Modern Dynamic Asset Pricing Models

Lecture Notes 2.

Uncertainty, Learning and Asset Pricing

Pietro Veronesi

University of Chicago
Booth School of Business
CEPR, NBER
Economic Uncertainty, Information Quality, and Learning

• Questions: Can one or more of these puzzles be addressed by lack of information about some key parameter of the model?

• More precisely
 – What is the relationship between the *quality* of information and asset returns?
 – If information is noisy, is there a risk premium?
 – Does information quality affect the relationship between the risk premium and investors’ risk aversion?
 – How does the precision of signal affect stock market volatility?
 – Can we infer how good investors’ information is from the behavior of stock market returns?

• We now consider a simple modification of the above setting to answer this question (Reference: Veronesi (2000, JF))
A Model of Economic Bayesian Uncertainty

- Dividends grow according to the following process:
 \[
 \frac{dD_t}{D_t} = \theta_t dt + \sigma_D dB_t^D
 \]

- Investors do not observe the drift θ_t, but they know its law of motion.

- **Assumption 1**: θ_t follows a Markovian process defined on a finite set $\Theta = \{\theta_i\}_{i=1}^n$.
 - That is, for every $\theta_i, \theta_j \in \Theta$ there exists λ_{ij} such that in the infinitesimal interval Δ we have:
 \[
 \Pr(\theta_{t+\Delta} = \theta_j | \theta_t = \theta_i) = \lambda_{ij} \Delta
 \]

- **Remark**: Although I assume that θ_t can take only a finite number of values, the assumption leaves unspecified the *number* of states.

- We can approximate any continuous-time, continuous-state stationary Markov process by choosing a sufficiently fine grid $\Theta = \{\theta_1, \theta_2, ..., \theta_n\}$ on the real line and by carefully choosing the transition probabilities λ_{ij}.
A Model of Economic Bayesian Uncertainty

- Examples:

1. **Business Cycle**: Use only two states $\theta_1 < \theta_2$. See Veronesi (1999), David and Veronesi (2000) and Locarno and Massa (2000), Cagetti, Hansen, Sargent and Williams (2000).

2. **Pure Jump Process**:

 \[d\theta_t = (J_t - \theta_t) \, dQ^p(\theta_t) \]

 - where $dQ^p(\theta_t)$ denotes a Poisson process with intensity $p(\theta_t)$ and J_t is a random variable with any density $f(\theta)$.

3. **Pure Drift Uncertainty**: $p(\theta) = 0$ in the previous case.

4. **Mean Reverting Processes**:

 \[d\theta_t = k(\bar{\theta} - \theta_t) \, dt + \sigma_\theta dB^\theta_t \]

 - where $dB^\theta_t dB^D_t = 0$.

5. **Mean Reverting Process with Jumps**:

 \[d\theta_t = k(\bar{\theta} - \theta_t) \, dt + \sigma_\theta dB^\theta_t + (J_t - \theta_t) \, dQ^p(\theta_t) \]

 - This is a very complex filtering problem, used in Veronesi (2003).
Economic Uncertainty and Information Quality

- Investors observe a noisy signal:
 \[de_t = \theta_t dt + \sigma_e dB_t^e \]
 where \(B_t^e \) is a standard Brownian motion independent of \(B_t^D \).

- This form of the signal is the continuous time analog of the standard “signal equals fundamentals plus noise”, i.e. \(e_t = \theta_t + \varepsilon_t \) with \(\varepsilon_t \) normally distributed, in a discrete time model (see e.g. Detemple (1986)).

\[h_e = 1/\sigma_e = \text{precision of the external signal} \]

- Similarly, \(h_D = 1/\sigma_D = \text{precision of dividend signal} \)
• Denote investors' information set at time t by \mathcal{F}_t, and let

$$\pi^i_t = \text{Prob}(\theta_t = \theta_i | \mathcal{F}_t)$$

(1)

• Define $\pi_t = (\pi^1_t, ..., \pi^n_t)$. This distribution summarizes investors’ overall information at time t.

• The expected drift rate at time t $m^\theta_t \equiv E(\theta | \mathcal{F}_t) = \sum_{i=1}^n \pi^i_t \theta_i$

• The evolution of π^i_t is given by

• **Lemma 1:** (a) For all $i = 1, \ldots, n$:

$$d\pi^i_t = [\pi_t \Lambda]_i dt + \pi^i_t (\theta_i - m^\theta_t) \left(h_D d\tilde{B}^D_t + h_e d\tilde{B}^e_t \right)$$

(2)

• where Λ is such that $[\Lambda]_{ij} = \lambda_{ij}$ for $i \neq j$ and $[\Lambda]_{ii} = -\sum_{j \neq i} \lambda_{ij}$.

• In this equation

$$d\tilde{B}^D_t = h_D \left(\frac{dD_t}{D_t} - m^\theta_t dt \right) ; \quad d\tilde{B}^e_t = h_e (de_t - m^\theta_t dt)$$
To understand the effect of information quality on asset prices, it is convenient to look at a specific example.

Assume θ follows a pure jump process.

$$d\theta_t = (J_t - \theta_t) dQ^p_t \quad \text{with} \quad J_t \sim F = (f_1, \ldots, f_n) \quad \text{(stationary distribution)}$$

Then if $\theta(t) = \theta_\ell$:

$$d\pi_i = [p(f_i - \pi_i) + k\pi_i(\theta_i - m_\theta)(\theta_\ell - m_\theta)] dt + \sqrt{k\pi_i(\theta_i - m_\theta)} dB_t$$

where $m_\theta \equiv E(\theta | \mathcal{F}(t))$, $k = h_D^2 + h_e^2$, and $dB_t = \frac{1}{\sqrt{k}} \left(h_D dB^D_t + h_e dB^e_t\right)$

1. More precise signals \implies posterior π_t more concentrated around the true state θ_ℓ;

2. Less precise signals \implies posterior π closer to stationary distribution $F = (f_1, \ldots, f_n)$;
Economic Uncertainty and Stock Prices

- The price function is:

\[\frac{P_t}{D_t} = \sum_{i=1}^{n} \pi_t^i C(\theta_i) \]

- where \(C(\theta) \) is defined as follows. Define the constant

\[H = \sum_{i=1}^{n} \frac{f_i}{\phi + p + (\gamma - 1)\theta_i + \frac{1}{2}\gamma(1 - \gamma)\sigma_D^2} \]

then

\[C(\theta) = \frac{1}{(\phi + p + (\gamma - 1)\theta + \frac{1}{2}\gamma(1 - \gamma)\sigma_D^2)(1 - pH)} \]

- \(C(\theta) \) is monotone and convex
- \(C(\theta) \) is decreasing if and only if \(\gamma > 1 \).
Economic Uncertainty and the Stock Price

Figure 1. The function $C(\theta)$. (A) plots the function $C(\theta)$ for various values of investors' coefficient of risk aversion $\gamma \geq 1$. This function represents investors' marginal valuation of the stock as a multiple of the current dividend when they condition on the true drift of the dividends process being θ. (B) plots the same function for values of $\gamma \leq 1$.

