>Logsize</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.0041</td>
<td>17.0304</td>
<td>0.1229</td>
<td>0.1215</td>
<td>0.0205</td>
<td>−0.1380</td>
</tr>
<tr>
<td>2</td>
<td>0.0006</td>
<td>16.9429</td>
<td>0.1406</td>
<td>0.1382</td>
<td>0.0196</td>
<td>−0.2052</td>
</tr>
<tr>
<td>3</td>
<td>0.0022</td>
<td>17.2797</td>
<td>0.1720</td>
<td>0.1287</td>
<td>0.0215</td>
<td>−0.1593</td>
</tr>
<tr>
<td>4</td>
<td>0.0049</td>
<td>17.6481</td>
<td>0.1703</td>
<td>0.1095</td>
<td>0.0120</td>
<td>−0.1979</td>
</tr>
<tr>
<td>5</td>
<td>0.0093</td>
<td>18.0858</td>
<td>0.1794</td>
<td>0.0877</td>
<td>0.0034</td>
<td>−0.1748</td>
</tr>
<tr>
<td>6</td>
<td>0.0164</td>
<td>18.5832</td>
<td>0.1813</td>
<td>0.0642</td>
<td>−0.0050</td>
<td>−0.1966</td>
</tr>
<tr>
<td>7</td>
<td>0.0271</td>
<td>19.0573</td>
<td>0.1750</td>
<td>0.0387</td>
<td>−0.0095</td>
<td>−0.1858</td>
</tr>
<tr>
<td>8</td>
<td>0.0438</td>
<td>19.5741</td>
<td>0.1607</td>
<td>0.0147</td>
<td>−0.0227</td>
<td>−0.1894</td>
</tr>
<tr>
<td>9</td>
<td>0.0734</td>
<td>20.2110</td>
<td>0.1547</td>
<td>−0.0157</td>
<td>−0.0371</td>
<td>−0.2057</td>
</tr>
<tr>
<td>10</td>
<td>0.1640</td>
<td>21.4555</td>
<td>0.1050</td>
<td>−0.0292</td>
<td>−0.0397</td>
<td>−0.2484</td>
</tr>
</tbody>
</table>

Table 5
Skewness by firm size decile and by firm R^3 decile. Reported for each decile are mean firm size, R^3, risk-neutral skewness, and realized return skewness at daily, monthly, and quarterly horizons.

Panel A: Skewness by size decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>Logsize</th>
<th>R^3</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2958</td>
<td>0.0027</td>
<td>0.0791</td>
<td>0.1149</td>
<td>0.0004</td>
<td>0.2922</td>
</tr>
<tr>
<td>2</td>
<td>16.4537</td>
<td>0.0042</td>
<td>0.1640</td>
<td>0.1569</td>
<td>0.0284</td>
<td>−0.0247</td>
</tr>
<tr>
<td>3</td>
<td>17.1150</td>
<td>0.0066</td>
<td>0.1938</td>
<td>0.1593</td>
<td>0.0283</td>
<td>−0.0847</td>
</tr>
<tr>
<td>4</td>
<td>17.6665</td>
<td>0.0105</td>
<td>0.2217</td>
<td>0.1397</td>
<td>0.0271</td>
<td>−0.1518</td>
</tr>
<tr>
<td>5</td>
<td>18.1857</td>
<td>0.0172</td>
<td>0.2137</td>
<td>0.1076</td>
<td>0.0174</td>
<td>−0.1575</td>
</tr>
<tr>
<td>6</td>
<td>18.7247</td>
<td>0.0254</td>
<td>0.1978</td>
<td>0.0682</td>
<td>0.0031</td>
<td>−0.1530</td>
</tr>
<tr>
<td>7</td>
<td>19.2952</td>
<td>0.0367</td>
<td>0.1693</td>
<td>0.0224</td>
<td>−0.0218</td>
<td>−0.1877</td>
</tr>
<tr>
<td>8</td>
<td>19.9304</td>
<td>0.0490</td>
<td>0.1534</td>
<td>−0.0121</td>
<td>−0.0289</td>
<td>−0.1874</td>
</tr>
<tr>
<td>9</td>
<td>20.7692</td>
<td>0.0667</td>
<td>0.1211</td>
<td>−0.0357</td>
<td>−0.0398</td>
<td>−0.1995</td>
</tr>
<tr>
<td>10</td>
<td>22.4310</td>
<td>0.1187</td>
<td>0.0478</td>
<td>−0.0630</td>
<td>−0.0514</td>
<td>−0.2602</td>
</tr>
</tbody>
</table>

