Learning about the Neighborhood: A Model of Housing Cycles

by Michael Sockin and Wei Xiong

Discussion

Pietro Veronesi

The University of Chicago Booth School of Business
What Does This Paper Do?

Figure 1: Structure of the Static Model
What Does This Paper Do?

- Proposes a model of housing choice based on *rational* learning with differentially informed agents about the quality of a location.
- Location quality affect agents’ labor productivity, and hence amount of consumption goods produced and traded.
- Housing is treated a “good” that is complementary to other consumption goods, and it is produced by special builders.
- House price aggregate information about location quality
 - Higher house price signal higher quality \implies increase housing demand (in a partial sense)
- Solve for equilibrium prices and obtain several results about housing demand, supply elasticity, learning, etc.
- Dynamic extension
 - Generate short-term momentum and long-term reversal
 - U-shape relation about price variation and housing supply
Assessment and Outline of Discussion

• Interesting and somewhat plausible mechanism
 – House prices convey information about neighborhood quality

• There are some issues about interpretation and the source of the results that need to be clarified

• Paper is still a major challenge to read and even more to understand (it is indeed Preliminary). Advise to wait for first clean version.

• My discussion:
 (A) Static asymmetric information models
 (B) The mechanism in a simplified version of model
 (C) Further comments on the paper.
Static Asymmetric Information Model - I

- Consider a model a la’ Hellwig (1980).
- Risky asset with payoff $A \sim N(0, v_A)$, and random supply $H_S = \xi \sim N(0, v_\xi)$.
- Each agent i observes signal $s_i = A + \epsilon_i$, chooses H_i in risky asset and B_i in riskless bond to maximize the expected utility from final wealth $W_i = H_iA + B_i R$:
 $$\max_{H_i, B_i} E \left[-e^{-\eta W_i} | s_i, P_H \right] \text{ subject to } W_0 = P_H H_i + B_i$$
- Conjecture linear equilibrium:
 $$P_H = a + b A + c \xi$$
- Vector $(A, P_H, s_i)'$ is jointly normal
 $$\implies A|s_i, P_H \sim N(\mu_A(s_i, P_H), \sigma_A) \text{ where } \mu_A(s_i, P_H) = h_1 (P_H - a) + h_2 s_i$$
 (h_1, h_2 and σ_A depend on parameters.)
- Expected utility is
 $$E \left[-e^{-\eta H_i A + B_i} | s_i, P_H \right] = -e^{-\eta H_i \mu_A + B_i + \frac{1}{2} \eta^2 H_i^2 \sigma_A}$$
Static Asymmetric Information Model - II

- Maximizing this utility is equivalent to max the exponent, obtaining

\[H_i = \frac{\mu_A(s_i, P_H) - P_H}{\eta v_A} = \frac{h_1(P_H - a) + h_2s_i - P_H}{\eta v_A} \]

- Integrate on both sides and impose market clearing \(\int H_i di = H_S = \xi \)

\[\int H_i di = \frac{-h_1a + (h_1 - 1)P_H + h_2\int s_idi}{\eta v_A} \implies \xi = \frac{-h_1a + (h_1 - 1)P_H + h_2A}{\eta v_A} \]

- Solve for \(P_H \):

\[P_H = \frac{-h_1a}{1 - h_1} + \frac{h_2}{1 - h_1} A - \frac{\eta v_A}{1 - h_1} \xi \]

- From Bayes formula, \(h_2 > 0 \) and \(\text{sign}(h_1) = \text{sign}(b) \).

\[\implies b > 0 \text{ and thus } 1 - h_1 > 0. \]

* \(\implies \) information effect \((= h_1) \) always weaker than price effect \((= 1) \).

* \(P_H \uparrow \implies E[A|P_H] \uparrow \) but makes asset more costly. Latter effect dominates.

\[\implies c < 0 \implies \text{higher supply decrease price} \]
Static Asymmetric Information Model with Power Utility

- Negative exponential utility is not too appealing as
 - A. No wealth effect
 - B. Relative risk aversion increases with wealth
 - B. Equilibrium prices can be negative

- What happens if we use another utility function? Consider power utility:
 \[
 \max_{H_i, B_i} E \left[\frac{(H_i A + B_i R)^{1-\eta}}{1 - \eta} \bigg| s_i, P_H \right]
 \]

- A linear or log-linear equilibrium price function does not work in this case.

