Modern Dynamic Asset Pricing Models

Lecture Notes 3.

Habits, Long Run Risk and Cross-sectional Predictability

Pietro Veronesi

Graduate School of Business,
University of Chicago
CEPR, NBER
Overview

I. Santos and Veronesi (2006): Habit Preferences and the Cross-Section of Stock Returns
 - Discuss the empirical evidence on the value premium

II. Bansal and Yaron (2005): Recursive Preferences and Long Run Risk

III. Bansal, Dittmar and Lundblad (2005): Cash Flow risk and the Cross-Section of Stock Returns
Motivation

• The value premium:

 Stocks with high book-to-market ratios, value stocks, have yielded higher average returns than stocks with low book-to-market ratios, growth stocks.

• The value premium puzzle: The CAPM fails to price value sorted portfolios.
Average log M/B of M/B sorted portfolios

CAPM Fitted Returns

Average log M/B of M/B sorted portfolios

Average Return

CAPM Fitted Returns

Average Return
Table I (cont.)

Basic moments

Panel C: The value premium

<table>
<thead>
<tr>
<th>Portf.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{R}</td>
<td>6.86%</td>
<td>7.77%</td>
<td>7.67%</td>
<td>7.63%</td>
<td>8.53%</td>
<td>9.96%</td>
<td>8.39%</td>
<td>11.00%</td>
<td>11.39%</td>
<td>12.36%</td>
</tr>
<tr>
<td>ME/BE</td>
<td>5.05</td>
<td>2.68</td>
<td>2.00</td>
<td>1.63</td>
<td>1.38</td>
<td>1.18</td>
<td>1.01</td>
<td>.86</td>
<td>.70</td>
<td>.45</td>
</tr>
<tr>
<td>P/D</td>
<td>43.47</td>
<td>31.38</td>
<td>26.87</td>
<td>24.65</td>
<td>22.65</td>
<td>21.62</td>
<td>20.64</td>
<td>19.95</td>
<td>20.00</td>
<td>21.77</td>
</tr>
<tr>
<td>SR</td>
<td>.352</td>
<td>.450</td>
<td>.452</td>
<td>.461</td>
<td>.555</td>
<td>.640</td>
<td>.522</td>
<td>.657</td>
<td>.644</td>
<td>.600</td>
</tr>
</tbody>
</table>

Notice:

I. The value premium

II. The value premium puzzle

III. The Sharpe ratio is decreasing in the ME/BE and P/D.
• Alternatives:

 – Rational
 * Multifactor models: Fama and French (1993)
 * Conditional CAPM: Lettau and Ludvigson (2001)
 * Composition effect: Santos and Veronesi (2005), Lettau and Wachter (2005).

 – Behavioral
• These explanations are typically detached from the literature that focuses on the properties of the market portfolio:

 – The equity premium (puzzle), the volatility of returns, and the predictability of stock returns.

• In this paper we show that:

 I. The time series behavior of the market portfolio imposes general equilibrium restrictions on the behavior of the cross-section of average returns of price sorted portfolios

 II. These restrictions generate tight implications for the cash-flow characteristics of value and growth stocks.

 III. Moreover, we show that these implications extend to the dynamics of the value premium.

 IV. The model allow us to assess all these effects and implications quantitatively.

 – Standard in the equity premium literature, not so in the cross sectional one.
• Sketch of the model and strategy

 – The model has two ingredients

 * Stochastic discount factor: Habit persistence a la Campbell and Cochrane (1999).
 * A model of cash-flows a la Santos and Veronesi (2005) and Menzly, Santos, and Veronesi (2004).

 – The first ingredient is related to *discount effects*: How “risk averse” is the representative agent?

 – The second ingredient is related to individual *cash-flow effects*:

 * Duration: High or low expected dividend growth and
 * Cross sectional differences in cash-flow risk: Covariance of cash-flow growth with consumption growth.

 – We are going to calibrate the discount effects to get reasonable properties for the market portfolio and then see how much do we need in terms of cash-flow risk to generate reasonable properties for the cross section.
Results:

I. Value stocks are (endogenously) those with high cash-flow risk:

II. Value stocks are particularly risky in “bad times.” Time variation in risk attitudes interact with the cross sectional variation in cash-flow risk to generate fluctuations in the value premium.

 – Empirical evidence: The conditional asset pricing literature (Lettau and Ludvigson (2001)).

III. Interpretation of asset pricing models in light of the present paper:

 (A) CAPM: The value premium and puzzle obtain.

 (B) The Fama and French (1993) model performs well because

 – the loadings on HML capture cross sectional differences in cash-flow risk and

 – it captures the component of the value premium that is related to time series variation in the premium on HML.

 (C) Conditional CAPM models capture the time series variation of the value premium.

 – All these models capture different aspects of the cash-flow effects (and their interaction with discount effects).
IV. Magnitudes:

- In the absence of cash-flow risk only discount risk effects matter and in this case a “growth premium” obtains.

- Thus cash-flow risk is needed to generate the value premium.

- We want to assess the “amount” of cross-sectional variation in cash-flow risk needed to generate the value premium.

