Modern Dynamic Asset Pricing Models

Lecture Notes 1.

Dynamic Portfolio Allocation Strategies

Pietro Veronesi

Graduate School of Business,
University of Chicago
CEPR, NBER
1. Review of Merton / Samuelson Portfolio Allocation Problem
 • The Puzzles

2. Strategic Asset Allocation under Predictability of Stock Returns
 • The Problem and its solution
 • Implications for Dynamic Asset Allocation

3. Learning about Average Returns
 • Implications for Dynamic Asset Allocation
 • Comparison with the case of Predictability

4. Strategic Asset Allocation with Model Misspecification
 • The Problem and Its solution
 • The Example of Constant Investment Opportunity Set

5. Conclusion
Review of Merton/Samuelson Portfolio Allocation Problem

- There are n stocks. Stock i return

 \[dR^i_t = \frac{dS^i_t + D^i_t dt}{S^i_t} \]

- $d\mathbf{R}_t = (dR^1_t, ..., dR^n_t)'$

- Assume:

 \[d\mathbf{R}_t = \boldsymbol{\mu} dt + \boldsymbol{\sigma} d\mathbf{B}_t \]

- $d\mathbf{B}_t = (dB^1_t, ..., dB^n_t) = \text{vector of independent Brownian motions.}$

- Investor problem:

 \[J(W_0, 0) = \max_{\{(C_t), (\theta_t)\}} E_0 \left[\int_0^T u(C_t, t) dt \right] \]

- subject to

 \[dW_t = \{W_t (\theta'_t(\boldsymbol{\mu} - r \mathbf{1}_n) + r) - C_t\} dt + W_t \theta'_t \sigma d\mathbf{B}_t \]
The Bellman Equation

- Bellman Equation:
 \[0 = \sup_{(C_t, \theta)} u(C_t, t) + E\left[dJ(W, t)\right]/dt \]

- with boundary condition \(J(W_T, T) = 0 \)

- Why this form?
 - The discrete time Bellman equation over a small \(\Delta \)
 \[J(W_{t+\Delta}, t + \Delta) = \max_{C, \theta} \{ u(C, t) \Delta + E[J(W_{t+\Delta}, t + \Delta) | W_t]\} \]
 \[\implies 0 = \max_{C, \theta} u(c, t) \Delta + E_t [J(W_{t+\Delta}, t + \Delta) - J(W_t, t)] \]

- Note that by Itô's Lemma:
 \[E[dJ(W, t)]/dt = J_t + J_W E_t[dW]/dt + \frac{1}{2} J_{WW} E_t[dW^2]/dt \]
 \[= J_t + J_W \{ W_t (\theta'_t(\mu - r) + r) - C_t \} + \frac{1}{2} J_{WW} W_t^2 \theta'_t \sigma \sigma' \theta_t \]
The Optimal Consumption and Portfolio Allocation

• FOC with respect to C:

$$u_c (C_t, t) = J_W (W, t)$$

 - Example: Power utility

$$u (C_t, t) = e^{-\rho t} \frac{C_t^{1-\gamma}}{1-\gamma} \implies C_t = e^{-\frac{\rho t}{\gamma}} J_W (W, t)^{-\frac{1}{\gamma}}$$

• FOC with respect to θ_t:

$$\theta_t = \frac{1}{RRA(W)} \left(\sigma \sigma' \right)^{-1} (\mu - r1_n)$$

 - where

$$RRA(W) = -\frac{W J_{WW} (W, t)}{J_W (W, t)}$$

• We now solve for $J(W, t)$ in the power utility case.
The Explicit Solution via an Ordinary Differential Equation

1. Conjecture:

\[J(W, t) = e^{-\rho t} \frac{W^{1-\gamma}}{1-\gamma} F(t)^\gamma \]

2. Compute \(J_t, J_W \) and \(J_{WW} \);

3. Optimal consumption and portfolio holdings:

\[C_t = WF(t)^{-1}; \quad \text{and} \quad \theta_t = \frac{1}{\gamma} (\sigma \sigma')^{-1} (\mu - r1) \]

4. To find \(F(t) \), substitute \(J_t, J_W \) and \(J_{WW} \) and optimal strategies in Bellman equation

\[
0 = e^{-\rho t} \frac{C_t^{1-\gamma}}{1-\gamma} - \rho J + J\gamma \frac{F_t}{F} + W^{-1} (1-\gamma) J(W_t (\theta_t' (\mu - r1_n) + r) - C_t) \\
- \frac{1}{2} \gamma (1-\gamma) W^{-2} JW_t^2 \theta_t' \sigma \sigma' \theta_t
\]
The Explicit Solution via a Ordinary Differential Equation

5. Simplify all that can be simplified, to find the ODE

\[0 = 1 - aF(t) + F_t \]

where \(F(T) = 0 \) and

\[a = \frac{1}{\gamma} \left\{ \rho - (1 - \gamma) r - \frac{1 - \gamma}{2\gamma} (\mu - r1_n)' (\sigma \sigma')^{-1} (\mu - r1_n) \right\} \]

6. The solution is

\[F(t) = \frac{1}{a} \left(1 - e^{-a(T-t)} \right) \]

- As \(t \to T \), consume a higher fraction of wealth.

7. The last point is to verify that “Conjecture” is indeed optimal.
The Puzzles

• For $n = 1$

$$\theta_t = (\mu - r) / (\gamma \sigma^2)$$

1. θ_t is independent of age t, and thus of remaining life $T - t$.
 - Against empirical evidence: an inverted U shaped θ_t
 - Against the typical recommendation of portfolio advisors.