- Why $C(\theta)$ is decreasing for $\gamma > 1$?
 - Because of low Elasticity of Intertemporal Substitution (EIS)
 * Low EIS \Rightarrow desire of consumption smoothing
 * \Rightarrow Higher θ \Rightarrow higher future consumption \Rightarrow lower savings today \Rightarrow lower prices (and higher r)
Economic Uncertainty and Stock Prices

- The previous result has an intriguing implication:
 - \Rightarrow A mean preserving spread on $\pi \Rightarrow$ an increase in P/D.
 - \Rightarrow Higher uncertainty increases the P/D ratio.

- Intuition:
 - Higher uncertainty increases the probability of high θ and low θ
 - Compounding effect: $1/2 - 1/2$ chance of growing at 10% or 0% is more valuable than sure probability of growing at 5%.

- (Note that the discount adjusts appropriately according to GE model)

- Pastor and Veronesi (2003, JF) document this uncertainty effect on individual stocks, when uncertainty is proxied by firm age.

- Pastor and Veronesi (2006, JFE) uses this intuition to “explain” the tech bubble in the late 1990s.
Economic Uncertainty and Stock Returns

Let’s denote the total excess returns by

\[dR = \frac{dS_t + D_tdt}{S_t} - r_t dt \]

(5)

Proposition: The equilibrium excess returns follow the process:

\[dR = \mu_R dt + (\sigma_D + h_D V_\theta (\pi_t)) d\tilde{B}_t^D + V_\theta (\pi_t) h_e d\tilde{B}_t^e \]

(6)

where

\[\mu_R = \gamma \left(\sigma^2_D + V_\theta (\pi_t) \right) \]

(7)

\[V_\theta (\pi_t) = \frac{\sum_{i=1}^{n} \pi^i_t C_i (\theta_i - m^\theta_t)}{\sum_{i=1}^{n} \pi^i_t C_i} = \sum_{i=1}^{n} \pi^i_t \theta_i - \sum_{i=1}^{n} \pi^i_t \theta_i = \overline{m^\theta} - m^\theta_t \]

(8)

where

\[\overline{\pi}^i_t = \frac{\pi^i_t C_i}{\sum_{j=1}^{n} \pi^j_t C_j} \]

(9)
Economic Uncertainty and Stock Returns

- The function $V_\theta (\pi_t)$ characterizes both expected returns μ_R and volatility.

- $V_\theta (\pi_t)$ is a measure of both level of uncertainty about the true growth rate θ as well as of the impact of this uncertainty on the investors’ own valuations of the asset.
 - For example, when $\gamma = 1$ we have that $C_i = C_j$ for all i and j. Hence, $V_\theta (\pi) = 0$: Investors may be uncertain, but they do not care (because they are myopic).

- It is possible to characterize $V_\theta (\pi_t)$ and we obtain the following
 - **Proposition:**
 1. If $\gamma > 1$, then higher uncertainty decreases the risk premium. That is, a mean preserving spread on investors’ beliefs π_t decreases μ_R.
 2. If either $m^\theta_t > \sigma^2_D + \theta_1$ or $\pi^1_1 < \overline{\pi}_1^*$ where $\overline{\pi}_1^*$ is a given constant (quite high), the expected excess return μ_R decreases with γ for γ sufficiently high. Hence, μ_R is bounded above.
 3. If $m^\theta_t > \sigma^2_D + \theta_1$, there is γ such that $\mu_R < 0$ for $\gamma > \overline{\gamma}$. Moreover, a mean-preserving spread on π decreases $\overline{\gamma}$.
Economic Uncertainty and Stock Returns: Intuition

- Part 1 shows that there is no premium for uncertainty. Actually, quite the opposite holds.
- Intuition?
 - Recall
 \[
 P_t = D_t \times \sum_{i=1}^{n} \pi_i^t C(\theta_i)
 \]
 * \(D_t \downarrow \implies P_t \downarrow\) because of the first term.
 * \(D_t \downarrow \implies E_t[\theta] \downarrow \implies\) consumption smoothing \(\implies P_t/D_t \uparrow\) because of the second term.
 - Higher uncertainty, second effect stronger.
 - Since the premium is given by
 \[
 \mu_R = \gamma \text{Cov}_t \left(dR_t, \frac{dC_t}{C_t} \right)
 \]
 - the stronger the second effect, the lower is the covariance between \(dR_t\) and \(dC_t/C_t = dD_t/D_t\).
 - \(\implies\) The equity premium is lower for higher economic uncertainty.
• Similarly, higher risk aversion \implies lower EIS \implies second effect stronger

\implies Equity premium is bounded above.

Figure 2. Expected returns and investors’ uncertainty. (A) plots the conditional risk premium μ_R against the standard deviation of investors’ beliefs $\sigma_\theta = \sqrt{\sum_{i=1}^n \pi_i (\theta_i - m_\theta)}$, which proxies for investors’ uncertainty, for various coefficients of risk aversion. (B) plots the conditional risk premium μ_R against the coefficient of risk aversion γ for a level of $\sigma_\theta = 0.11\%$.

Economic Uncertainty and Return Volatility

- Return Volatility is given by

\[\sigma_R^2(\pi_t) = \sigma_D^2 + V_\theta(\pi_t) [2 + (h_e^2 + h_D^2)V_\theta(\pi_t)] \] (10)

- The following proposition then holds:

- **Proposition:**
 1. \(\sigma_R \) is a U-shaped function of \(\gamma \) with \(\sigma_R = \sigma_D \) for \(\gamma = 1 \).

 2. a mean-preserving spread on \(\pi_t \) increases \(\sigma_R \) if \(\sigma_R > \sigma_D \). The effect is ambiguous if \(\sigma_R < \sigma_D \).

 3. Under some conditions, if \(h_e > h_D \) then \(\sigma_R > \sigma_D \) for a coefficient of risk aversion sufficiently high.
Equity Premium and Return Volatility

- From the results about risk premium and return volatility, it is clear that the relationship between return volatility and expected returns is ambiguous and depends on the degree of investors' uncertainty.

- This statement can be made precise by noticing that we can write:

\[\mu_R(\pi_t) = \gamma \sigma^2_R(\pi_t) - \gamma V_\theta(\pi_t) \left[1 + (h_e^2 + h_D^2) V_\theta(\pi_t) \right] \] \hspace{1cm} (11)

- The second term in equation (11) can be positive or negative depending on the magnitude of \(V_\theta(\pi_t) \).