Panel B: Skewness by R^3 decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>R^3</th>
<th>Logsize</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.0041</td>
<td>17.0304</td>
<td>0.1229</td>
<td>0.1215</td>
<td>0.0205</td>
<td>−0.1380</td>
</tr>
<tr>
<td>2</td>
<td>0.0006</td>
<td>16.9429</td>
<td>0.1406</td>
<td>0.1382</td>
<td>0.0196</td>
<td>−0.2052</td>
</tr>
<tr>
<td>3</td>
<td>0.0022</td>
<td>17.2797</td>
<td>0.1720</td>
<td>0.1287</td>
<td>0.0215</td>
<td>−0.1593</td>
</tr>
<tr>
<td>4</td>
<td>0.0049</td>
<td>17.6481</td>
<td>0.1703</td>
<td>0.1095</td>
<td>0.0120</td>
<td>−0.1979</td>
</tr>
<tr>
<td>5</td>
<td>0.0093</td>
<td>18.0858</td>
<td>0.1794</td>
<td>0.0877</td>
<td>0.0034</td>
<td>−0.1748</td>
</tr>
<tr>
<td>6</td>
<td>0.0164</td>
<td>18.5832</td>
<td>0.1813</td>
<td>0.0642</td>
<td>−0.0050</td>
<td>−0.1966</td>
</tr>
<tr>
<td>7</td>
<td>0.0271</td>
<td>19.0573</td>
<td>0.1750</td>
<td>0.0387</td>
<td>−0.0095</td>
<td>−0.1858</td>
</tr>
<tr>
<td>8</td>
<td>0.0438</td>
<td>19.5741</td>
<td>0.1607</td>
<td>0.0147</td>
<td>−0.0227</td>
<td>−0.1894</td>
</tr>
<tr>
<td>9</td>
<td>0.0734</td>
<td>20.2110</td>
<td>0.1547</td>
<td>−0.0157</td>
<td>−0.0371</td>
<td>−0.2057</td>
</tr>
<tr>
<td>10</td>
<td>0.1640</td>
<td>21.4555</td>
<td>0.1050</td>
<td>−0.0292</td>
<td>−0.0397</td>
<td>−0.2484</td>
</tr>
</tbody>
</table>

Table 5
Skewness by firm size decile and by firm R^3 decile. Reported for each decile are mean firm size, R^3, risk-neutral skewness, and realized return skewness at daily, monthly, and quarterly horizons.

Panel A: Skewness by size decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>Logsize</th>
<th>R^3</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2958</td>
<td>0.0027</td>
<td>0.0791</td>
<td>0.1149</td>
<td>0.0004</td>
<td>0.2922</td>
</tr>
<tr>
<td>2</td>
<td>16.4537</td>
<td>0.0042</td>
<td>0.1640</td>
<td>0.1569</td>
<td>0.0284</td>
<td>−0.0247</td>
</tr>
<tr>
<td>3</td>
<td>17.1150</td>
<td>0.0066</td>
<td>0.1938</td>
<td>0.1593</td>
<td>0.0283</td>
<td>−0.0847</td>
</tr>
<tr>
<td>4</td>
<td>17.6665</td>
<td>0.0105</td>
<td>0.2217</td>
<td>0.1397</td>
<td>0.0271</td>
<td>−0.1518</td>
</tr>
<tr>
<td>5</td>
<td>18.1857</td>
<td>0.0172</td>
<td>0.2137</td>
<td>0.1076</td>
<td>0.0174</td>
<td>−0.1575</td>
</tr>
<tr>
<td>6</td>
<td>18.7247</td>
<td>0.0254</td>
<td>0.1978</td>
<td>0.0682</td>
<td>0.0031</td>
<td>−0.1530</td>
</tr>
<tr>
<td>7</td>
<td>19.2952</td>
<td>0.0367</td>
<td>0.1693</td>
<td>0.0224</td>
<td>−0.0218</td>
<td>−0.1877</td>
</tr>
<tr>
<td>8</td>
<td>19.9304</td>
<td>0.0490</td>
<td>0.1534</td>
<td>−0.0121</td>
<td>−0.0289</td>
<td>−0.1874</td>
</tr>
<tr>
<td>9</td>
<td>20.7692</td>
<td>0.0667</td>
<td>0.1211</td>
<td>−0.0357</td>
<td>−0.0398</td>
<td>−0.1995</td>
</tr>
<tr>
<td>10</td>
<td>22.4310</td>
<td>0.1187</td>
<td>0.0478</td>
<td>−0.0630</td>
<td>−0.0514</td>
<td>−0.2602</td>
</tr>
</tbody>
</table>