2. Too large θ. Using $\mu - r = 7\%$ and $\sigma = 16\%$

<table>
<thead>
<tr>
<th>Risk Aversion γ</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>136%</td>
<td>68%</td>
<td>45%</td>
<td>34%</td>
<td>27%</td>
</tr>
</tbody>
</table>

- Typical household holds between 6 % to 20 % in equity.
- Conditional on participation, $\approx 40\%$ of financial assets.
Strategic Asset Allocation with Time Varying Expected Returns

- n stocks:
 $$dR_t = \mu_t dt + \sigma dB_t$$

 $- \mu_t = E_t[dR_t]$ is now time varying.

- For convenience (later), denote the expected excess return
 $$\lambda_t = \mu_t - r1_n$$

- Assume a VAR process
 $$d\lambda_t = (A_0 + A_1 \lambda_t) dt + \Sigma dB_t$$

- Note:
 - Assume dB_t is now $n \times m$.
 - E.g. $n = 1$ (1 stock), $m = 2$ (two shocks) with
 $$\sigma = (\sigma_1, 0) \quad \Sigma = (\Sigma_1, \Sigma_2) \quad \Rightarrow \text{Cov} \ (dR, d\lambda) = \sigma \Sigma' = \sigma_1 \Sigma_1$$
The Bellman Equation with Time Varying Expected Returns

- **Investor problem:**
 \[
 J (W_0, \lambda_0, 0) = \max_{\{ (C_t), (\theta_t) \}} \mathbb{E}_0 \left[\int_0^T u (C_t, t) \, dt \right]
 \]

- subject to
 \[
 dW_t = \left\{ W_t (\theta_t' \lambda + r) - C_t \right\} dt + W_t \theta_t' \sigma dB_t
 \]

- The Bellman equation is
 \[
 0 = \max_{C_t, \theta_t} \frac{e^{-\rho t} C_t^{1-\gamma}}{1-\gamma} + \mathbb{E}_t [dJ_t] / dt
 \]

- with
 \[
 \mathbb{E}_t [dJ_t] / dt = J_t + J_W \mathbb{E}_t [dW_t] + \frac{1}{2} J_{WW} \mathbb{E}_t [dW_t^2]
 \]
 \[
 + J'_{\lambda} \mathbb{E}_t [d\lambda_t] + J_{W\lambda} \mathbb{E}_t [d\lambda_t dW_t] + \frac{1}{2} tr \left(J_{\lambda\lambda} \mathbb{E}_t [d\lambda_d d\lambda_t'] \right)
 \]
Optimal Consumption and Portfolio Allocation

- Substitute expectations in Bellman equation:

\[
0 = \max_{C_t, \theta_t} e^{-\rho t} \frac{C_t^{1-\gamma}}{1-\gamma} + J_t + J_W (W_t (\theta_t' \lambda_t + r) - C_t) + \frac{1}{2} J_{WW} W_t^2 \theta_t' \sigma \sigma' \theta_t \\
+ J'_\lambda (A_0 + A_1 \lambda_t) + J_{W\lambda} W_t \Sigma \sigma' \theta_t + \frac{1}{2} tr (J_{\lambda\lambda} \Sigma \Sigma')
\]

- FOC with respect to \(C_t \):

\[
C_t = e^{-\frac{\rho t}{\gamma}} J_W^{-\frac{1}{\gamma}}
\]

 - Same form as before.
 - But recall that \(J_W \) is not different.

- FOC with respect to \(\theta_t \):

\[
\theta_t = \frac{1}{RRA(W_t)} (\sigma \sigma')^{-1} \lambda_t - (\sigma \sigma')^{-1} \sigma \Sigma' \frac{J_{W\lambda}}{J_{WW} W}
\]

 - There is one additional term.
Optimal Portfolio Allocation

- Optimal Portfolio Allocation:
 \[\theta_t = \theta_t^M + \theta_t^H \]

- Myopic Demand
 \[\theta_t^M = \frac{1}{RRA(W_t)} (\sigma \sigma')^{-1} \lambda_t \]
 - Same as before.

- Hedging Demand
 \[\theta_t^H = - (\sigma \sigma')^{-1} \sigma \sum' \frac{J_{W\lambda}}{J_{WW\lambda} W} \]
 - Recall that expected returns \(\lambda_t \) also (obviously) affect intertemporal utility.
 - \(\Longrightarrow \) The asset allocation must “hedge” against the negative impact that the variation in expected returns has on the marginal utility.

- If \(\theta_t^H \) depends on age \((t)\) and is negative, we may “resolve” the two puzzles.
Optimal Portfolio Allocation under Power Utility

- Solving this problem is substantially more complicated.
- Conjecture 1:
 \[J(W_t, \lambda_t, t) = e^{-\rho t} W_t^{1-\gamma} \frac{1}{1-\gamma} F(\lambda_t, t)^\gamma \]
- Compute \(J_t, J_W, J_{WW}, J_{W\lambda}, J_{\lambda} \) and \(J_{\lambda\lambda} \).
- This yields
 \[C_t = W_t F^{-1} \quad \text{and} \quad \theta_t = \frac{1}{\gamma} (\sigma \sigma')^{-1} \lambda_t + (\sigma \sigma')^{-1} \sigma \Sigma' \frac{F_{\lambda}}{F} \]
- To solve for \(F(\lambda, t) \), substitute everything into the Bellman equation.
The Bellman Equation and its Solution

\[0 = F^{-1} + \left((1 - \gamma) r - \rho \right) \frac{1}{\gamma} + \frac{F_t}{F} + \frac{1}{2} tr \left(\frac{F \lambda}{F} \Sigma \Sigma' \right) + \frac{(1 - \gamma)}{2\gamma^2} \lambda_t' (\sigma \sigma')^{-1} \lambda_t + \]
\[\frac{(1 - \gamma)}{\gamma} \frac{F'}{F} \Sigma \sigma' (\sigma \sigma')^{-1} \lambda_t + \frac{F'}{F} (A_0 + A_1 \lambda_t) + \]
\[\frac{1}{2} (1 - \gamma) \, tr \left(\left(\frac{F \lambda}{F} \frac{F'}{F} \right) \left(\Sigma \sigma' (\sigma \sigma')^{-1} \sigma \Sigma' - \Sigma \Sigma' \right) \right) \]