- Specifically, for log-utility or when signals are very precise, \(V_\theta(\pi_t) \) is approximately zero and hence a linear positive relationship results.

- In contrast, when \(\gamma > 1 \) and signals are not precise, the second term in equation (11) is positive for \(-1/(h_e^2 + h_D^2) < V_\theta(\pi_t) < 0\) and it is negative for \(V_\theta(\pi_t) < -1/(h_e^2 + h_D^2)\).

- Since the magnitude of \(V_\theta \) changes over time due to investors' fluctuating level of uncertainty, equation (11) implies that there is no precise relationship between expected excess returns and conditional volatility.
Higher uncertainty / volatility is related to lower expected return.

Figure 3. Expected returns and investors' uncertainty over time. (A) plots the conditional risk premium μ_R over time as the result of one Monte Carlo simulation of dividends and posterior distributions. μ_R is computed for the coefficients of risk aversion $\gamma = 1, 3, 4, 5$. (B) plots the standard deviation of investors' beliefs σ_θ across time.
Conclusion

- It is not obvious how economic uncertainty affects stock prices and stock returns.
- The result that P/D ratio increases with uncertainty is rather general.
- The result that expected return decreases with uncertainty crucially depends on EIS < 1.
 - There used to be an agreement among macroeconomists that EIS < 1.
 - Recent research and new estimates seem to suggest that EIS > 1 for stock holders.
 - In this case, expected return and uncertainty would be positively related, as intuition has it.

- What are the ways out?
 - Recent research:
 1. Habit persistence preferences
 2. Risk for the long run
 3. Preferences for robustness

- How far can we go?

- What about the cross-section?

- Constantinides (1990), Detemple and Zapatero (1991), Campbell and Cochrane (1999) and others use the following representation of habit preferences.

- The representative agent maximizes

\[
E \left[\int_{0}^{\infty} u(C_t, X_t, t) \, dt \right],
\]

where the instantaneous utility function is given by

\[
u(C_t, X_t, t) = \begin{cases}
 e^{-\rho t \frac{(C_t - X_t)^{1-\gamma}}{1-\gamma}} & \text{if } \gamma > 1 \\
 e^{-\rho t \log(C_t - X_t)} & \text{if } \gamma = 1
\end{cases}
\]

- \(X_t\) is a habit level.

- Campbell and Cochrane (1999) consider \(X_t\) as an external habit, rather than internal.
 - Catching up with the Joneses.
A Problem

• The model above is not homogeneus, and thus it is hard to work with.

• One additional problem is that in endowment economies, for standard specification of X_t we cannot guarantee

\[C_t > X_t \]

• For instance, assume that consumption (endowment) follows the geometric Brownian motion

\[\frac{dC_t}{C_t} = \mu_c dt + \sigma_c dB_t \]

• Assume also X_t is just a weighted average of past consumption:

\[X_t = X_0 e^{-\alpha t} + \alpha \int_0^t e^{-\alpha (\tau - t)} C_\tau d\tau \]

• Ito’s Lemma implies

\[dX = \alpha (C_t - X_t) dt \]
The Surplus Consumption Ratio Dynamics

- Consider now the following quantity
 \[S_t = \frac{C_t - X_t}{C_t} \]
 (14)

- Campbell and Cochrane (1999) call \(S_t \) the *Surplus Consumption Ratio*.

- Clearly, we must have \(S_t \in [0, 1] \)

- However, if we apply Ito’s Lemma to \(S_t \) we find
 \[dS = k (\bar{S} - S_t) \, dt + \lambda (S_t) \, dB_t \]
 (15)

- where
 \[k = \mu_c - \alpha - \sigma_c^2; \quad \bar{S} = (\mu_c - \sigma_c^2) / k; \quad \lambda (S_t) = (1 - S_t) \]

- Note that \(S_t \) is:
 - Mean reverting: This is a consequence of habit formation and the fact that \(X_t \) is slow moving.
 - Perfectly correlated with innovations to consumption growth, given by \(dB_t \).
 - The volatility of surplus is time varying.
The Surplus Consumption Ratio Dynamics

• Note also that S_t is bounded above:
 – when S_t reaches 1, the diffusion disappears, and the drift is negative.
 – Thus, S_t is dragged down.

• However, nothing stops S_t from going below zero:
 – When $S_t = 0$, the diffusion is still positive (and in fact large).
 – Although the drift is also positive under the sensible assumption that $\mu_c > \sigma_c^2$, there is a non-zero probability that $S_t \leq 0$.

• This event of course is inconsistent with the preference specification.
Campbell and Cochrane Solution

- Campbell and Cochrane (1999) had a great intuition:
 - Specify the mean reverting dynamics for log surplus $s_t = \log(S_t)$
 - Specify $\lambda(s_t)$ in a way to ensure $S_t = \exp(s_t) \in [0, 1]$.

- In addition, they specified $\lambda(s_t)$ to obtain specific properties of the interest rate process r_t (e.g. constant!)

- Unfortunately, their specification does not yield closed form solutions for prices.

- I therefore follow Santos and Veronesi (2005), which generalizes the setting in Menzly, Santos, Veronesi (2004) to the power utility case.

- Consider first the stochastic discount factor implied by the habit model

$$\pi_t = e^{-\rho t} \frac{\partial u(C_t, X_t)}{\partial C_t} = e^{-\rho t} (C_t - X_t)^{-\gamma} = e^{-\rho t} C_t^{-\gamma} S_t^{-\gamma}$$

- The surplus consumption ratio acts as a “preference shock”, as it changes the curvature of the utility function: γS_t^{-1}.
Santos and Veronesi (2006) model

- Since S_t is naturally mean reverting, Campbell and Cochrane (1999) consider the particular monotonic transformation $s_t = \log(S_t)$ and model s_t as mean reverting.

- Santos and Veronesi (2006) use a different monotonic transformation, namely

\[G_t = S_t^{-\gamma} \]

(16)

- Assume then that G_t is mean reverting

\[dG_t = k \left(\overline{G} - G_t \right) dt - \alpha (G_t - \lambda) \sigma_c dB_t \]

(17)

- Note the following:
 1. G_t is mean reverting, like S_t.
 2. G_t is \textit{negatively} perfectly correlated with innovations to consumption dB_t.
 3. G_t is bounded below by $\lambda > 1$. That is, we restrict $C_t > X_t$ at all times.