- We find that, in the context of our model, the amount of cash-flow risk needed to generate the value premium is “large.”
The Model

• Preferences

- A representative agent with preferences

\[E \left[\int_{0}^{\infty} u \left(C_t, X_t, t \right) dt \right] \quad \text{with} \quad u \left(C_t, X_t, t \right) = \begin{cases} e^{-\rho t (C_t - X_t)^{1-\gamma}} & \text{if } \gamma > 1 \\ e^{-\rho t \log (C_t - X_t)} & \text{if } \gamma = 1 \end{cases} \]

- Habit is given by

\[X_t = \lambda \int_{-\infty}^{t} e^{-\lambda (t-\tau)} C_\tau d\tau \quad \Rightarrow \quad dX_t = \lambda (C_t - X_t) \, dt \]

Define

\[G_t = \left(\frac{C_t}{C_t - X_t} \right)^\gamma \quad \Rightarrow \quad dG_t = \left[\mu_G (G_t) - \sigma_G (G_t) \mu_{c,1} (s_t) \right] dt - \sigma_G (G_t) \sigma_c dB_t^1 \]

- We simply assume that

\[\mu_G (G_t) = k \left(\bar{G} - G_t \right) \quad \text{and} \quad \sigma_G (G_t) = \alpha (G_t - \lambda) \]

Thus

\[\uparrow dB_t^1 \quad \Rightarrow \quad \downarrow dG_t \quad \Rightarrow \quad \uparrow S_t = \frac{C_t - X_t}{C_t} \]
• **Endowment: Cash flows**

 - We make two assumptions:

 * **Assumption 1**

 \[
 \frac{dC_t}{C_t} = \mu_c(s_t) \, dt + \sigma_c^\prime \, dB_t
 \]

 where

 \[
 \mu_c(s_t) = \mu_c + s_t^\prime \theta_{CF} \quad \text{and} \quad \sigma_c = (\sigma_{c1}, 0, \ldots, 0)^\prime
 \]

 * **Assumption 2**

 \[
 ds_t^i = \phi \left(\bar{s}^i - s_t^i \right) \, dt + s_t^i \sigma^i(s_t) \cdot dB_t \quad \text{and} \quad \sigma^i(s_t) = \nu_i^\prime - \sum_{j=1}^{n} s_t^j \nu_j^\prime
 \]

 \[
 D_t^i = s_t^i C_t
 \]

 - Each asset represents a certain long run value of the overall economy, \(\bar{s}^i \)

 - No firm will take over the economy.

 - The choice of the volatility ensures that the shares are positive and add up to one.

 - Dividends are then
– **Dividends**: By Ito’s Lemma:

\[
\frac{dD_t^i}{D_t^i} = \mu_{D,t}^i dt + \sigma_{D,t}^i (s_t) dB_t
\]

where

\[
\mu_{D,t}^i = \overline{\mu}_c + \theta_{CF}^i + \phi \left(\frac{s_t^i}{s_t} - 1 \right) \quad \text{and} \quad \sigma_{D,t}^i (s_t) = \sigma_c^i + \sigma(s_t)
\]

In these formulas,

\[
\theta_{CF}^i = \nu_i \cdot \sigma_c
\]

– **Cash-flow risk**: The covariance between dividend and consumption growth:

\[
\sigma_{CF,t}^i \equiv Cov_t \left(\frac{dD_t^i}{D_t^i}, \frac{dC_t}{C_t} \right) = \sigma_c \sigma_c' + \theta_{CF}^i - s_t' \theta_{CF}
\]

We can impose

\[
\sum_{j=1}^{n} \overline{s}^j \theta_{CF}^j = 0 \quad \Rightarrow \quad \sigma_{CF}^i = E \left[\sigma_{CF,t}^i \right] = \sigma_c \sigma_c' + \theta_{CF}^i
\]
Equilibrium Asset Prices and Returns

1. Strategy

- The stochastic discount factor

\[m_t = e^{-\rho t} (C_t - X_t)^{-\gamma} = e^{-\rho t} C_t^{-\gamma} G_t \quad \Rightarrow \quad \frac{dm_t}{m_t} = -r_f dt + \sigma'_m d\mathbf{B}_t \]

- The first, and only non-zero entry of \(\sigma'_m \)

\[\sigma^1_{m,t} = - [\gamma + \alpha (1 - \lambda S_t^\gamma)] \sigma_c. \]

- We have to solve for

\[m_t P_t^i = E_t \left[\int_t^\infty m_{\tau} s^i_{\tau} C_{\tau} d\tau \right] \quad \text{and} \quad E_t [dR_t^i] = -\text{cov} \left(\frac{dm_t}{m_t}, dR_t^i \right) = -\sigma'_m \sigma^i_R \]
II. General Results

(A) The total wealth portfolio

1. Prices

\[
\frac{P^\text{TW}_t}{C_t} = \alpha_0 \text{^TW}(s_t) + \alpha_1 \text{^TW}(s_t) S_t^\gamma \\
\text{where } S_t = \frac{C_t - X_t}{C_t}
\]

Intuition:

For a given \(s_t\), \(\uparrow S_t \Rightarrow \downarrow \frac{\gamma}{S_t} \Rightarrow \uparrow \frac{P^\text{TW}_t}{C_t}\)