Panel B: Skewness by R^3 decile

<table>
<thead>
<tr>
<th>Decile</th>
<th>R^3</th>
<th>Logsize</th>
<th>Daily</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Risk-neutral*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.0041</td>
<td>17.0304</td>
<td>0.1229</td>
<td>0.1215</td>
<td>0.0205</td>
<td>−0.1380</td>
</tr>
<tr>
<td>2</td>
<td>0.0006</td>
<td>16.9429</td>
<td>0.1406</td>
<td>0.1382</td>
<td>0.0196</td>
<td>−0.2052</td>
</tr>
<tr>
<td>3</td>
<td>0.0022</td>
<td>17.2797</td>
<td>0.1720</td>
<td>0.1287</td>
<td>0.0215</td>
<td>−0.1593</td>
</tr>
<tr>
<td>4</td>
<td>0.0049</td>
<td>17.6481</td>
<td>0.1703</td>
<td>0.1095</td>
<td>0.0120</td>
<td>−0.1979</td>
</tr>
<tr>
<td>5</td>
<td>0.0093</td>
<td>18.0858</td>
<td>0.1794</td>
<td>0.0877</td>
<td>0.0034</td>
<td>−0.1748</td>
</tr>
<tr>
<td>6</td>
<td>0.0164</td>
<td>18.5832</td>
<td>0.1813</td>
<td>0.0642</td>
<td>−0.0050</td>
<td>−0.1966</td>
</tr>
<tr>
<td>7</td>
<td>0.0271</td>
<td>19.0573</td>
<td>0.1750</td>
<td>0.0387</td>
<td>−0.0095</td>
<td>−0.1858</td>
</tr>
<tr>
<td>8</td>
<td>0.0438</td>
<td>19.5741</td>
<td>0.1607</td>
<td>0.0147</td>
<td>−0.0227</td>
<td>−0.1894</td>
</tr>
<tr>
<td>9</td>
<td>0.0734</td>
<td>20.2110</td>
<td>0.1547</td>
<td>−0.0157</td>
<td>−0.0371</td>
<td>−0.2057</td>
</tr>
<tr>
<td>10</td>
<td>0.1640</td>
<td>21.4555</td>
<td>0.1050</td>
<td>−0.0292</td>
<td>−0.0397</td>
<td>−0.2484</td>
</tr>
</tbody>
</table>

Higher Co-Skewness \Rightarrow Higher Risk Neutral Skewness?
A Simple Model of Co-Skewness – 1

• We want:
 – Aggregate negative skewness
 – Positive average skewness

• Aggregate Factor (Market):

\[F_T = F_0 \times e^{(\mu - 1/2\sigma^2)T + \sigma_F \sqrt{T} \epsilon_T} \times (1 - \delta_F J_{F,T}) \]

– where \(J_T = 1 \) with probability \(P(T) = e^{-\lambda T} \), and \(\delta_F > 0 \)
A Simple Model of Co-Skewness – 1

- We want:
 - Aggregate negative skewness
 - Positive average skewness

- Aggregate Factor (Market):

 \[F_T = F_0 \times e^{(\mu - 1/2\sigma^2)T + \sigma_F \sqrt{T} \epsilon_T} \times (1 - \delta_F J_{F,T}) \]

 - where \(J_T = 1 \) with probability \(P(T) = e^{-\lambda T} \), and \(\delta_F > 0 \)

- Individual firm’s assets at \(T \):

 \[A_{i,T} = F_T \times e^{(\mu_A - 1/2\sigma^2)T + \sigma_F \sqrt{T} \epsilon_{i,T}}(1 + \delta_A J_{i,T}) \]

 - where \(J_{i,T} = 1 \) with probability \(P(T) = e^{-\lambda T} \), and \(\delta_A > \delta_F \)
A Simple Model of Co-Skewness – 1

• We want:
 – Aggregate negative skewness
 – Positive average skewness

• Aggregate Factor (Market):

\[F_T = F_0 \times e^{(\mu - 1/2\sigma^2)T + \sigma_F \sqrt{T}\epsilon_T} \times (1 - \delta_F J_{F,T}) \]