- Taking FOC of Lagrangean does not help either:
 \[
 E \left[A (H_i A + B_i)^{-\eta} \bigg| s_i, P_H \right] = \lambda_i P_H
 \]
 - Problem: \(P_H \) enters on both sides, and the non-linearity messes up aggregation
 \(\int H_i d_i = H_S \)
 - It can be solved numerically, or using approximation to small payoffs (e.g. Perez (2004, RFS)).
This paper uses power utility

- How could it solve the non-linear fixed-point problem discussed earlier?
- Value of housing depends on complementarity with another consumption good, and there are no riskless bonds to purchase.

Consider a super stripped down version of model, just to see this mechanism:

\[
E \left[\frac{H_i^{1-\eta}}{1-\eta} C \mid s_i, P_H \right] \quad \text{subject to } W_0 = P_H H_i
\]

Assume:

- \(C = e^A \) is an exogenous random amount of good provided by a 3rd party or nature, e.g. schools, infrastructure, earthquakes
- Supply of asset \(H \) is random: \(H_S = e^\xi \).

FOC is far simpler:

\[
H_i^{-\eta} E \left[e^A \mid P_H, s_i \right] = P_H
\]

Assume \(p_H = \log(P_H) \) is linear:

\[
p_h = a + bA + c\xi
\]
• Then the same learning result above implies $A \sim N(\mu_A(p_H, s_i), \sigma_A)$ and hence

$$E[e^A|P_H, s_i] = e^{\mu_A(p_H, s_i) + \frac{1}{2}\sigma_A}$$

• It is clear it can be solved, as we can write:

$$H_i^{-\eta} e^{h_1(p_H-a) + h_2 s_i + \frac{1}{2}\sigma_A} = e^{p_H}; \quad \Rightarrow \quad H_i = e^{h_1 s_i} e^{-\frac{1}{\eta}(1-h_1)p_H - \frac{ah_1}{\eta} + \frac{v_A}{2}}$$

• Integrate both sides

$$\int H_i di = \int e^{h_1 s_i} di \cdot e^{-\frac{1}{\eta}(1-h_1)p_H - \frac{ah_1}{\eta} + \frac{v_A}{2}} \quad \Rightarrow \quad e^\xi = e^{h_2 s_i} e^{\frac{1}{\eta^2} h_2^2 v_s} e^{-\frac{1}{\eta}(1-h_1)p_H - \frac{ah_1}{\eta} + \frac{v_A}{2}}$$

• and solve for the price

$$p_H = \frac{\left(\frac{h_2^2}{2\eta} v_s - h_1 a + \frac{1}{2}\sigma_A\right)}{(1-h_1)A} + \frac{h_2}{(1-h_1)} A - \frac{\eta}{(1-h_1)} \xi$$

- As before, $h_1 < 1$ and information effect is weaker than price effect.

\Rightarrow Price p_H is increasing in A and decreasing in supply ξ.

\Rightarrow Demand H_i is increasing in s_i and decreasing in p_H.

9
Sockin and Xiong Paper - III

• The barebone model is too “bare”. Sockin and Xiong add:
 – Labor / production at time $t = 2$ (after housing choice made at $t = 1$) with complementarity in consumption
 * Critical is a common productivity shock A;
 * Critical that there is no asymmetric information at $t = 2$ as consumption depend on realized productivity A_j of everybody else.
 – Suppliers of housing:
 * From their profit maximization: $H_S = P^k_He^{k\xi}$
 * k = supply elasticity.
 * Questions here:
 1. Household budget constraint: $P_HH_i + \int P_jC_j(i)dj = P_i e^{A_i\ell_i} + w_i$
 $w_i = \text{wage of the builder} = P_HH_i$. This suggests builder i sell his home to himself (?). Shouldn’t we have $w_i = P_HH_S$?
 2. Builders belong to household (see budget constraint), but they have superior information (observe ξ), and their utility and labor costs does not enter the household utility?
To see (some) of the impact of these ingredients, let’s add to the simple model:

1. Utility with different weights

\[E \left[\frac{H_i^{1-\eta}}{1-\eta} C^{mc} | s_i, P_H \right] \text{ subject to } W_0 = P_H H_i \]

2. Price-dependent supply (obtained from optimality of builders)

\[H_S = P_H^k e^{k\xi} \]

The same calculations above give:

\[H_i = e^{\left(\frac{\eta c}{\eta} h_2\right) s_i + \left(\frac{1}{\eta} (\eta c h_1 - 1)\right) P_H + \left(\frac{1}{2} \frac{\eta c^2 v_A - \eta c h_1 a}{\eta} \right) } \]

\[p_H = \frac{\frac{1}{2} \left(\frac{\eta c^2}{\eta} \right) h_2^2 v_s - \eta c h_1 a + \frac{1}{2} \eta c^2 v_A}{(1 + \eta k - \eta c h_1)} + \frac{\eta c h_2}{(1 + \eta k - \eta c h_1)} A - \frac{\eta k}{(1 + \eta k - \eta c h_1)} \xi \]

Note that again \(b > 0 \) and \(c < 0 \): Higher \(A \) or lower \(\xi \) results in higher price.