2. Returns

- The expected excess return on the total wealth portfolio

\[
E_t[dR^\text{TW}_t] = \left\{ \begin{array}{l}
(\gamma + \alpha (1 - \lambda S_t^\gamma)) \frac{S_t^\gamma \alpha (1 - \lambda S_t^\gamma)}{f_T^\text{TW}(s_t) + S_t^\gamma} \sigma_c^2 \quad \text{Related to discount effects} \\
+ \\
(\gamma + \alpha (1 - \lambda S_t^\gamma)) \sum_{j=1}^{n} w_{jt}^T \sigma_{CF,t}^j \quad \text{Related to changes in } E_t(dc_t)
\end{array} \right.
\]
(B) Individual securities

1. Prices

\[
\frac{P_t^i}{D_t^i} = \alpha_0^i + \alpha_1^i S_t^\gamma + \alpha_2^i (s_t) \left(\frac{s_t^i}{s_t^i} \right) + \alpha_3^i (s_t) S_t^\gamma \left(\frac{s_t^i}{s_t^i} \right)
\]

For a given distribution of shares \(s_t \)

a. Expected dividend growth:

\[\uparrow \frac{s_t^i}{s_t^i} \Rightarrow \uparrow E_t \left[\frac{dD_t^i}{D_t^i} \right] \Rightarrow \uparrow \frac{P_t^i}{D_t^i}\]

b. Aggregate discount effects:

\[\uparrow S_t \Rightarrow \downarrow \frac{\gamma}{S_t} \Rightarrow \uparrow \frac{P_t^i}{D_t^i}\]

c. A duration effect

An increase in \(S_t \) has a stronger impact on prices the higher the expected dividend growth.
2. **Returns**

- **Expected excess returns**

 The expected excess returns

\[
E_t \left[dR^i_t \right] = \mu^\text{DISC}_{i,t} + \mu^\text{CF}_{i,t}.
\]

 * The discount component:

\[
\mu^\text{DISC}_{i,t} = (\gamma + \alpha (1 - \lambda S^\gamma_t)) \left(\frac{\alpha S^\gamma_t (1 - \lambda S^\gamma_t)}{f^i_1 \left(\frac{s^i_t}{s_t}, s_t \right) + S^\gamma_t} \right) \sigma^2_c
\]

 * The cash-flow component:

\[
\mu^\text{CF}_{i,t} = (\gamma + \alpha (1 - \lambda S^\gamma_t)) \left[\left(\frac{1}{1 + f^i_2 \left(S_t, s_t \right) \left(\frac{s^i_t}{s_t} \right)} + \eta^i_{it} \right) \sigma^i_{CF,t} + \sum_{j \neq i} \eta^i_{jt} \sigma^j_{CF,t} \right]
\]
(A) The discount risk component of expected returns

\[\mu_{DISC} \]

Expected dividend growth (\(s_{bar}/s_i \))

High cash flow risk

Low cash flow risk
(B) The cash flow risk component of expected returns

Expected dividend growth (s_{bar_i} / s_i)

- High cash flow risk
- Low cash flow risk

μ_{CF}
(C) Expected returns

- Expected returns vs. Expected dividend growth (s_{bar_i} / s_i)
- High cash flow risk
- Low cash flow risk

Expected returns range from 0.02 to 0.12, with high and low cash flow risk indicated on the graph.
• The source of the value premium

a. Discount effects only: A “growth premium” obtains:

− $\theta_{CF}^i = 0$ for all i, and whatever cross-sectional differences are driven by \overline{s}^i / s^i.

\[
\uparrow \frac{P_t^i}{D_t^i} \Rightarrow \uparrow \overline{s}^i / s^i \quad \text{but} \quad \uparrow \overline{s}^i / s^i \Rightarrow \uparrow E [dR_t^i]
\]

− Thus

Growth premium: \[\uparrow \frac{P_t^i}{D_t^i} \Rightarrow \uparrow E [dR_t^i] \]
Figure: Simulations with no cross-sectional differences in CF risk. Methodology: (a) Simulate prices, (b) sort portfolios by P/D, (c) take averages.
b. Discount effects + cash-flow effects: a “value premium” may obtain:

- Differences in θ_{CF}^i and s_i^i / s_t^i drive cross-sectional differences.

\[
\begin{align*}
\uparrow \frac{P_i^i}{D_t^i} & \Rightarrow \begin{cases}
\uparrow s_i^i / s_t^i \Rightarrow \uparrow \mu_{i,t}^{DISC} & \text{Discount risk effect} \\
\uparrow s_i^i / s_t^i \Rightarrow \downarrow \mu_{i,t}^{CF} & \text{Cash-flow risk effect - 1} \\
\downarrow \theta_{CF}^i \Rightarrow \downarrow E_t [dR_t^i] & \text{Cash-flow risk effect - 2}
\end{cases}
\end{align*}
\]

- Thus, if cash-flow risk effects are sufficiently strong

\[
\text{Value premium:} \quad \uparrow \frac{P_i^i}{D_t^i} \Rightarrow \downarrow E [dR_t^i]
\]
Figure: Simulations with cross-sectional dispersion in CF risk. Methodology: (a) Simulate prices, (b) sort portfolios by P/D, (c) take averages.
• The dynamics of the value premium

 – There are two “effects” in our setup:

 a. Cross-sectional differences in cash-flow risk, θ_{CF}^i, and

 b. discount risk effects

 – These two effects interact to induce fluctuations in the value premium.