- This is horrible. There is:
 - A quadratic term in \(\lambda_t \);
 - A linear term in \(\lambda_t \);
 - A quadratic term in \(F \lambda \).

- Yet, by applying recent techniques developed in Fixed Income, an analytical solution exists for the case

\[\Sigma \sigma' (\sigma \sigma')^{-1} \sigma \Sigma' - \Sigma \Sigma' = 0 \]
Towards an Analytical Solution

• Conjecture 2:

\[F(\lambda, t; T) = \int_t^T f(\lambda, t; \tau) \, d\tau \]

• with \(f(\lambda, t, t) = 1. \)

• After some algebra, we find the following PDE for \(f(\lambda_t, t; \tau) \):

\[
0 = ((1 - \gamma) r - \rho) \frac{1}{\gamma} f + f_t + \frac{1}{2} tr (f_{\lambda\lambda} \Sigma \Sigma') + \frac{(1 - \gamma)}{2\gamma^2} \lambda_t' (\sigma \sigma')^{-1} \lambda_t f + \\
+ \frac{(1 - \gamma)}{\gamma} f_{\lambda}' \Sigma \sigma' (\sigma \sigma')^{-1} \lambda_t + f_{\lambda}' (A_0 + A_1 \lambda_t)
\]

• Perhaps this does not look any better to most, but it is a very standard PDE in Fixed Income Asset Pricing.

– The solution is an exponential linear-quadratic function of \(\lambda_t \)
An Analytical Solution

- Use method of undetermined coefficients.
- Conjecture 3:
 \[f(\lambda,t;\tau) = e^{\alpha_0(t;\tau) + \alpha_1(t;\tau)'\lambda_t + \frac{1}{2}\lambda_t'\alpha_2(t;\tau)\lambda_t} \]

1. Take the derivatives \(f_t, f_\lambda \) and \(f_{\lambda\lambda} \)
2. Substitute and pool terms together

- to obtain

\[
0 = \left((1-\gamma)r - \rho \right) \frac{1}{\gamma} \frac{\partial \alpha_0(t;\tau)}{\partial t} + \alpha_1(t,\tau)'A_0 + \frac{1}{2}tr(\alpha_2(t,\tau)\Sigma\Sigma') + \frac{1}{2}tr\left(\alpha_1(t,\tau)\alpha_1(t,\tau)'\Sigma\Sigma' \right) \\
+ \left(\frac{\partial \alpha_1(t,\tau)}{\partial t} + (1-\gamma)\alpha_1(t,\tau)'\Sigma\sigma\frac{1}{\gamma}(\sigma\sigma')^{-1} + \alpha_1(t,\tau)'A_1 + A_0'\alpha_2(t,\tau) + \alpha_1(t,\tau)\Sigma\Sigma'\alpha_2(t,\tau) \right) \lambda_t \\
+ tr\left(\left(\frac{1}{2} \frac{\partial \alpha_2(t,\tau)}{\partial t} + \frac{1}{2}(1-\gamma)\frac{1}{\gamma^2} (\sigma\sigma')^{-1} \right) + (1-\gamma)\alpha_2(t,\tau)'\Sigma\sigma\frac{1}{\gamma}(\sigma\sigma')^{-1} + \alpha_2(t,\tau)'A_1 + \frac{1}{2}\alpha_2(t,\tau)'\Sigma\Sigma'\alpha_2(t,\tau) \right) \lambda_t \lambda_t' \]

- In order for the right hand side to be zero independently of \(\lambda_t \), the following must hold.
An Analytical Solution

- A system of ODE:

\[
0 = \frac{\partial \alpha_2 (t, \tau)}{\partial t} + (1 - \gamma) \frac{1}{\gamma} \left(\frac{1}{\gamma} + 2 \alpha_2 (t, \tau)' \Sigma \sigma' \right) \left(\sigma' \sigma \right)^{-1} + 2 \alpha_2 (t, \tau)' A_1 + \alpha_2 (t, \tau)' \Sigma \Sigma' \alpha_2 (t, \tau)
\]

\[
0 = \frac{\partial \alpha_1 (t, \tau)'}{\partial t} + (1 - \gamma) \alpha_1 (t, \tau)' \Sigma \sigma' \frac{1}{\gamma} \left(\sigma' \sigma \right)^{-1} + \alpha_1 (t, \tau)' A_1 + A_0 \alpha_2 (t, \tau) + \alpha_1 (t, \tau) \Sigma \Sigma' \alpha_2 (t, \tau)
\]

\[
0 = \frac{\partial \alpha_0 (t; \tau)}{\partial t} + (1 - \gamma) r - \rho \frac{1}{\gamma} + \alpha_1 (t, \tau)' A_0 + \frac{1}{2} \text{tr} (\alpha_2 (t, \tau) \Sigma \Sigma') + \frac{1}{2} \text{tr} (\alpha_1 (t, \tau) \alpha_1 (t, \tau)' \Sigma \Sigma')
\]