Now however, demand \(H_i \) may be increasing in price if \(\eta c h_1 - 1 > 0 \)

– “Signal” effect may be stronger than “cost” effect.
Example: The Impact of Supply Elasticity
Global versus Local Information Effects

- These models however tend to have “global signal effects”
 - Demand is either always decreasing or always increasing in the price P_H.
 - There are cases in which ‘backward-bending” demand is reasonable.
 * Wine, Stocks, Houses (?)
- Barlevy and Veronesi (2003) show that in model with (A) informed and uninformed traders, and (B) only two regimes (good or bad)
 \implies Strong local information effects \implies backward-bending demand function (and stock market crash).

\[\begin{align*}
 P'' &= \bar{P} \\
 P' &= P \\
 \frac{1}{P} \\
 x^U(P) \\
\end{align*} \]
Dynamic Model

• Much of the implications discussed in the paper are about dynamics.
 – Overlapping generations with segmentation: Each cohort trade only with itself.
 – \[\Rightarrow \] Repeat of the same model above over and over.
 – Link between times only through dynamics of common factors and learning:
 \[
 A_t = \rho^A A_{t-1} + Z_t^A; \quad \xi_t = \rho^\xi \xi_{t-1} + Z_t^\xi
 \]
 – Information structure: \(A_t \) and \(\xi_t \) revealed with 2 periods lag. (Why 2 periods and not 1?)

• Suppose only one period lag (at \(t \) we know \(A_{t-1} \) and \(\xi_{t-1} \)), then learnings is identical, but price function at \(t \) must include \(A_{t-1} \) and \(\xi_{t-1} \), as they are known and determines agents expectations. Same calculations as above give:

 \[
 p_H (t) = a + bA_t + c\xi_t + dA_{t-1} + e\xi_{t-1}
 \]

 (coefficients are much more involved even in this simple case)

• Demand now depends on the current price “dynamics”
Dynamic Model and Momentum - I

• The price of the house now depend on lagged state-variables, which are persistent.
• Sockin and Xiong show that the persistence of state variables is critical to generate short-term momentum (short?) and long-term reversal.
• To generate momentum and long-term reversal, one normally needs time varying risk premia that depend on two factors with different frequencies (see e.g. Albuquerque and Miao (JET, 2014)).
• In this setting, it is not clear what is the source of the variation in risk premia (conditional on public information).
• Indeed, given the lack of trading across cohorts, the house prices at every t has a different marginal buyer, as there is no wealth transfers over time.
• To some extent, the prices $p_H(t)$ are really prices of “different securities” as they pertain to different “neighborhoods” (cohorts).
Dynamic Model and Momentum - II

• Indeed, the interpretation of the results is a bit tricky here.
• We could consider the identical model in a “spatial” setting, still with
 \[A_t = \rho_A A_{t-1} + Z_t^A, \quad \xi_t = \rho_\xi \xi_{t-1} + Z_t^\xi \]
 but now \(t \) denotes a different “town”, rather than time.
• Agents in town \(t \) learn about aggregate local productivity by observing the adjacent town \(t - 1 \) (or \(t - 2 \)).
• All the results about pricing would be identical, but it is pretty clear that \(p_H(t) \) are prices of a different securities,
 \[\implies p_H(t) - p_H(t - 1) \] is not a return, but just price difference across different adjacent towns.
Dynamic Model and Supply Elasticity

• With the same caveat, it is interesting the relation between supply elasticity and price variation.

• In the paper, supply elasticity is about external supply shock.
 – Very low elasticity \Rightarrow price do not respond to “supply noise” \Rightarrow no asymmetric information (as price fully revealing)
 – Extremely high elasticity \Rightarrow house price too noisy for non-fundamental reason \Rightarrow no learning from prices

• This is an interesting channel.

• Do I believe it explain difference between New York and Las Vegas?
Other Minor Comments

• The good “house” in the model could be interpreted in any way as well
 – No lump sum investment, no durable good, no tradeoff purchase / rent

• Assumption of closed neighbors
 – It is not too clear what it means. Are these neighbors, or cities, or states?