 – where \(J_T = 1 \) with probability \(P(T) = e^{-\lambda T} \), and \(\delta_F > 0 \)

• Individual firm’s assets at \(T \):

\[A_{i,T} = F_T \times e^{(\mu_A - 1/2\sigma^2)T + \sigma_F \sqrt{T}\epsilon_{i,T}} (1 + \delta_A J_{i,T}) \]

 – where \(J_{i,T} = 1 \) with probability \(P(T) = e^{-\lambda T} \), and \(\delta_A > \delta_F \)

• With a large number of firms, aggregate wealth at \(T \) is

\[W_T = \int A_{i,T} di = F_T \]
A Simple Model of Co-Skewness. – 2

- Pricing Kernel (= marginal CRRA utility at T – assume zero risk free rate)

$$\pi_t = E_t \left[W_T^{-\gamma} \right]$$
A Simple Model of Co-Skewness. – 2

• Pricing Kernel (= marginal CRRA utility at T – assume zero risk free rate)

$$\pi_t = E_t \left[W_T^{-\gamma} \right]$$

• Levered equity at time t of firm i is

$$S_t = \frac{E_t[\pi_T \max(A_{i,T} - K, 0)]}{\pi_t}$$
A Simple Model of Co-Skewness. – 2

- Pricing Kernel (= marginal CRRA utility at T – assume zero risk free rate)
 \[\pi_t = E_t \left[W_T^{-\gamma} \right] \]

- Levered equity at time t of firm i is
 \[S_t = \frac{E_t[\pi_T \max(A_{i,T} - K, 0)]}{\pi_t} \]

- If $\delta_F = \delta_A = 0 \implies$ Black-Scholes model.
- If $0 < \delta_F < \delta_A \implies (i)$ $\log(F_T)$ is neg. skewed; (ii) $\log(A_{i,T})$ is pos. skewed.
A Simple Model of Co-Skewness. – 2

• Pricing Kernel (= marginal CRRA utility at T – assume zero risk free rate)

$$\pi_t = E_t \left[W_T^{-\gamma} \right]$$

• Levered equity at time t of firm i is

$$S_t = \frac{E_t[\pi_T \max(A_{i,T} - K, 0)]}{\pi_t}$$

• If $\delta_F = \delta_A = 0 \implies$ Black-Scholes model.

• If $0 < \delta_F < \delta_A \implies (i)$ log(F_T) is neg. skewed; (ii) log($A_{i,T}$) is pos. skewed.

• Questions:

 – Can we find parameters so that levered equity S_t is also positively skewed?
 – What is the expected return of levered equity? How does it depend on (i) market beta; (ii) SDF beta?

$$E[R^S_i] = \beta^{Mkt} E[R^F]; \quad E[R^S_i] = \beta^{SDF} E[R^F]$$

$$\frac{Cov(R^S_i, R^F)}{Var(R^F)} \quad \frac{Cov(R^S_i, R^\pi)}{Cov(R^F, R^\pi)}$$
Simple Model ($\lambda = 1, \delta_A = 0.4, \delta_F = 0.1$)

A. Levered Equity vs. Leverage

B. Expected Return vs Leverage.

C. Skewness vs Leverage

D. Betas vs Leverage

Positive Skewness of Levered Equity
Simple Model \((\lambda = 1, \delta_A = .4, \delta_F = .1)\)
Simple Model ($\lambda = 1, \delta_A = .4, \delta_F = .1$)

A. Average Return vs Mkt Beta Expected Return.

B. Average Return vs SDF–beta Expected Return

C. Average Return vs Idiosyncratic Volatility.

D. Average Return vs Total Volatility
Simple Model ($\lambda = 1, \delta_A = .4, \delta_F = .1$)

- Higher leverage
 - \implies Higher market beta and SDF beta
 - \implies $\beta^{Mkt} > \beta^{SDF}$
Simple Model ($\lambda = 1, \delta_A = .4, \delta_F = .1$)

- Higher leverage
 - \implies Higher market beta and SDF beta
 - $\implies \beta_{Mkt} > \beta_{SDF}$

- Strategy: Bet against beta
 1. Pick a high market beta (H) and a low market beta (L) stock
 2. Long $w_L = 1/\beta_L^{Mkt}$ in L stock; short $w_H = 1/\beta_H^{Mkt}$ in H stock
Simple Model ($\lambda = 1, \delta_A = .4, \delta_F = .1$)