- with final conditions \(\alpha_i (\tau, \tau) = 0, \ i = 0, 1, 2. \)

- These ODEs can be easily solved numerically, independently of the dimension.
 - Just start with the final condition at \(\tau \) and move backwards over time (it is three lines of code: one for each ODE).
Application 1: Portfolio Allocation under Predictability

- Let $n = 1$ and dR_t be the return on the aggregate stock market.
- Much of the literature uses the log dividend price ratio as a predictor.
- Let $x_t = \log \left(\frac{D_t}{P_t} \right)$ and let it follow the mean reverting process

$$dx_t = (\eta - \phi x_t) \, dt + \sum x_1 dB^1_t$$
Application 1: Portfolio Allocation under Predictability

- Using x_t a predictor of excess stock returns, we can estimate

$$R_{t,t+dt} = \tilde{\beta}_0 + \tilde{\beta}_1 x_t + \epsilon_{t+dt}$$

Sample: 1947 - 2001. $dt = .25$

<table>
<thead>
<tr>
<th>β_0 (t-stat)</th>
<th>β_1 (t-stat)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1898 (3.7042)</td>
<td>0.0531 (3.2424)</td>
<td>3.53%</td>
</tr>
</tbody>
</table>

![Graph showing expected return and realized return over time from 1940 to 2010. The graph includes a dotted line for realized return and a solid line for expected return. The x-axis represents the years from 1940 to 2010, and the y-axis shows the return values ranging from -0.4 to 0.3.]
Application 1: Portfolio Allocation under Predictability

- The annualized expected return $\lambda_t = E_t[R_{t,t+dt}/dt]$ is given by
 \[\lambda_t = \beta_0 + \beta_1 x_t \]
- with $\beta_i = \ddot{\beta}_i/dt$
- Ito’s Lemma implies
 \[d\lambda_t = (A_0 + A_1 \lambda_t) dt + \Sigma_1 dB_t^1 \]
 with
 \[A_0 = \beta_1 \eta + \phi \beta_0; \quad A_1 = -\phi; \quad \Sigma_1 = \beta_1 \Sigma x_1 \]
- The process for stock returns is
 \[dR_t = (r + \lambda_t) dt + \sigma_1 dB_t^1 + \sigma_2 dB_t^2 \]
Application 1: Portfolio Allocation under Predictability

Model:

\[
\begin{align*}
 d\lambda_t &= (A_0 + A_1 \lambda_t) \, dt + \Sigma_1 dB^1_t \\
 dR_t &= (r + \lambda_t) \, dt + \sigma_1 dB^1_t + \sigma_2 dB^2_t
\end{align*}
\]

Sample: 1947 - 2001. \(dt = .25 \)

<table>
<thead>
<tr>
<th></th>
<th>(A_0)</th>
<th>(A_1)</th>
<th>(\Sigma_1)</th>
<th>(\sigma_1)</th>
<th>(\sigma_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0077</td>
<td>-0.1405</td>
<td>-0.0317</td>
<td>0.1183</td>
<td>0.1057</td>
</tr>
</tbody>
</table>

- **Note 1**: Negative \(\Sigma_1 \) simply means \(Cov(dR, d\lambda) = \Sigma_1 \sigma_1 = -.0038 < 0 \)
 - Positive shocks to dividend yield increase expected returns but are *contemporaneously* negatively correlated with returns.
 * This is intuitive: dividend yield moves mainly because of prices.
 * If \(P_t \downarrow \implies dR_t < 0 \) and \(\log(D/P) \uparrow \)

\[A \bad\ news \(dR < 0 \) \text{ is not very bad, as it increases expected returns} \]
Application 1: Portfolio Allocation under Predictability

- **Note 2:** The condition for an exact analytical solution is violated:

\[
\Sigma \sigma' (\sigma \sigma')^{-1} \sigma \Sigma - \Sigma \Sigma' = 0 \Rightarrow \frac{(\sigma_1 \Sigma_1)^2}{\sigma_1^2 + \sigma_2^2} = \Sigma_1^2 \Rightarrow \sigma_2^2 = 0
\]

- \(\implies\) Exact formula really holds under the assumption of complete markets.
 - Stock returns span all of the uncertainty.

- Instead, we found \(\sigma_2 > 0\).
 - Part of the problem is the use of quarterly data. At monthly frequency the (negative) correlation between returns and dividend yield is higher.
 - For the sake of argument, I will assume a perfect negative correlation between returns and dividend yield.
 * In what follows I then use \(\sigma_1 = .1612\) and \(\sigma_2 = 0\).
Myopic and Hedging Demand for Various Risk Aversion Parameter

- Myopic Demand
 - $\gamma = 5$
 - $\gamma = 10$
 - $\gamma = 20$

- Hedging Demand
 - $\gamma = 5$
 - $\gamma = 10$
 - $\gamma = 20$
Hedging Demand with Predictable Returns

Finding 1: The hedging demand is positive.

- The intuition is simple:
 - If we have a bad shock to returns, we have that μ_t increases (intuitively, the D/P increases, implying higher expected return).
 - But a higher λ_t implies that investor now want to buy more of the stock.
 - Anticipating this correlation, the investor buys more of the stock today, compared to the case where the hedging demand is zero.