 – Intuition: Value stocks become relative riskier in bad times.

 – This is exactly what the conditional asset pricing models of, say, Lettau and Ludvigson (2001) capture.
Simulations

1. Data

- CRSP-COMPUSTAT
- Sample period: 1948-2001
- We are after two sets of moments:

 (A) Time Series:
 - Equity premium and volatility of returns.
 - Predictability.

 (B) Cross section
 - The value premium.

- What is that we want to match?
II. Details of the simulation

• We simulate 10,000 years of quarterly data for 200 firms.

• We sort the 200 firms into 10 portfolios, sorted on P/D.

• Parameter choices are:

| Panel A: Consumption and preference parameters |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| μ_c | σ_c | γ | ρ | γ/\bar{S} | $\min\{\gamma/S_t\}$ | α | k |
| .02 | .015 | 1.5 | .072 | 48 | 27.75 | 77 | .13 |

| Panel B: Share process parameter |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| n | $\bar{\theta}_{CF}$ | \bar{s}^i | ϕ | \bar{v} |
| 200 | .00345 | .005 | .07 | .55 |
III. Cash-flow effects, discount effects, and the value premium

- The model implies a steady state value of the local curvature of the utility function

\[-\frac{u_{CC}}{u_C}C = \frac{\gamma}{S} = 48\]

- The model generates
 - A slightly low equity premium: 4.40%
 - A reasonable volatility of market returns: 13.6%
 - Predictability that matches well the one in the 1948-2001 sample.
Table III

Basic moments in simulated data

<table>
<thead>
<tr>
<th></th>
<th>$E(R^M)$</th>
<th>$\text{vol}(R^M)$</th>
<th>r^f</th>
<th>$\text{vol}(r^f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Summary statistics for the aggregate portfolio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.35%</td>
<td>13.03%</td>
<td>.69%</td>
<td>4.36%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizon</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln ($\frac{D}{P}$)</td>
<td>.25</td>
<td>.38</td>
<td>.43</td>
<td>.47</td>
</tr>
<tr>
<td>t—stat.</td>
<td>(29.11)</td>
<td>(34.68)</td>
<td>(37.58)</td>
<td>(39.46)</td>
</tr>
<tr>
<td>R^2 (%)</td>
<td>5.74</td>
<td>7.82</td>
<td>7.57</td>
<td>7.06</td>
</tr>
</tbody>
</table>
Table III (cont.)
Basic moments in simulated data

Panel C: The value premium

<table>
<thead>
<tr>
<th>Portf.</th>
<th>Growth</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(\bar{R}) (%)</td>
<td>3.07</td>
<td>3.58</td>
</tr>
<tr>
<td>ln((P/D))</td>
<td>6.38</td>
<td>5.07</td>
</tr>
<tr>
<td>(\text{Avg}(\theta^i_{CF}) \times 100)</td>
<td>-.2858</td>
<td>-.1589</td>
</tr>
<tr>
<td>CAPM (\beta)</td>
<td>.84</td>
<td>.91</td>
</tr>
<tr>
<td>CAPM ret. (%)</td>
<td>3.67</td>
<td>3.94</td>
</tr>
</tbody>
</table>

(A) The value premium
(B) The value premium puzzle
(C) The Sharpe ratio is decreasing in \(P/D\).
(D) Cash flows of value stocks is riskier

- What does our choice of \(\theta^i_{CF}\) mean? Strong cash-flow effects, but more on this below.
IV. The dynamics of the value premium

- What are the value premium dynamics in the data?
 - Split sample in periods of low aggregate M/B (< c), and the complementary
 - Compute average excess returns for M/B sorted portfolios.

Table IV
The dynamics of the value premium

Panel A: Annualized average excess returns (%) in empirical data

<table>
<thead>
<tr>
<th>Market-to-book of market portfolio < c</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>1</td>
<td>10</td>
<td>10-1</td>
</tr>
<tr>
<td>15%</td>
<td>13.18</td>
<td>23.57</td>
<td>10.38</td>
<td>15.40</td>
</tr>
<tr>
<td>20%</td>
<td>10.57</td>
<td>21.70</td>
<td>11.14</td>
<td>13.41</td>
</tr>
<tr>
<td>25%</td>
<td>5.51</td>
<td>19.16</td>
<td>13.64</td>
<td>9.89</td>
</tr>
<tr>
<td>30%</td>
<td>6.97</td>
<td>19.49</td>
<td>12.51</td>
<td>10.50</td>
</tr>
<tr>
<td>35%</td>
<td>8.19</td>
<td>18.65</td>
<td>10.45</td>
<td>11.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market-to-book of market portfolio > c</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>1</td>
<td>10</td>
<td>10-1</td>
</tr>
<tr>
<td>15%</td>
<td>5.73</td>
<td>10.35</td>
<td>4.62</td>
<td>6.34</td>
</tr>
<tr>
<td>20%</td>
<td>5.95</td>
<td>10.06</td>
<td>4.11</td>
<td>6.31</td>
</tr>
<tr>
<td>25%</td>
<td>7.31</td>
<td>10.11</td>
<td>2.80</td>
<td>6.99</td>
</tr>
<tr>
<td>30%</td>
<td>6.82</td>
<td>9.32</td>
<td>2.50</td>
<td>6.62</td>
</tr>
<tr>
<td>35%</td>
<td>6.15</td>
<td>8.98</td>
<td>2.83</td>
<td>5.87</td>
</tr>
</tbody>
</table>
• What are the value premium dynamics implied by the model?