- These are the same properties of Campbell and Cochrane (1999).
Interest Rate in SV model

- Since \(\pi_t = e^{-\rho t} C_t^{-\gamma} G_t \), the SDF is given by

\[
\frac{d\pi_t}{\pi_t} = -r_t^f dt - \sigma_{\pi} dB_t,
\]

- The risk free rate is given by

\[
r_t^f = \rho + \gamma \mu_c - \frac{1}{2} \gamma (\gamma + 1) \sigma_c^2 + k (1 - \overline{G}S^\gamma) - \gamma \alpha (1 - \lambda S^\gamma) \sigma_c^2
\]

(18)

- Comments:

1. The first three terms in \(r_t \) are standard.
2. The fourth term \(\overline{G} (1 - \overline{G}S^\gamma) \) represents the intertemporal substitution effect

 \[
 \text{Low } S_t \rightarrow \text{high expected } S_{\tau} \text{ in future} \rightarrow \text{Borrow to increase } C_t \rightarrow r_t \text{ high}
 \]

3. The last term \(-\gamma \alpha (1 - \lambda S^\gamma) \) represents an additional precautionary savings term:

 \[
 \text{Low } S_t \rightarrow \text{higher probability } C_{\tau} = X_{\tau} \text{ in the future} \rightarrow \text{Save more today} \rightarrow r_t \text{ low}
 \]

4. Campbell and Cochrane (1999) choose parameters so that these two effects cancel each other
 \rightarrow \text{constant } r_t
The Market Price of Risk in SV model

- The volatility of the stochastic discount factor is given by
 \[
 \sigma_\pi = [\gamma + \alpha (1 - \lambda S_t^\gamma)] \sigma_c.
 \]

- \(\sigma_\pi\) now depends on \(S_t^\gamma\)

 Low \(S_t\) \rightarrow higher curvature of the utility function \(\gamma S_t^{-1}\) \rightarrow
 \rightarrow Higher aversion to risk \rightarrow Higher price of risk
Stock Prices in SV model

• Coming to the stock price of a consumption claim, we have

\[P_t = E_t \left[\int_t^\infty \left(\frac{\pi_\tau}{\pi_t} \right) C_\tau d\tau \right] \] \hspace{1cm} (20)

• Substituting, we obtain

\[P_t = C_\gamma^\gamma S^\gamma E_t \left[\int_t^\infty e^{-\rho(\tau-t)} C_{\tau}^{1-\gamma} G_\tau d\tau \right] \] \hspace{1cm} (21)

• The solution is in closed form

\[P_t = C_t (b_1 + b_2 S_t^\gamma) \]

• where

\[b_1 = \frac{1}{\alpha_1}; \quad b_2 = \frac{kG + \alpha(1-\gamma)\lambda\sigma_c^2}{\alpha_1\alpha_2} \]

with

\[\alpha_1 = \rho - (1-\gamma)\mu_c + \frac{1}{2}(1-\gamma)\gamma\sigma_c^2 + k + \alpha(1-\gamma)\sigma_c^2 \]
\[\alpha_2 = \rho - (1-\gamma)\mu_c + \frac{1}{2}(1-\gamma)\gamma\sigma_c^2 \]
Properties of Stock Prices in SV model

• The implications for

\[
P_t/C_t = b_1 + b_2 S_t^\gamma
\]

is straightforward:

– a higher surplus consumption ratio \(S_t \) translates in lower risk preference, and thus a higher price.

• Intertemporal smoothing hits here too.

 – From the form of \(b_1 \) and \(b_2 \), a high consumption growth \(\mu_c \) translates into a lower \(P/C \) ratio, as we saw with learning.

 – Therefore, learning about \(\mu_c \), for instance, will generate the same problem it did for the standard power utility case.

 * Higher uncertainty \(\rightarrow \) lower equity premium
Return Volatility and Equity Premium

• What about the volatility and the equity premium?
• By using Ito’s Lemma, we have

\[E_t [dR_t] = (\gamma + \alpha (1 - \lambda S^\gamma_t)) \sigma_R (S_t) \sigma_c \]

\[\sigma_R (S_t) = \left[1 + \frac{b_2 S^\gamma_t (1 - \lambda S^\gamma_t) \alpha}{b_1 + b_2 S^\gamma_t} \right] \sigma_c. \]

• How does this model performs?
• The following are some statistics of the market portfolio:
Basic Moments to Explain

Table I

Basic moments

Panel A: Summary statistics for the market portfolio

<table>
<thead>
<tr>
<th></th>
<th>$E(R^M)$</th>
<th>$\text{vol}(R^M)$</th>
<th>r^f</th>
<th>$\text{vol}(r^f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.71%</td>
<td>16.25%</td>
<td>1.44%</td>
<td>3.08%</td>
</tr>
</tbody>
</table>

Panel B: Predictability regressions

<table>
<thead>
<tr>
<th>Horizon</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \left(\frac{D}{P} \right)$</td>
<td>.13</td>
<td>.2</td>
<td>.26</td>
<td>.35</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(2.13)</td>
<td>(1.65)</td>
<td>(1.34)</td>
<td>(1.29)</td>
</tr>
<tr>
<td>R^2</td>
<td>.09</td>
<td>.10</td>
<td>.11</td>
<td>.14</td>
</tr>
</tbody>
</table>

Panel B-1: Sample 1948-2001

<table>
<thead>
<tr>
<th>Horizon</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \left(\frac{D}{P} \right)$</td>
<td>.28</td>
<td>.48</td>
<td>.63</td>
<td>.78</td>
</tr>
<tr>
<td>t-stat.</td>
<td>(4.04)</td>
<td>(4.00)</td>
<td>(4.49)</td>
<td>(5.41)</td>
</tr>
<tr>
<td>R^2</td>
<td>.19</td>
<td>.32</td>
<td>.43</td>
<td>.54</td>
</tr>
</tbody>
</table>
A Calibration

- A simple calibration of the economy (not much parameter search here) is as follows:

Table III
Model parameters used in the simulation

Panel A: Consumption and preference parameters

<table>
<thead>
<tr>
<th>μ_c</th>
<th>σ_c</th>
<th>γ</th>
<th>ρ</th>
<th>γ/\bar{S}</th>
<th>$\min{\gamma/S_t}$</th>
<th>α</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>.02</td>
<td>.015</td>
<td>1.5</td>
<td>.072</td>
<td>48</td>
<td>27.75</td>
<td>77</td>
<td>.13</td>
</tr>
</tbody>
</table>
Table IV
Basic moments in simulated data

Panel A: Summary statistics for the aggregate portfolio

<table>
<thead>
<tr>
<th></th>
<th>(E(R^M))</th>
<th>(\text{vol}(R^M))</th>
<th>(r^f)</th>
<th>(\text{vol}(r^f))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.96%</td>
<td>24.15%</td>
<td>.91%</td>
<td>5.41%</td>
</tr>
</tbody>
</table>

Panel B: Predictability regressions

<table>
<thead>
<tr>
<th>Horizon</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln \left(\frac{D}{P} \right))</td>
<td>.73</td>
<td>.86</td>
<td>.88</td>
<td>.85</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.25</td>
<td>.30</td>
<td>.29</td>
<td>.27</td>
</tr>
</tbody>
</table>

- The model does well, although the volatility of interest rates is a little too high
- The following figures shows the source of the effects
Expected Return

Expected returns of TW portfolio

Distribution of S_t
Conditional Volatility

Volatility of TW portfolio

Distribution of S_t

Surplus Consumption Ratio S_t
- Pastor and Veronesi (2006) use a similar setting with uncertainty about average profitability to rationalize the high valuations in the late 1990s.
Why Was Uncertainty about Average Profitability High in the Late 1990s?