- This finding is bad news for the portfolio holding puzzle:
 - We already showed that the agent would hold too much of the stock even with simple myopic demand (no time varying investment opportunity set).
 - * The total demand now of the stock is even higher, deepening the puzzle.
Total Demand with Predictable Returns

![Graph showing total demand with predictable returns for different values of γ.](image)

- $\gamma = 5$
- $\gamma = 10$
- $\gamma = 20$

Expected Return vs. Total Demand
Finding 2: Hedging demands help to address the life-cycle allocation puzzle.

- As it can be see, the shorter the life expectancy T the lower the share in stocks, especially if current expected return is high.
- In this case, mean reversion kicks in and the investor is wary about the negative consequences of a decrease in expected returns.
Still, because of the hedging demand, an investor with 5 years to live would still substantially exposed to stocks.
• What is the variation over time of the optimal allocation to stock?

• Consider investor with $T = 15$ (constant) and $\gamma = 1, 5, 20$.

• The pattern for $\gamma = 20$ seems more reasonable than $\gamma = 1$ or 5.
1. The predictability of stock returns is still source of heated debate.

 – Here we take the strong view that investors take empirical estimates as “true” parameters.

 – Much recent literature tried to relax this assumption, and use Bayesian methods in portfolio allocation

 * These methodologies are very numerically intensive.
Strategic Asset Allocation: Discussion

2. As shown in Menzly, Santos and Veronesi (JPE, 2004), the dividend yield in which dividends are corrected for stock repurchases is a superior forecaster of future returns that the traditional dividend yield.

- Without repurchases we have

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\beta}_0)</th>
<th>t-stat</th>
<th>(\hat{\beta}_1)</th>
<th>t-stat</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/ repurchases</td>
<td>0.1233</td>
<td>2.5376</td>
<td>0.0310</td>
<td>2.0815</td>
<td>2.24%</td>
</tr>
<tr>
<td>w/o repurchases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. The setting above can be easily extented to multiple assets and multiple predictors.

- Analytical solutions are quite useful in this case.
- Most models of strategic asset allocation do not go over the two or three assets.

- As an illustration, next pictures show the strategic asset allocation for an investor who in addition to a market index, he has access to the returns from mutual funds specialized in 4 strategies:
 1. Value / Small Cap
 2. Value / Large Cap
 3. Growth / Small Cap
 4. Growth / Large Cap
Allocation to 6 Size - BM sorted portfolios and market

- Myopic demand
- Hedging demand
- Total demand
Allocation to 6 Size - BM sorted portfolios and market

Position in Stocks

- Small Growth
- Small Value
- Large Growth
- Large Value
- Mkt

Year:
- 1940
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010

Value:
- −1.5
- −1
- −0.5
- 0
- 0.5
- 1
- 1.5
- 2
- 2.5
Application 2: Learning about Average Returns

- Consider the same setting as in the original Merton problem
 \[dR_t = \mu dt + \sigma dB_t \]

- Differently from Merton, assume that average returns \(\mu \) are not observable.

- Investors observe realized returns \(dR_t \) and infer the value of \(\mu \).

- Since the risk free rate \(r \) is observable, we can equivalently assume that agents infer the value of the average excess return \(\lambda = \mu - r1_n \).

- The following filtering result holds.
A Filtering Result

- Result: Let investors prior distribution at time 0 on λ be given by
 \[\lambda_{t_0} \sim N(\tilde{\lambda}_0, \tilde{q}_0) \]
- Then, the posterior distribution at any time t is given by
 \[\lambda_t \sim N(\tilde{\lambda}_t, \tilde{q}_t) \]
- where
 \[d\tilde{\lambda}_t = \Sigma_t d\tilde{B}_t \]
 \[\Sigma_t = \tilde{q}_t (\sigma')^{-1} \]
 \[d\tilde{q}_t = -\tilde{q}_t (\sigma \sigma')^{-1} \tilde{q}_t \]
- The innovation process is
 \[d\tilde{B}_t = \sigma^{-1} [dR_t - E_t (dR_t)] \] (1)
An Informational Equivalent Setting

• We can rewrite the system of returns then as follows

\[dR_t = (r + \lambda) dt + \sigma dB_t \]
\[d\lambda_t = \sum_t dB_t \]

• This is very similar to the previous case. Note the following:

1. We are back to complete markets: Conditional on investors’ information, the set of BMs that drive returns \(dR_t \) is the same that drive expected return \(\lambda_t \).
 – The reason is that the information filtration is generated by the return process \(dR_t \).
 – Thus, expected returns will depend on the observation of \(dR_t \) only: if we observe high returns we change our posterior to on expected future returns. That is, expected returns and realized returns become perfectly correlated.
 – \(\Rightarrow \) The asset allocation solution is exact!
2. The only difference from the problem discussed earlier is the fact that the volatility of $\tilde{\lambda}_t$ depends on t.
 - However, this volatility declines deterministically.
 - Thus, the methodology developed earlier applies here too, once we are careful to remember that $\tilde{\Sigma}_t$ is a function of time.

3. The volatility $\tilde{\Sigma}_t$ converges to zero as $t \to \infty$
 - This is because we assume λ is constant forever. Assuming some time variation in underlying average return will prevent the posterior variance from converging.
 - E.g. for the case $n = 1$,
 \[q_t = \frac{1}{q_0^{-1} + \sigma^{-2}t} \]
4. Learning has a bite: It has a prediction about the correlation between returns and expected returns.

\[Cov_t (dR_t, d\lambda_t) = \sigma \Sigma'_t = \sigma (\sigma)^{-1} \tilde{q}_t = \tilde{q}_t \]

- They are positively correlated: A negative innovation in returns decreases expected return.
- The hedging demand will go in the right direction here:

 Bad news on returns are “twice bad news”. You lost money, and now you expect to gain even less in the future.