Table IV (cont.)
The dynamics of the value premium

Panel B: Annualized average excess returns (%) in simulated data

<table>
<thead>
<tr>
<th>Price-dividend of market portfolio $< \overline{c}$</th>
<th>\overline{c}</th>
<th>1</th>
<th>10</th>
<th>10-1</th>
<th>\overline{R}_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>7.37</td>
<td>18.27</td>
<td>10.90</td>
<td>10.43</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>6.56</td>
<td>16.07</td>
<td>9.51</td>
<td>9.22</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>5.96</td>
<td>14.60</td>
<td>8.64</td>
<td>8.36</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>5.50</td>
<td>13.46</td>
<td>7.96</td>
<td>7.67</td>
<td></td>
</tr>
<tr>
<td>35%</td>
<td>5.13</td>
<td>12.60</td>
<td>7.47</td>
<td>7.18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price-dividend of market portfolio $> \overline{c}$</th>
<th>\overline{c}</th>
<th>1</th>
<th>10</th>
<th>10-1</th>
<th>\overline{R}_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>2.30</td>
<td>6.46</td>
<td>4.15</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>2.19</td>
<td>6.26</td>
<td>4.07</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>2.10</td>
<td>6.10</td>
<td>4.00</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>2.02</td>
<td>5.98</td>
<td>3.96</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>35%</td>
<td>1.95</td>
<td>5.87</td>
<td>3.92</td>
<td>2.82</td>
<td></td>
</tr>
</tbody>
</table>
V. The CAPM and other asset pricing models

(A) The CAPM

1. Time series evidence

<table>
<thead>
<tr>
<th>Table V Panel A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time series regression $R^i_t = \alpha + \beta^M R^M_t + \epsilon_t$</td>
</tr>
</tbody>
</table>

Panel A-2: Empirical data

<table>
<thead>
<tr>
<th>Portf.</th>
<th>Growth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$t(\alpha)$</td>
<td>-0.46</td>
<td>-0.03</td>
<td>-0.02</td>
<td>0.07</td>
<td>0.44</td>
<td>0.78</td>
<td>0.40</td>
<td>0.99</td>
<td>1.07</td>
<td>1.20</td>
</tr>
<tr>
<td>β^M</td>
<td>$t(\beta^M)$</td>
<td>1.13</td>
<td>1.02</td>
<td>1.01</td>
<td>0.95</td>
<td>0.88</td>
<td>0.89</td>
<td>0.88</td>
<td>0.91</td>
<td>0.92</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Panel A-2: Simulated data

<table>
<thead>
<tr>
<th>Portf.</th>
<th>Growth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$t(\alpha)$</td>
<td>-0.15</td>
<td>-0.09</td>
<td>0.02</td>
<td>0.06</td>
<td>0.12</td>
<td>0.13</td>
<td>0.20</td>
<td>0.20</td>
<td>0.29</td>
<td>0.68</td>
</tr>
<tr>
<td>β^M</td>
<td>1.84</td>
<td>0.91</td>
<td>0.98</td>
<td>1.05</td>
<td>1.10</td>
<td>1.13</td>
<td>1.16</td>
<td>1.20</td>
<td>1.22</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>
2. Fama-MacBeth regressions

<table>
<thead>
<tr>
<th>Panel A: Empirical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const.</td>
</tr>
<tr>
<td>1. 4.69</td>
</tr>
<tr>
<td>(3.21)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Simulated data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const.</td>
</tr>
<tr>
<td>5. -1.45</td>
</tr>
<tr>
<td>(-19.93)</td>
</tr>
</tbody>
</table>
• Judging by t-stat and R^2, CAPM works well.

 – This is because the betas in the first pass regression indeed line up with average returns.

 $r_t^i = \alpha^i + \beta^i r_t^M + \epsilon_t^i$

 – \implies In the second pass (cross-sectional) regression, R^2 and t-stat are high.

 $\lambda^i = \lambda_0 + \beta^i \lambda^M + \eta^i$

 – **But magnitude of coefficient is off:**

 Implied premium $= 2.56 \times 4 = 10.4\% > 4.35\%(= E[dR^M])$

• Pitfall: Finding a significant t-stat and high R^2 is misleading.

• Economic magnitudes of coefficients in Fama-Macbeth regressions are index of whether asset pricing model works or not.