- Technological revolution; “new era”
- Firms went public earlier in their life-cycles (Schultz and Zaman, 2001)
- Tech stock profitability was highly volatile
- Tech stock prices were highly volatile
- Anecdotal evidence

“...the projections of revenue growth were, by and large, wild guesses.”
Investment Dealers Digest, 23 October 2000.

“Internet firms’ highly unpredictable growth rates make historical information less useful.”

“...being wrong isn’t very costly, and being right has a high payoff... With Amazon, we believe the payoff for being right is high.”
Bill Miller, portfolio manager of the Legg Mason Value Trust, in Barron’s, 15 Nov 1999.
Habit Preferences in PV

- PV use a different transformation of surplus consumption ratio

\[S_t = e^{s_t} \]
\[s_t = a_0 + a_1 y_t + a_2 y_t^2 \]
\[dy_t = k_y (\bar{y} - y_t) dt + \sigma_y dW_{0,t} \]

- Choosing \(a_i \) appropriately (in particular, \(a_2 < 0 \)) \(\implies s_t < 0 \implies S_t \in [0, 1] \).

- The SDF is then given by

\[\pi_t = e^{-\eta t - \gamma(s_t + c_t)} \]

- with dynamics

\[\frac{d\pi_t}{\pi_t} = -r_t \ dt - \sigma_{\pi,t} \ dW_{0,t} \]

\[\sigma_{\pi,t} = \gamma (\sigma_{\epsilon} + (a_1 + 2a_2 y_t) \sigma_y) \]

- when \(y_t \uparrow \implies \sigma_{\pi,t} \downarrow \implies \) equity premium \(\downarrow \)
Model: Profitability

- Firm profitability is measured as the accounting return on equity (ROE),
\[\rho_t = \frac{\text{Earnings}_t}{\text{Book Equity}_t} = \frac{Y_t}{B_t} \]

- Mean reversion in firm profitability:
\[d\rho^i_t = \phi^i (\overline{\rho}_t + \overline{\psi}_t^i - \rho^i_t) \, dt + \sigma_{i,0} \, dW_{0,t} + \sigma_{i,i} \, dW_{i,t} \]

- Average aggregate profitability
\[d\overline{\rho}_t = k_L (\overline{\rho}_L - \overline{\rho}_t) \, dt + \sigma_{L,0} dW_{0,t} + \sigma_{L,L} dW_{L,t} \]

- Average firm-specific excess profitability
\[d\overline{\psi}_t^i = -k_\psi \overline{\psi}_t^i dt \]
Model: Dividends

- Dividends are proportional to book equity:
 \[D_t = c \ B_t, \quad c \geq 0 \]

- Clean surplus relation (assuming no new equity issues/withdrawals):
 \[dB_t = (Y_t - D_t) \ dt = (\rho_t - c) \ B_t \ dt \]

Note: Since \(\frac{dB_t}{B_t} = (\rho_t - c) \ dt \),
uncertainty about average \(\rho_t \) = uncertainty about the average growth rate of \(B_t \)
Model: Market Value

- The abnormal earnings model of Ohlson (1990, 1995):
 \[M_t = B_t + \text{present value of future abnormal earnings} \]

- Competition \(\Rightarrow M_T = B_T \) at some future time \(T \)
 - \(T \) is random, exponentially distributed with density \(h(T; p) \)
 - At any point in time, there is probability \(p \) that \(T \) arrives in the next instant

- Market value of equity:
 \[
 M_t = E_t \left[\int_t^\infty \left(\int_t^T \frac{\pi_s}{\pi_t} D_s dS + \frac{\pi_T}{\pi_t} B_T \right) h(T; p) \, dT \right],
 \]
 where \(\pi_t \) is given earlier
Valuation Formula

- **Proposition 1.** Suppose ψ^i_t is known.

 \[
 \frac{M_t}{B_t} = G\left(\psi^i_t, y_t, \bar{\rho}_t, \rho^i_t\right) = (c + p) \int_0^{\infty} Z\left(y_t, \bar{\rho}_t, \rho^i_t, \psi^i_t, s\right) ds
 \]

- When ψ^i_t is unknown, the law of iterated expectations yields

 \[
 \frac{M_t}{B_t} = E\left[G\left(\psi^i_t; y_t, \bar{\rho}_t, \rho^i_t\right) \right] = \int G\left(\psi^i_t, y_t, \bar{\rho}_t, \rho^i_t\right) f_t\left(\psi^i_t\right) d\psi^i_t
 \]

 Note: Since G is convex in ψ^i_t, greater dispersion in $f_t\left(\psi^i_t\right)$ increases M/B

- **Proposition 2.** Suppose that ψ^i_t is unknown, and that $f_t\left(\psi^i_t\right) = N\left(\hat{\psi}^i_t, \hat{\sigma}^2_{i,t}\right)$.

 \[
 \frac{M_t}{B_t} = (c + p) \int_0^{\infty} Z\left(y_t, \bar{\rho}_t, \rho^i_t, \hat{\psi}^i_t, s\right) e^{\frac{1}{2}Q^4(s)^2 \hat{\sigma}^2_{i,t}} ds
 \]

 Note: M/B increases if

 1. expected profitability increases ($\hat{\psi}^i_t \uparrow, \bar{\rho}_t \uparrow, \rho^i_t \uparrow$)
 2. the discount rate decreases ($y_t \uparrow \Rightarrow$ equity premium \downarrow)
 3. uncertainty about ψ^i_t increases ($\hat{\sigma}_{i,t} \uparrow$)
Calibration

- Two sectors:
 - “New economy” (Nasdaq): described above
 - “Old economy” (NYSE/Amex): pays dividends \(D_t^O = c^O B_t^O \) forever

 Old economy’s market value is \(M_t^O = E_t \left[\int_t^\infty \frac{\pi_s}{\pi_t} D_s^O ds \right] \), we derive \(M_t^O / B_t^O = \Phi (\bar{p}_t, y_t) \)

- The profitability parameters are estimated from the data

- The SDF parameters are calibrated to match the old economy’s average return, volatility, \(M/B \), and the level of interest rate to their empirical counterparts