- This is opposite of what we found in our earlier exercise, where we used the “predictability” intuition: negative returns increases the dividend price ratio, which predicts higher returns. That is, realized returns and expected returns were negatively correlated.
An Equivalent Portfolio Problem

- Investor problem:

\[J(W_0, \hat{\lambda}_0, 0) = \max_{\{(C_t, \theta_t)\}} E_0 \left[\int_0^T u(C_t, t) \, dt \right] \]

- subject to

\[dW_t = \{ W_t (\theta_t' \hat{\lambda}_t + r) - C_t \} \, dt + W_t \theta_t' \sigma \, dB_t \]

- At this point, the solution is “almost” the same as before.

 - We need to set \(A_0 = A_1 = 0 \)

 - Remember that \(\hat{\Sigma}_t \) depends on time \(t \).

 * The computation is in fact straightforward, as we can simply iterate forward the ODE that defines \(\hat{q}_t \) (Riccati equation)
How Fast Would an Investor Learn?

- First, how fast does “uncertainty” decline?
 - From a prior uncertainty $\sqrt{q_0} = 5\%$, it declines rather slowly.
• The most important effect of learning is that hedging demand this time is negative.

• The intuition, recall, is that bad news are twice bad news here:
 – not only you get a negative return to stock, but now you expected even lower returns for the future.
 – Thus, investors’ optimally reduce their holding of stocks.
 – This mechanism was first observed by Brennan (1998, European Finance Review), but then analyzed by many others.

• The following figures show the hedging demand and total demand for three different value of initial uncertainty

\[\sqrt{q_0} = 1\%, 3\%, 5\% \]
Strategic Asset Allocation with Learning: The Role of Prior Uncertainty

hedging demand

expected return vs. hedging demand

Prior Unc = 1 %
Prior Unc = 3 %
Prior Unc = 5 %

total demand

expected return vs. total demand

Prior Unc = 1 %
Prior Unc = 3 %
Prior Unc = 5 %
What effect does risk aversion have on hedging demands?

Higher risk aversion decreases (in absolute value) the hedging demand.
Strategic Asset Allocation with Learning: The Role of Risk Aversion

- Why does higher risk aversion decreases (in absolute value) the hedging demand?
 - This is due to the sensitivity of the consumption / wealth ratio C/W to changes in expected returns.
 - As we increase γ, the myopic demand for stocks decreases.

 $\star \implies$ The consumption to wealth ratio C/W becomes more and more insensitive to variation expected return.

 $\star \implies$ Eventually, changes in expected return have no impact on C/W, and thus no need of hedging demand.

 $\star \implies$ The relation between γ and hedging demand is non-linear, as hedging demand are close to zero both for γ close to 1 and for γ large.
Strategic Asset Allocation with Learning: The Life Cycle Implications

• How does learning affect the allocation of investors with different life expectancies?
Strategic Asset Allocation with Learning: The Life Cycle Implications

• Learning does not seem to have a large impact on the asset allocation as a function of time T.

• The little that is has goes in the opposite direction:
 – The reason, again, is the EIS.
 – The longer the horizon, the higher the impact of an increase in expected return on future consumption.
 – \Rightarrow larger decrease in θ_t due to consumption smoothing.
Strategic Asset Allocation with Learning over time

- Consider an investor in 1947 with prior uncertainty \(\sqrt{q_0} = 5\% \).
 - How would his asset allocation change over time?
Strategic Asset Allocation with Learning over time

• Case 1: Assume a declining uncertainty over time
• Case 2: Assume a constant uncertainty (e.g. small probability of jumps)
Strategic Asset Allocation and Expected Returns: Comparison

- Learning about average returns:
 - \(\Rightarrow\) Investor behave like “momentum” traders (or trend chasers)
 * They buy when prices increase.

- Forecasting returns using the dividend yield:
 - \(\Rightarrow\) Investors behave like reversal traders
 * They buy when prices drop
Strategic Asset Allocation and Expected Returns: Comparison

![Graph showing Price/Dividend Ratio from 1940 to 2010 with data points labeled for each decade.](image1)

![Graph showing Trading Strategies: Learning versus Forecasting from 1940 to 2010 with two lines representing Learning ($\gamma = 5$) and Forecasting ($\gamma = 20$).](image2)
Strategic Asset Allocation with Model Misspecification

- What if investors are uncertain about the “model” and would like to take decisions that are “robust” to small misspecification?
 - We now discuss preferences for robustness and their implications for strategic portfolio allocation
 - The framework is the one of Anderson, Hansen, Sargent (ReStud 1999) as well as Maenhout (RFS, 2004)

- Consider (again!) the usual setting, with

\[
d\mathbf{R}_t = (r + \lambda_t) dt + \sigma d\mathbf{B}_t
\]

\[
d\lambda_t = (A_0 + A_1 \lambda_t) dt + \Sigma d\mathbf{B}_t
\]

- Let \(P \) denote the probability measure that is defined by these processes.
- We call this the “reference model”.
Modeling “Model Misspecification”

• The investor is worried about “small” model misspecification.

• Two questions:
 1. How can we model a model misspecification?
 2. How can we model investor “aversion” to such misspecification?

• We can model “model misspecification” by introducing a set of “plausible” probability measures Q that are “close” to the original one P.