• Tests of the magnitudes are harder, especially for conditional asset pricing models (below)

• Santos and Veronesi (2006) use simulations to gauge the magnitudes of coefficients,
(A) P/D Ratio

(B) Return
(B) The Fama and French (1993) Model

1. Time series evidence

Table V Panel B

<table>
<thead>
<tr>
<th>Portf.</th>
<th>Growth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td>.20</td>
<td>.17</td>
<td>.02</td>
<td>-.12</td>
<td>.19</td>
<td>.28</td>
<td>-.40</td>
<td>.01</td>
<td>-.08</td>
<td>-.36</td>
</tr>
<tr>
<td>$t(\alpha)$</td>
<td></td>
<td>(1.13)</td>
<td>(1.05)</td>
<td>(.14)</td>
<td>(−.61)</td>
<td>(.87)</td>
<td>(1.58)</td>
<td>(−2.15)</td>
<td>(.09)</td>
<td>(−.43)</td>
<td>(−1.23)</td>
</tr>
<tr>
<td>β^M</td>
<td></td>
<td>1.04</td>
<td>.99</td>
<td>1.00</td>
<td>.98</td>
<td>.91</td>
<td>.96</td>
<td>.99</td>
<td>1.05</td>
<td>1.09</td>
<td>1.20</td>
</tr>
<tr>
<td>β^{HML}</td>
<td></td>
<td>−.42</td>
<td>−.12</td>
<td>−.03</td>
<td>.12</td>
<td>.16</td>
<td>.31</td>
<td>.50</td>
<td>.61</td>
<td>.72</td>
<td>.97</td>
</tr>
<tr>
<td>$t(\beta^{HML})$</td>
<td></td>
<td>(−12.13)</td>
<td>(−2.37)</td>
<td>(−.68)</td>
<td>(1.88)</td>
<td>(3.62)</td>
<td>(8.85)</td>
<td>(10.35)</td>
<td>(15.52)</td>
<td>(21.04)</td>
<td>(14.14)</td>
</tr>
</tbody>
</table>

Panel B-2: Simulated data

<table>
<thead>
<tr>
<th>Portf.</th>
<th>Growth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td>−.01</td>
<td>.02</td>
<td>.07</td>
<td>.06</td>
<td>.09</td>
<td>.10</td>
<td>.11</td>
<td>.03</td>
<td>.07</td>
<td>.13</td>
</tr>
<tr>
<td>$t(\alpha)$</td>
<td></td>
<td>(−1.15)</td>
<td>(1.24)</td>
<td>(4.50)</td>
<td>(3.44)</td>
<td>(5.26)</td>
<td>(4.85)</td>
<td>(5.38)</td>
<td>(1.57)</td>
<td>(2.97)</td>
<td>(5.38)</td>
</tr>
<tr>
<td>β^M</td>
<td></td>
<td>.93</td>
<td>.97</td>
<td>1.01</td>
<td>1.05</td>
<td>1.08</td>
<td>1.11</td>
<td>1.11</td>
<td>1.10</td>
<td>1.09</td>
<td>.93</td>
</tr>
<tr>
<td>β^{HML}</td>
<td></td>
<td>−.28</td>
<td>−.21</td>
<td>−.09</td>
<td>−.01</td>
<td>.06</td>
<td>.08</td>
<td>.16</td>
<td>.31</td>
<td>.41</td>
<td>1.07</td>
</tr>
</tbody>
</table>
2. Fama-MacBeth regressions

Table VI
Fama and French (1993): Fama-MacBeth regressions (quarterly)

Panel A: Empirical data

<table>
<thead>
<tr>
<th>Const.</th>
<th>Mkt.</th>
<th>SMB</th>
<th>HML</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>.36</td>
<td>1.63</td>
<td>−.31</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>(.23)</td>
<td>(.99)</td>
<td>(.31)</td>
<td>(2.16)</td>
</tr>
</tbody>
</table>

Panel B: Simulated data

<table>
<thead>
<tr>
<th>Const.</th>
<th>Mkt.</th>
<th>HML</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>−.17</td>
<td>1.31</td>
<td>.94</td>
</tr>
<tr>
<td></td>
<td>(−1.64)</td>
<td>(11.85)</td>
<td>(28.69)</td>
</tr>
</tbody>
</table>
(C) Conditional CAPM

1. Fama-MacBeth regressions

Table V
Conditional CAPM: Fama-MacBeth regressions (quarterly)

<table>
<thead>
<tr>
<th>Panel A: Empirical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const.</td>
</tr>
<tr>
<td>3. 2.72</td>
</tr>
<tr>
<td>(2.24)</td>
</tr>
</tbody>
</table>

| 4. 3.06 | -1.37 | .06 | | 81% |
| (2.48) | (-1.01) | | (2.34) |

<table>
<thead>
<tr>
<th>Panel B: Simulated data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const.</td>
</tr>
<tr>
<td>7. .63</td>
</tr>
<tr>
<td>(3.56)</td>
</tr>
</tbody>
</table>
VI. Discussion: The size of the cash-flow risk effect

(A) Do value stocks have larger cash-flow risk?

• A key *implication* of our model is that value stocks are those with higher cash-flow risk: Is there evidence to support this implication?