- Higher leverage
 - \implies Higher market beta *and* SDF beta
 - $\implies \beta^{Mkt} > \beta^{SDF}$

- Strategy: Bet against beta
 1. Pick a high market beta (H) and a low market beta (L) stock
 2. Long $w_L = 1/\beta^L_{Mkt}$ in L stock; short $w_H = 1/\beta^H_{Mkt}$ in H stock

- By construction: $R_p = w_L R_L - w_H R_H$ has zero market beta.

\[E[R^p] = \left(\frac{\beta^{SDF}_L}{\beta^L_{Mkt}} - \frac{\beta^{SDF}_H}{\beta^H_{Mkt}} \right) E[R^{Mkt}] > 0 \]

\[\approx 1 \quad < 1 \]
Simple Model \((\lambda = 1, \delta_A = .4, \delta_F = .1)\)

- Higher leverage
 - \(\implies\) Higher market beta and SDF beta
 - \(\implies\) \(\beta^{Mkt} > \beta^{SDF}\)

- Strategy: Bet against beta
 1. Pick a high market beta \((H)\) and a low market beta \((L)\) stock
 2. Long \(w_L = 1/\beta^{Mkt}_L\) in \(L\) stock; short \(w_H = 1/\beta^{Mkt}_H\) in \(H\) stock

- By construction: \(R_p = w_L R_L - w_H R_H\) has zero market beta.

\[
E[R^p] = \left(\frac{\beta^{SDF}_L}{\beta^{Mkt}_L} - \frac{\beta^{SDF}_H}{\beta^{Mkt}_H} \right) E[R^{Mkt}] > 0
\]

\[
\approx 1 - \frac{\beta^{SDF}_H}{\beta^{Mkt}_H} < 1
\]

- Of course, in this model, long “low leverage” stocks and short “high leverage” stocks should also work
Simple Model \((\lambda = 1, \delta_A = .4, \delta_F = .1)\)

- Higher leverage
 - \(\implies\) Higher market beta and SDF beta
 - \(\implies\) \(\beta^{Mkt} > \beta^{SDF}\)

- Strategy: Bet against beta
 1. Pick a high market beta \((H)\) and a low market beta \((L)\) stock
 2. Long \(w_L = 1/\beta^{Mkt}_L\) in \(L\) stock; short \(w_H = 1/\beta^{Mkt}_H\) in \(H\) stock

- By construction: \(R_p = w_L R_L - w_H R_H\) has zero market beta.

\[
E[R^p] = \left(\frac{\beta^{SDF}_L}{\beta^{Mkt}_L} - \frac{\beta^{SDF}_H}{\beta^{Mkt}_H} \right) E[R^{Mkt}] > 0
\]

\(
\approx 1 < 1
\)

- Of course, in this model, long “low leverage” stocks and short “high leverage” stocks should also work

- How about idiosyncratic volatility and return?
Simple Model \((\lambda = 1, \delta_A = .4, \delta_F = .1)\)

A. Average Return vs Mkt Beta Expected Return.

B. Average Return vs SDF-beta Expected Return

C. Average Return vs Idiosyncratic Volatility.

D. Average Return vs Total Volatility

High Idio Vol \(\Rightarrow\) High Average Return
Simple Model ($\lambda = 1, \delta_A = .4, \delta_F = .1$)

- Now fix leverage $K = 0.9$ and change idiosyncratic asset volatility σ_A.

![Graph A: Levered Equity](image)

- Expected Return

- Skewness

- Betas
Simple Model \((\lambda = 1, \delta_A = .4, \delta_F = .1)\)

- Now fix leverage \(K = 0.9\) and change idiosyncratic asset volatility \(\sigma_A\).
Concluding Remarks

1. Mechanism, paper, and especially empirical results are interesting.
 – Need to fix the “negative skeweness” issue for individual securities
 * Is *ex-ante* skewness still the proper measure of co-skewness in the model?
 – Need to relate it to Engle and Mistry (Journal of Econometrics 2014)
 – Need to relate it to Tim Johnson (JF, 2004)
 * Use a Merton’s model to show that high idio vol \implies low risk premia.
 – Note on idio volatility
 * High leverage \implies high idio vol and high risk premia
 * High asset vol \implies high idio vol and low risk premia
 \implies need to study interaction effects.

2. If you take the mechanism seriously, need to sort on credit risk (under P).
 – How big are the effects for reasonable parameters?

3. Consider other “leverage” mechanisms
 – Operating leverage
 – Labor leverage