<table>
<thead>
<tr>
<th>Old Economy Profitability</th>
<th>New Economy Profitability</th>
<th>Individ. Firm Profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_L)</td>
<td>(\bar{\rho}_L)</td>
<td>(\sigma_{LL})</td>
</tr>
<tr>
<td>0.3574</td>
<td>12.17%</td>
<td>1.47%</td>
</tr>
</tbody>
</table>

Stochastic Discount Factor

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\gamma)</th>
<th>(k_y)</th>
<th>(\bar{y})</th>
<th>(\sigma_y)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(\mu_z)</th>
<th>(\sigma_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0471</td>
<td>3.9474</td>
<td>0.0367</td>
<td>-0.08%</td>
<td>25.30%</td>
<td>-2.8780</td>
<td>0.3084</td>
<td>-0.0413</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Means of Fitted Quantities

<table>
<thead>
<tr>
<th>(E [M/B])</th>
<th>(E [\mu_{R,t}^{mkt}])</th>
<th>(E [\sigma_{R,t}^{mkt}])</th>
<th>(E [r_{f,t}])</th>
<th>(\sigma [M/B])</th>
<th>(\sigma [\mu_{R,t}^{mkt}])</th>
<th>(\sigma [\sigma_{R,t}^{mkt}])</th>
<th>(\sigma [r_{f,t}])</th>
<th>(c^O)</th>
<th>(k_\psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.77</td>
<td>5.06%</td>
<td>14.47%</td>
<td>6.25%</td>
<td>0.6477</td>
<td>1.72%</td>
<td>2.24%</td>
<td>1.55%</td>
<td>5.67%</td>
<td>0.0139</td>
</tr>
</tbody>
</table>
Table 2. Nasdaq's Valuation on March 10, 2000 Assuming Zero Uncertainty

$\rho_t^N = 9.96\%$ per year, $c = 1.35\%$ per year, $E(T) = 20$ years.

<table>
<thead>
<tr>
<th>ψ^N (% per year)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
| Panel A: Model-implied M/B with zero uncertainty
 (Actual M/B: 8.55) |
| 0 | 3.33| 3.02| 2.63| 2.23| 1.84| 1.47| 1.12| 0.76|
| 1 | 4.15| 3.70| 3.17| 2.64| 2.14| 1.68| 1.25| 0.83|
| 2 | 5.27| 4.62| 3.89| 3.19| 2.53| 1.95| 1.41| 0.90|
| 3 | 6.83| 5.89| 4.87| 3.92| 3.05| 2.29| 1.62| 1.00|
| 4 | 9.06| 7.68| 6.23| 4.92| 3.75| 2.74| 1.88| 1.11|
| 5 | 12.28| 10.22| 8.15| 6.31| 4.71| 3.36| 2.23| 1.26|
| 6 | 17.02| 13.92| 10.90| 8.28| 6.04| 4.19| 2.69| 1.45|
| 7 | 24.09| 19.38| 14.91| 11.12| 7.93| 5.36| 3.32| 1.69|

| Panel B: Implied return volatility with zero uncertainty
 (Actual volatility: 41.5% in March 2000, 47% in 2000) |
0	18.09	20.17	21.76	22.93	23.76	24.18	24.10	23.04
1	18.69	20.93	22.65	23.92	24.83	25.31	25.22	24.05
3	19.93	22.50	24.52	26.05	27.18	27.83	27.81	26.45
4	20.54	23.30	25.47	27.16	28.44	29.21	29.27	27.85
6	21.71	24.82	27.34	29.37	31.01	32.15	32.52	31.15
7	22.25	25.53	28.23	30.44	32.28	33.65	34.27	33.05
Table 3. Nasdaq’s Valuation on March 10, 2000 Assuming Uncertainty of 3% Per Year

\[\rho_t^N = 9.96\% \text{ per year, } c = 1.35\% \text{ per year, } E(T) = 20 \text{ years.} \]

<table>
<thead>
<tr>
<th>Excess ROE</th>
<th>Equity Premium (% per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\psi}_N) (% per year)</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4.70</td>
</tr>
<tr>
<td>1</td>
<td>6.16</td>
</tr>
<tr>
<td>2</td>
<td>8.29</td>
</tr>
<tr>
<td>3</td>
<td>11.44</td>
</tr>
<tr>
<td>4</td>
<td>16.17</td>
</tr>
<tr>
<td>5</td>
<td>23.39</td>
</tr>
<tr>
<td>6</td>
<td>34.59</td>
</tr>
<tr>
<td>7</td>
<td>52.23</td>
</tr>
</tbody>
</table>

Panel A: Model-implied M/B with 3% uncertainty
(Actual M/B: 8.55)

Panel B: Implied return volatility with 3% uncertainty
(Actual volatility: 41.5% in March 2000, 47% in 2000)
Table 4. Matching Nasdaq’s Valuation on March 10, 2000

\(\rho^N_t = 9.96\% \) per year, \(c = 1.35\% \) per year, \(E(T) = 20 \) years.

<table>
<thead>
<tr>
<th>Excess ROE</th>
<th>Equity Premium (% per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi^N_t) (% per year)</td>
<td>1</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>4.39</td>
</tr>
<tr>
<td>1</td>
<td>3.81</td>
</tr>
<tr>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>3</td>
<td>2.08</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Panel A. Uncertainty needed to match the observed M/B

Panel B. Return volatility under implied uncertainty

(Actual volatility: 41.5% in March 2000, 47% in 2000)
Panel A. Distribution of future ROE of Nasdaq

Panel B. Distribution of future average ROE of Nasdaq

Figure 1. Model-predicted distributions of future profitability and average future profitability for Nasdaq.
Model-predicted distribution of the future ratio of Nasdaq book value to NYSE/Amex/Nasdaq book value.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>95</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.12</td>
<td>0.16</td>
<td>0.18</td>
<td>0.22</td>
<td>0.27</td>
<td>0.33</td>
<td>0.39</td>
<td>0.43</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>0.11</td>
<td>0.17</td>
<td>0.22</td>
<td>0.31</td>
<td>0.43</td>
<td>0.56</td>
<td>0.67</td>
<td>0.73</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Why Did the “Bubble” Burst?

- There is little doubt of what caused tech stock prices to drop in 2000.
 - Nasdaq’s profitability plummeted in 2000.
Why Did the “Bubble” Burst?

• Is this large drop consistent with our model?
 – Yes
 * A high uncertainty about long term profitability implies large revisions when there are large unexpected events.
 * Our model implies a similar drop in M/B in 2000, and an even larger drop in 2001.

• Return volatility did not move much after March 2000.
 – This is also consistent with our model: Uncertainty remained high even after March 2000.
Technological Revolutions and Asset Prices

- The 1990s tech revolution and tech “bubble” was just the last example of a pattern repeated several times in history.