Yes. For instance:

– Example CPV (2003):
Table VII: Cash-flow betas

<table>
<thead>
<tr>
<th>Cash-flow def.</th>
<th>Growth</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{X_{t+4,j+4} - X_{t+1,0}}{ME_{t-1,0}}$</td>
<td>.21</td>
<td>.66</td>
</tr>
<tr>
<td>std. err.</td>
<td>(.19)</td>
<td>(.08)</td>
</tr>
<tr>
<td>$\sum_{j=0}^{4} \rho^j \Delta d_{t+j,j+1}$</td>
<td>.79</td>
<td>.90</td>
</tr>
<tr>
<td>std. err.</td>
<td>(.19)</td>
<td>(.13)</td>
</tr>
</tbody>
</table>
(B) Sensitive analysis: Asset Pricing

- How sensitive are the results to the particular choice of θ_{CF}^i and ν?

1. Let’s compute the basic return moments for several values of θ_{CF}:

$$\theta_{CF}^i \in [-\theta_{CF}, \theta_{CF}] \quad \theta_{CF} (\times 100) \in \{0, .1, .2, .3, .345\} \quad \text{with} \quad \nu = .55$$

<table>
<thead>
<tr>
<th>Table VII: Sensitivity with respect to θ_{CF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash-flow risk</td>
</tr>
<tr>
<td>$\theta_{CF} \times 100$</td>
</tr>
<tr>
<td>.0</td>
</tr>
<tr>
<td>.1</td>
</tr>
<tr>
<td>.2</td>
</tr>
<tr>
<td>.3</td>
</tr>
<tr>
<td>.345</td>
</tr>
</tbody>
</table>
Why the equity premium, the volatility of returns and the predictability go down as we increase $\overline{\theta}_{CF}$?

* Intertemporal consumption smoothing effect.

* In our setup dct and $Et\left[dct\right]$ are positively correlated.

* In habit persistence models ...

\[\downarrow dct \Rightarrow \downarrow S_t \Rightarrow \uparrow \frac{\gamma}{S_t} \Rightarrow \downarrow \frac{P_t}{C_t} \]

* ... but now

\[\downarrow dct \Rightarrow \downarrow Et\left[dct\right] \Rightarrow \uparrow \frac{P_t}{C_t}, \]

because the agent wants to smooth consumption intertemporally and desires to “transfer” consumption to the future, increasing prices in the process.

* This reduces the drop in prices \Longrightarrow the volatility decreases, etc.

* This effect is stronger the larger the cash-flow risk effects:

\[\mu_{c,1}(s_t) = s_t'\theta_{CF} \]
2. Let’s compute the basic moments for several values of ν. Let

$$\nu \in \{.25, .40, .55\}$$

with $\bar{\theta}_{CF} = .00345$

- Recall that this parameter controls the volatility of the shares.

Table VII: Sensitivity with respect to ν

<table>
<thead>
<tr>
<th>ν</th>
<th>R^M</th>
<th>vol(R^M)</th>
<th>τ^f</th>
<th>vol(τ^f)</th>
<th>b_{12}</th>
<th>R_{12}^2</th>
<th>b_{16}</th>
<th>R_{16}^2</th>
<th>10–1</th>
<th>CAPM 10–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>.25</td>
<td>3.97</td>
<td>10.23</td>
<td>.67</td>
<td>4.20</td>
<td>.38</td>
<td>4.4</td>
<td>.43</td>
<td>4.1</td>
<td>7.10</td>
<td>6.70</td>
</tr>
<tr>
<td>.40</td>
<td>4.09</td>
<td>11.14</td>
<td>.68</td>
<td>4.23</td>
<td>.46</td>
<td>7.0</td>
<td>.51</td>
<td>6.5</td>
<td>6.29</td>
<td>4.57</td>
</tr>
<tr>
<td>.55</td>
<td>4.35</td>
<td>13.03</td>
<td>.69</td>
<td>4.36</td>
<td>.43</td>
<td>7.6</td>
<td>.47</td>
<td>7.1</td>
<td>5.16</td>
<td>1.83</td>
</tr>
</tbody>
</table>

- Changes in ν do not affect the properties of the market portfolio but
- affect the ability of the CAPM to price the set of test portfolios. Why?

* The total wealth portfolio is not perfectly correlated with m_t.

* Higher idiosyncratic volatility of shares, higher variation in expected consumption growth, which is not correlated with shocks to consumption growth.

* Thus the worse performance of the CAPM
(C) Sensitivity Analysis: Dividend growth

• We have seen what our choices of $\bar{\theta}_C$ and $\bar{\nu}$ imply for average returns?