• In continuous time, we can “perturb” the reference model and obtain new probability measures Q by replacing dB_t by

$$dB_t = d\hat{B}_t + h_t dt$$

• where h_t is another stochastic process.
The class of misspecified models is then those defined by the
\[dR_t = (r + \lambda_t) dt + \sigma (d\hat{B}_t + h_t dt) \]

\[d\lambda_t = (A_0 + A_1 \lambda_t) dt + \Sigma (d\hat{B}_t + h_t dt) \]

for “plausible” \(h_t \) processes.

How can we introduce “preferences” for robustness?
The *multiplier robust control problem* can be formulated as

\[
\sup_{C, \theta} \inf_h \left\{ \widetilde{E} \left[\int_0^T e^{-\rho t} \left(u(C_t) + \frac{\eta}{2} \mathbf{h}_t \mathbf{h}_t' \right) dt \right] \right\}
\]

subject to the “perturbed” budget equations

\[
dW_t = \left(W_t (\theta'_t \lambda_t + r) - C_t \right) dt + W_t \theta'_t \sigma \left(d\overline{B}_t + \mathbf{h}_t dt \right)
\]

- Here \(\eta \) is a penalty imposed on the discrepancy between \(Q \) and \(P \).
- For given \(\eta \), the “robust” investor
 1. considers the probabilities \(Q \) (each defined by a process \(\mathbf{h}_t \)) that lead to low utility (\(\inf_h \) part)
 2. maximizes utility taking into account these worst case scenarios (\(\max_{C, \theta} \) part)
A high η implies a choice of h_t that is close to 0, i.e. a probability Q that is close to P, because we are taking the “inf” with respect to h_t.

- If $\eta = 0$, we consider all the possible Q’s.
- If $\eta = \infty$, we consider only P.
Strategic Asset Allocation with Model Misspecification

- How can we solve this “max min” problem?
- It is convenient to stack all the state variables. Define $Y_t = (W_t, \lambda'_t)'$, so that we have

$$dY_t = \mu_Y(Y_t, \theta_t, C_t) \, dt + \sigma_Y(Y_t, \theta_t, C_t)(dB_t + h_t \, dt)$$

- The following Bellman Isaac condition is the necessary condition for the solution to the max min problem
- There exists a value function $J(Y)$ such that

$$\delta J = \max_{C, \theta} \min_h \left\{ u(C) + \frac{\eta}{2} hh' + (\mu_Y + \sigma_Y h')' J_Y + \frac{1}{2} tr \left(\sigma_Y' J_{YY} \sigma_Y' \right) \right\}$$
Towards a Solution to the Asset Allocation

- Solving for the minimum h, one obtains
 \[h' = -\frac{1}{\eta} \sigma'_Y J_Y \]

- Notice that then
 \[\frac{\eta}{2} hh' = \frac{1}{2\eta} J'_Y \sigma_Y \sigma'_Y J_Y \]
 \[\sigma_Y h' = -\frac{1}{\eta} \sigma_Y \sigma'_Y J_Y \]

- Substitute into Bellman Isaac equation to find
 \[\delta J = \max_{C,\theta} \left\{ u(C) - \frac{1}{2\eta} J'_Y \sigma_Y \sigma'_Y J_Y + \mu'_Y J_Y + \frac{1}{2} \text{tr} (\sigma'_Y J_{YY} \sigma_Y) \right\} \]

- This is similar to earlier problem.
Optimal Consumption and Asset Allocation under Model Misspecification

- The FOC with respect to consumption lead to the usual condition

\[u_C = J_W \]

- But \(J_W \) is different from before. It will depend on robustness preferences

- Instead, the FOC for optimal portfolio weights imply

\[
\theta_t = -\frac{J_W}{W_t \left(J_{WW} - \frac{1}{\eta} J_W^2 \right)} (\sigma \sigma')^{-1} (\lambda_t) \\
+ \frac{-1}{W_t \left(J_{WW} - \frac{1}{\eta} J_W^2 \right)} (\sigma \sigma')^{-1} \sigma \Sigma' J_W \lambda \\
+ \frac{\frac{1}{\eta} J_W}{W_t \left(J_{WW} - \frac{1}{\eta} J_W^2 \right)} (\sigma \sigma')^{-1} \sigma \Sigma' J_\lambda
\]
Strategic Asset Allocation under Model Misspecification

- The portfolio rule has then three components:

 - Notice that the denominator is adjusted for robustness, implying a lower investment in the stocks (because \(J_W^2 \frac{1}{\eta} > 0 \)).

2. The standard Merton’s hedging demand.

3. An additional hedging demand arising from robustness preferences.
 - If \(\eta \to \infty \), i.e. we consider the class of probability \(Q \) that are closer and closer to the reference \(P \), we have back the usual results.
 - Note in particular that the last term drops out.
An Exact Solution for the Original Merton Problem

- Consider the original setting without time varying expected returns.
 - i.e. $A_0 = 0$, $A_1 = 0$ and $\Sigma = 0$

- In this case, the FOC with respect to h_t yield

 $$h_t = -\frac{1}{\eta} \sigma'_W J_W$$

- and the Bellman Isaac equation is then given by

 $$\delta J = \max_{C, \theta} \left\{ u(C) - \frac{1}{2\eta} J_W^2 \sigma_W \sigma'_W + \mu W J_W + \frac{1}{2} J_{WW} \sigma_W \sigma'_W \right\}$$

- Using $u_c = J_W$ we obtain

 $$\theta_t = \frac{-W_t}{W_t \left(J_{WW} - \frac{1}{\eta} J_W^2 \right)} \left(\sigma \sigma' \right)^{-1} \left(\mu - r 1_d \right)$$
An Exact Solution for the Original Merton Problem

- One complication with the previous problem is that, generically, it is not “scale invariant”
 - It is hard to solve as the solution depends on wealth.