• Large number of parameters and moving parts
 – Maybe want to simplify the model a bit?

• What is the numeraire in the model?
 – In these models with utility from final wealth, the bond is normally the numeraire. But there is no bond here, and all consumption goods / houses have non-unit prices.
Conclusion

• Very rich model, and perhaps not everything is necessary, especially to convey intuition of results. But authors endogenize almost everything, which is interesting.

• Need some more thinking about interpretation.

• However, the mechanism per se’ seems plausible: Learning dynamics may generate some short-term momentum and long-term reversals, as others have shown already in the asset pricing literature.

• It would be interesting to push the “information story” further, generating local backward bending demand curves, which may have dramatic price effects.
Bayes Formula

- The following work both for Helwig model and for the simplified case discussed in the text. The only difference is whether we use P or $\log P$. The joint distribution (from the perspective of the investor) of $(A, \log P, s_i)$ is

$$
\begin{pmatrix}
A \\
\log P \\
s_i
\end{pmatrix}
\sim N
\begin{pmatrix}
0 \\
a \\
0
\end{pmatrix},
\begin{pmatrix}
v_A & bv_A & v_A \\
v_A & b^2v_A + c^2v_\xi & bv_A \\
v_A & bv_A & v_A + v_s
\end{pmatrix}
$$

or

$$
\begin{pmatrix}
A \\
\log P \\
s_i
\end{pmatrix}
\sim N
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix},
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
$$

- Using the properties of conditions normals, we have (let $p_H = \log (P_H)$)

$$(A) \mid_{p_H, s_i} \sim N \left(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} \left(\begin{pmatrix} p_H \\ s_i \end{pmatrix} - \mu_2 \right), v_A - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}' \right)$$

where

$$
\Sigma_{12} = \begin{pmatrix}
bv_A & v_A \\
v_A & b^2v_A + c^2v_\xi & bv_A
\end{pmatrix}
$$

$$
\Sigma_{22} = \begin{pmatrix}
bv_A & c^2v_\xi & bv_A \\
BV_A & bv_A & v_A + v_s
\end{pmatrix}
$$
Therefore, algebra gives (this is tedious, but for completeness):

$$\Sigma_{22}^{-1} = \frac{1}{(b^2v_A + c^2v_\xi) v_s - b^2v_A^2} \begin{pmatrix} v_s & -bv_A \\ -bv_A & b^2v_A + c^2v_\xi \end{pmatrix}$$

so that

$$\Sigma_{12}\Sigma_{22}^{-1} = \frac{1}{(b^2v_A + c^2v_\xi) (v_A + v_s) - b^2v_A^2} \begin{pmatrix} bv_A & v_A + v_s \\ -bv_A & b^2v_A + c^2v_\xi \end{pmatrix} \begin{pmatrix} v_A + v_s & -bv_A \\ -bv_A & b^2v_A + c^2v_\xi \end{pmatrix}$$

$$= \frac{1}{(b^2v_A + c^2v_\xi) (v_A + v_s) - b^2v_A^2} \left[bv_A v_A + v_s - bv_A^2, -b^2v_A^2 + b^2v_A + c^2v_\xi v_A \right]$$

$$= \frac{1}{b^2v_A (v_A + v_s - v_A) + c^2v_\xi (v_A + v_s)} \left[bv_A (v_A + v_s - v_A), c^2v_\xi v_A \right]$$

and

$$\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}' = \frac{1}{b^2v_A (v_A + v_s - v_A) + c^2v_\xi v_s} \left[bv_A (v_A + v_s - v_A), c^2v_\xi v_A \right] \begin{pmatrix} bv_A \\ v_A \end{pmatrix}$$

$$= \frac{v_A^2}{b^2v_A v_s + c^2v_\xi (v_A + v_s)}$$
• Finally

\[A|_{s_i, \log P} \sim N (h_1 (p_H - a) + h_2 s_i, \overline{\nu}_A) \]

• where

\[
\begin{align*}
 h_1 &= \frac{b v_A v_s}{v_s b^2 v_A + v_\xi (v_A + v_s) c^2} \\
 h_2 &= \frac{c^2 v_A v_\xi}{v_s v_A b^2 + v_\xi (v_A + v_s) c^2} \\
 \overline{\nu}_A &= v_A - v_A^2 \frac{b^2 v_s + c^2 v_\xi}{b^2 v_A v_s + c^2 v_\xi (v_A + v_s)}
\end{align*}
\]

• Note that \(\text{sign}(h_1) = \text{sign}(b) \) and \(h_2 > 0 \).