“Technological revolutions and financial bubbles seem to go hand in hand.”
“Every previous technological revolution has created a speculative bubble... With each wave of technology, share prices soared and later fell...”
(The Economist, September 21, 2000)

- Stock prices tend to exhibit bubble-like patterns during technological revolutions
 - Prices rise and then fall, especially for innovative firms
 - Return volatility is high, especially for innovative firms

- Examples:
 - the early 1980s (biotechnology, PC)
 - the early 1960s (electronics)
 - the 1920s (electricity, automobiles)
 - the early 1900s (radio)
Repeated Irrational Exuberance?

- The bubble-like stock price behavior is commonly attributed to irrationality (e.g., Shiller, 2000, Perez, 2002, popular press)
 - Investors get too excited about the new technology
- We propose a rational explanation
 - Time-varying nature of uncertainty about the new technology
Pastor and Veronesi (2007)

- New technologies have high uncertainty about average future productivity
 - This uncertainty makes returns highly volatile

- Initially, this uncertainty is mostly idiosyncratic
 - Because the new technology is initially developed on a small scale
 - The idiosyncratic uncertainty increases stock prices (PV 2003, 2006)

- In technological revolutions, new technologies are widely adopted

- For those technologies that are eventually adopted by the whole economy, the uncertainty gradually changes from idiosyncratic to systematic
 - As a result, discount rates rise and stock prices fall

- The “bubble” in prices is observable ex post but unpredictable ex ante
 - Ex post selection bias: We know ex post that a technological revolution took place, but investors did not know that ex ante
Outline of the Model

• We develop a general equilibrium model with a representative agent

• Two sectors: the “new economy” and the “old economy”
 – Old economy: *Large-scale* production using *old* technology
 * Affects the representative agent’s wealth
 – New economy: *Small-scale* production using *new* technology
 * Does not affect the representative agent’s wealth

• The representative agent (the social planner)
 1. Sets up the new economy to “experiment” with the new technology
 2. Learns about the average productivity of the new technology
 3. Decides whether/when to adopt the new technology on a large scale

• If the technology is adopted, we call this a technological revolution
Preferences and Technology

- Representative agent has utility from final wealth, \(u(W_T) = \frac{W_T^{1-\gamma}}{1-\gamma} \), with \(\gamma > 1 \)
- The agent is endowed with capital \(B_0 \) at time \(t = 0 \)
- Capital produces output \(Y_t = \rho_t B_t \), and follows \(dB_t = Y_t dt = \rho_t B_t dt \)
- Market clearing: \(W_T = B_T \)

- Productivity \(\rho_t \) follows a mean-reverting process:
 \[
 d\rho_t = \phi (\bar{\rho} - \rho_t) dt + \sigma dZ_{0,t},
 \]
 \[
 d\rho_t = \phi (\bar{\rho} + \psi - \rho_t) dt + \sigma dZ_{0,t},
 \]
 (under old technology)
 (under new technology)

- The “productivity gain” \(\psi \) is unobservable
 - When the new technology arrives at time \(t^* \), \(\psi \) is drawn as normal:
 \[
 \psi \sim N(0, \hat{\sigma}^2_{t^*})
 \]
 - After time \(t^* \), the agent learns about \(\psi \) in a Bayesian fashion
Learning in the New Economy

- The agent learns about ψ by observing productivity in the new economy
- Capital used in the new economy, B^N_t, is infinitely smaller than B_t.
 \Rightarrow the new technology affects W_T only if adopted by the old economy

- Capital in the new economy evolves as
 \[
 dB^N_t = \rho^N_t B^N_t dt \\
 d\rho^N_t = \phi \left(\bar{\rho} + \psi - \rho^N_t \right) dt + \sigma_{N,0} dZ_{0,t} + \sigma_{N,1} dZ_{1,t}
 \]

Learning: Given the prior $\psi|\mathcal{F}_{t^*} \sim N \left(0, \tilde{\sigma}^2_{t^*} \right)$, the posterior of ψ is also normal, $\psi|\mathcal{F}_t \sim N (\hat{\psi}_t, \hat{\sigma}^2_t)$, where

\[
\hat{\psi}_t = \tilde{\sigma}^2_t \frac{\phi}{\sigma_{N,1}} d\tilde{Z}_{1,t} \\
\hat{\sigma}^2_t = \frac{1}{\tilde{\sigma}^{-2}_{t^*} + \left(\frac{\phi}{\sigma_{N,1}} \right)^2 (t - t^*)}
\]
- t^{**} is chosen to maximize utility, but first we take it as given, for simplicity
Technology Adoption

- The agent chooses if/when to adopt the new technology to maximize utility
- The adoption incurs a proportional conversion cost $\kappa \geq 0$ and it is irreversible

Proposition 1: It is never optimal to adopt the new technology at time t^*.
- The prior at time t^* is $\psi \sim N \left(0, \hat{\sigma}_{t^*}^2\right)$

Proposition 2: The new technology is adopted at time $t^{**} > t^*$ iff

$$\hat{\psi}_{t^{**}} > \psi = -\frac{\log \left(1 - \kappa\right)}{A_2 \left(t^{**}\right)} + \frac{1}{2} \left(\gamma - 1\right) A_2 \left(t^{**}\right) \hat{\sigma}_{t^{**}}^2,$$

- Adopt if the new technology is perceived as sufficiently productive

Proposition 3: It is optimal to begin experimenting with new technology at t^*.
- Experimenting provides a valuable option for free
Stock Prices and the Changing Nature of Uncertainty

- Market values of stocks in the old and new economies:
 \[M_t = E_t \left[\frac{\pi_T B_T}{\pi_t} \right] \quad \text{and} \quad M_t^N = E_t \left[\frac{\pi_T B_T^N}{\pi_t} \right] \]

- State price density: \(\pi_t = E_t \left[W_T^{-\gamma} \right] / \lambda \)

Propositions 4 - 6: Closed-form formulas for \(\pi_t, M_t/B_t \) and \(M_t^N/B_t^N \)

- Stochastic discount factor:
 \[
 \frac{d\pi_t}{\pi_t} = -\gamma A_1(\tau) \sigma \ d\tilde{Z}_{0,t} - S_{\pi,t} \tilde{\sigma}_t^2 \frac{\phi}{\sigma_{N,1}} d\tilde{Z}_{1,t}
 \]

 - In a technological revolution, adoption probability increases from \(\approx 0 \) to 1, so \(S_{\pi,t} \uparrow \) and the nature of \(\tilde{\sigma}_t \) changes from idiosyncratic to systematic
In a technological revolution, $\hat{\psi}_t$ increases from $\hat{\psi}_{t^*} = 0$ to $\hat{\psi}_{t^{**}} > \psi > 0$

The increase in $\hat{\psi}_t$ has two opposing effects on prices:

- **Cash flow effect:** Expected dividend ↑ ⇒ M/B ↑
- **Discount rate effect:** Systematic risk ↑ ⇒ M/B ↓

For the new economy, the cash flow effect tends to prevail initially (close to t^*), but the discount rate effect prevails in the end (close to t^{**})

⇒ “bubble” in the new economy
Simulations

- We simulate 50,000 samples of shocks in our economy
- Plot average paths of M/B and volatility across simulations
- See how these paths differ depending on whether the new technology was eventually adopted (revolution) or not (no revolution)

⇒ Tackle the ex post selection bias

Table 1: Parameters used in Simulations.