- Maenheut (2004) proposes to scale the penalty parameter η by the value function J itself, in a way to make the model again scale independent.

 $$\eta = \eta(J) = \eta^* (1 - \gamma) J(W, t)$$

- The value function is then given by

 $$J(W, t) = \left(\frac{1 - e^{-a(T-t)}}{a} \right)^\gamma \frac{W^{1-\gamma}}{1 - \gamma}$$

- where

 $$a = \frac{1}{\gamma} \left[\rho - (1 - \gamma) r - \frac{1 - \gamma}{2(\gamma + \eta)} (\mu - r 1_n)' (\sigma \sigma')^{-1} (\mu - r 1_n) \right]$$

 ρ is the correlation between the assets and the market, r is the risk-free rate, μ is the expected return on the assets, σ is the covariance matrix of the assets, 1_n is a vector of ones.
The optimal consumption and asset allocation are

\[C_t = \frac{a}{1 - e^{-a(T-t)}}W_t \]

\[\theta_t = \frac{1}{\gamma + 1/\eta^*} (\sigma \sigma')^{-1} (\mu - r1_d) \]

- Preferences for robustness clearly go in the right direction to “solve” the asset allocation puzzle
- A lower \(\eta^* \) translates into a higher “aversion” to model misspecification.
- In this case, the allocation to stocks decreases.
- Yet, the allocation is still independent of life expectancy \(T - t \).
 * We need to introduce predictability for that.
How much pessimism is plausible?

- Clearly, by decreasing \(\eta^* \) we can match any empirically observed level of asset holdings.
- However, the question is then what is a “reasonable” level of \(\eta^* \).
- Consider the case \(n = 1 \) (one stock) for simplicity.
 - For each level of \(\eta^* \), there is a given worst case scenario, defined by the FOC
 \[
 h_t = -\frac{1}{\eta} \sigma W J_W = -\frac{1}{(1 + \gamma \eta^*) \sigma} (\mu - r)
 \]
 - where I substitute for \(\sigma_W = W \theta_t \sigma, \ J_W \) and \(\eta = \eta^* (1 - \gamma) J \).
- A robust investor thinks that stock returns are given by
 \[
 dR_t = (\mu + \sigma h_t) dt + \sigma d\bar{B}_t
 \]
How much pessimism is plausible?

- Thus, the equity premium for a robust investor is

$$E_t^h [dR - r] = (\mu + \sigma h_t) - r = (\mu - r) \left(1 - \frac{1}{1 + \gamma \eta^*} \right)$$

- We can use the “implied” perceived equity premium of the robust investor as a reasonable metric to assess whether η^* is too small.

Optimal Portfolio Allocation under Robustness

<table>
<thead>
<tr>
<th>γ</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>θ</td>
<td>$E_t^h [dR]$</td>
<td>θ</td>
<td>$E_t^h [dR]$</td>
<td>θ</td>
</tr>
<tr>
<td>0.1</td>
<td>22.79</td>
<td>1.17</td>
<td>19.53</td>
<td>2.00</td>
<td>17.09</td>
</tr>
<tr>
<td>0.2</td>
<td>39.06</td>
<td>2.00</td>
<td>30.38</td>
<td>3.11</td>
<td>24.86</td>
</tr>
<tr>
<td>0.5</td>
<td>68.36</td>
<td>3.50</td>
<td>45.57</td>
<td>4.67</td>
<td>34.18</td>
</tr>
<tr>
<td>1</td>
<td>91.15</td>
<td>4.67</td>
<td>54.69</td>
<td>5.60</td>
<td>39.06</td>
</tr>
<tr>
<td>2</td>
<td>109.38</td>
<td>5.60</td>
<td>60.76</td>
<td>6.22</td>
<td>42.07</td>
</tr>
<tr>
<td>10</td>
<td>130.21</td>
<td>6.67</td>
<td>66.69</td>
<td>6.83</td>
<td>44.83</td>
</tr>
<tr>
<td>100</td>
<td>136.04</td>
<td>6.97</td>
<td>68.19</td>
<td>6.98</td>
<td>45.50</td>
</tr>
</tbody>
</table>
Recent Applications of Robust Control

- The approach of robust control theory has found numerous applications in finance in recent times.

1. Liu, Pan and Wang (JF, 2005): uncertainty on rare events to explain options premia, along with the standard result on return equity premium.
2. Routledge and Zin (2004): rare events and market liquidity. \(\Rightarrow \) uncertainty aversion may lead agents not to trade after big market events.
3. Uppal and Wang (JF, 2003): extend the above model to the case of different aversions to uncertainty across assets.
 - For some assets there is less “ambiguity” about the probabilities.
 - Under-diversification: even a limited amount of aversion to uncertainty on some stocks \(\Rightarrow \) over-invest in those with less uncertainty aversion.

Conclusion

• The last decade has seen a boom in research about optimal asset allocation.

• The groundwork set by Samuelson and Merton has found application only recently, as researchers were able to solve long-standing problems
 – The concept of hedging demands date back 30+ years
 – But only recently these hedging demands have been characterized in a quantitative fashion.

• Yet, we are still far from explaining all of the puzzles in a nice, convincing theory.
 – Predictability has the right implication for life cycle, but wrong for asset allocation magnitudes
 – Learning has the right implication for the magnitudes, but wrong for life cycle
 – Preferences for robustness imply unreasonable levels of pessimism.