<table>
<thead>
<tr>
<th></th>
<th>(\bar{\rho}_L)</th>
<th>(\psi_{t^*})</th>
<th>(\hat{\sigma}_{t^*})</th>
<th>(\phi)</th>
<th>(\sigma_0)</th>
<th>(\sigma_{N,0})</th>
<th>(\sigma_{N,1})</th>
<th>(\kappa)</th>
<th>(t^{**} - t^*)</th>
<th>(T)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.1217</td>
<td>0</td>
<td>0.04</td>
<td>0.3551</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.1</td>
<td>8</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 3. Average M/B and Volatility in Simulations.
Figure 4. Beta and Average Stock Return in Simulations.

(A) Revolution: New Economy Beta

(B) No Revolution: New Economy Beta

(C) Revolution: New Economy Return

(D) No Revolution: New Economy Return

(E) Revolution: Old Economy Return

(F) No Revolution: Old Economy Return
Figure 6. Optimal Adoption Time.

(A) Revolution: Market to Book Ratio

(B) No Revolution: Market to Book Ratio

(C) Revolution: Stock Return Volatility

(D) No Revolution: Stock Return Volatility
Figure 5. Sensitivity Analysis.

(A) Lower Risk Aversion

(B) Zero Conversion Cost

(C) Higher Uncertainty

(D) Faster Adoption
Figure 7. Internet Revolution: Theory.
Figure 8. Internet Revolution: Data.

(A) Beta of NASDAQ

(B) Stock Return Volatility

(C) Index Level

(D) Productivity Growth
American Railroads Before the Civil War

• Early milestones:
 – 1825: First steam locomotive run (John Stevens)
 – 1828: First RR construction begins (Baltimore & Ohio)
 – 1830: First scheduled steam train run (Charleston)

• It was far from obvious in the 1830s-40s that RRs would later come to dominate the transportation industry
 – Competition with other modes of transportation: wagons, steamboats, canals
 – Waterways were cheaper, wagons more flexible

“Far from being viewed as essential to economic development, the first RRs were widely regarded as having only limited commercial application. Extreme skeptics argued that RRs were too crude to insure regular service, that the sparks thrown off by belching engines would set fire to buildings and fields, and that speeds of 20 to 30 miles per hour could be “fatal to wagons, road and loading, as well as to human life.” More sober critics questioned the ability of RRs to provide low cost transportation. [Some] placed “a RR between a good turnpike and a canal” in transportation efficiency.” (Fogel, 1964)
Figure 9.

Rail Consumption in the U.S.
Railroad Expansion

- Large-scale adoption of RR technology appears to have taken place by 1860
 - 1856: Leap in RR diffusion
 - Two milestone RRs completed
 * Illinois Central, the longest RR in the world (705 miles)
 * Sacramento Valley, the first RR in California
 - First RR bridge across Mississippi, heralding westward expansion

“By 1860... the RR had emerged not only as the preferred form of transportation but also as the chief weapon of commercial rivalry.” (Klein, 1994)

- Do stock prices agree with this assessment?
Railroad Stock Prices

- We examine RR stock prices in the early days of the RR (1830–1861)
- Nearly all RRs organized as corporations funded by private investors
 - More than half of the $300m+ RR investment in 1850 was stock-financed
- Data compiled by Goetzmann, Ibbotson, and Peng (2001)
 - Monthly individual stock prices for 671 NYSE stocks in 1815 to 1925
 - Annual dividends for a subset of stocks in 1825 to 1870
- We focus on common stocks (exclude 85 preferred stocks and 29 scrips)
- We delete apparent data errors (40 of 15,276 prices; 0.26% of observations)
- We fill in price gaps no more than three months long by linear interpolation
 - Before 1848, uninterrupted price sequences for RR stocks are rare
- We identify RRs by name (284 stocks)
Table 2: Railroads Appearing in our Price Index.

<table>
<thead>
<tr>
<th>Year</th>
<th>Railroad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1831</td>
<td>Camden & Amboy; Canajoharie & Catskill; Harlem; Ithaca & Oswego</td>
</tr>
<tr>
<td>1832</td>
<td>Boston & Providence</td>
</tr>
<tr>
<td>1833</td>
<td>Boston & Worcester; Brooklyn & Jamaica</td>
</tr>
<tr>
<td>1835</td>
<td>Hudson & Berkshire; Long Island</td>
</tr>
<tr>
<td>1839</td>
<td>Auburn & Syracuse</td>
</tr>
<tr>
<td>1841</td>
<td>Auburn & Rochester</td>
</tr>
<tr>
<td>1844</td>
<td>Housatonic</td>
</tr>
<tr>
<td>1847</td>
<td>Hudson River; Macon & West</td>
</tr>
<tr>
<td>1848</td>
<td>Hartford & New Haven; New York & Erie</td>
</tr>
<tr>
<td>1849</td>
<td>Erie</td>
</tr>
<tr>
<td>1850</td>
<td>Albany & Schenectady; Baltimore & Ohio; Michigan Central; New York & Harlem</td>
</tr>
<tr>
<td>1851</td>
<td>Chemung</td>
</tr>
<tr>
<td>1852</td>
<td>Michigan & Southern</td>
</tr>
<tr>
<td>1853</td>
<td>Cincinnati, Hamilton & Dayton; Cleveland, Columbus & Cincinnati; Cleveland & Pittsburg; Cleveland & Toledo; Galena & Chicago; Illinois Central; Little Miami</td>
</tr>
<tr>
<td>1854</td>
<td>Chicago & Rock Island</td>
</tr>
<tr>
<td>1855</td>
<td>Michigan Southern & Northern Indiana</td>
</tr>
<tr>
<td>1856</td>
<td>Eighth Avenue; Lacrosse & Milwaukee; Macon & Western</td>
</tr>
<tr>
<td>1857</td>
<td>Chicago, Burlington & Quincy; Delaware, Lackawanna & Western; Indianapolis & Cincinnati</td>
</tr>
<tr>
<td>1858</td>
<td>Brooklyn City; Buffalo & State Line; Cleveland, Painesville & Ashtabula</td>
</tr>
</tbody>
</table>
Figure 10. The Railroad Revolution: Data.

(A) Railroad Beta

(B) Stock Return Volatility

(C) Stock Price Index Level

(D) Aggregate P/D Ratio