• A natural question is what do these choices imply for:

 – the volatility of dividend growth,

 – the correlation coefficient between dividend and consumption growth and

Table IX

The properties of the cash-flow process

<table>
<thead>
<tr>
<th>τ</th>
<th>$\bar{\theta}_{CF} \times 100$</th>
<th>$[\rho, \tilde{\rho}]$</th>
<th>Avge(σ^i_D)</th>
<th>$\beta^{1.0}_{CF,1}$</th>
<th>$\beta^{10}_{CF,1}$</th>
<th>Avge(σ^i_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.25</td>
<td>0 [.04,.07]</td>
<td>24.88</td>
<td>1.04</td>
<td>.96</td>
<td>27.67</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>[.21,.32]</td>
<td>24.29</td>
<td>.04</td>
<td>1.89</td>
<td>27.33</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>[.48,.57]</td>
<td>22.44</td>
<td>-3.30</td>
<td>4.15</td>
<td>26.11</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>[.76,.81]</td>
<td>18.92</td>
<td>-8.14</td>
<td>6.70</td>
<td>22.88</td>
<td></td>
</tr>
<tr>
<td>.40</td>
<td>0 [.02,.05]</td>
<td>40.04</td>
<td>1.09</td>
<td>.96</td>
<td>31.33</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>[.13,.20]</td>
<td>39.65</td>
<td>.43</td>
<td>1.49</td>
<td>31.02</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>[.29,.36]</td>
<td>38.50</td>
<td>-1.80</td>
<td>3.10</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>[.46,.52]</td>
<td>36.55</td>
<td>-6.37</td>
<td>5.22</td>
<td>26.66</td>
<td></td>
</tr>
<tr>
<td>.345</td>
<td>[.53,.59]</td>
<td>35.40</td>
<td>-8.63</td>
<td>5.73</td>
<td>19.83</td>
<td></td>
</tr>
<tr>
<td>.55</td>
<td>0 [.01,.04]</td>
<td>56.20</td>
<td>1.17</td>
<td>.99</td>
<td>34.86</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>[.10,.15]</td>
<td>55.87</td>
<td>.69</td>
<td>1.28</td>
<td>34.55</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>[.21,.26]</td>
<td>54.96</td>
<td>-1.01</td>
<td>2.40</td>
<td>33.41</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>[.32,.37]</td>
<td>53.47</td>
<td>-4.79</td>
<td>4.28</td>
<td>30.10</td>
<td></td>
</tr>
<tr>
<td>.345</td>
<td>[.37,.42]</td>
<td>52.60</td>
<td>-7.40</td>
<td>4.73</td>
<td>22.96</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- The time varying market price of risk is helpful in addressing many of the time series properties of the market portfolio and interest rates (Campbell and Cochrane (1999)).

- This effect generates a counterfactual “growth premium” ...

- ... unless there is a sufficiently strong cross-sectional dispersion in cash-flow risk.

- We have shown that a model with substantial cross-sectional dispersion in cash-flow risk explains a large number of properties of the data:

 (A) Time series properties of the market portfolio.

 (B) The value premium and the value premium puzzle.

 (C) The performance of the Fama and French (1993) model and, in particular, the role of HML and the performance of the conditional CAPM model.

 (D) The dynamics of the value premium.
A different strand of literature focuses on recursive preferences.

- Disentangle risk aversion from intertemporal substitution.
- Could be useful, because we have seen that EIS generates a lot of troubles.

Consider first the iso-elastic utility function

\[U(C) = \frac{C^{1-\gamma}}{1-\gamma} \]

If \(C \) is stochastic, then \(\gamma = -CU_{cc}/U_c \) is the coefficient of relative risk aversion.

In an intertemporal model, with deterministic consumption \(C_1, C_2, \ldots \), \(\psi = 1/\gamma \) instead measures also the elasticity of intertemporal substitution.

That is, the derivative of planned log consumption growth with respect to log interest rate

\[\psi = \frac{d(C_{t+1}/C_t) / (C_{t+1}/C_t)}{dR/R} \]

This measures the willingness to exchange consumption today for consumption tomorrow, given the interest rate \(R \).
There is no need to have such a tight relationship between the relative risk aversion coefficient and the elasticity of intertemporal substitutions.

– Very different concepts: one applies to stochastic variables, the other to deterministic consumption paths.

This separation is accomplished by the use of recursive utility functions.

– For example, consider a simple two period model. At time $t = 0$ you know that your consumption is C_0.

– However, at $t = 1$, you may receive the stochastic consumption \tilde{C}_1.

– Given the distribution of \tilde{C}_1, you can think what is the level of certain consumption at time $t = 1$ that indeed is equivalent to \tilde{C}_1.

– Say this is $\overline{C}_1 = m (\tilde{C}_1)$. Clearly, the function $m (.)$ measures the “risk-aversion.”

– Now, we can compare the consumption today C_0 and the deterministic consumption tomorrow \overline{C}_1 by using some conventional utility function defined on two commodities $W (C_1, \overline{C}_2)$.

– Clearly, the function $W (C_1, \overline{C}_2)$ measures only the substitution preferences across the two periods and not the “risk aversion” component.
Recursive Preferences and Long Run Risk

- Recursive utility functions generalize the above.

- They are in fact defined by the following ingredients:

 I. V_t is the “utility” at time t. \tilde{V}_{t+1} denotes the fact that it is stochastic in the future (as of time t or before).

 II. A certainty equivalent function $m(\cdot | \mathcal{F}_t)$ defined on the future stochastic utility \tilde{V}_{t+1}

 III. An aggregator function $W(\ldots)$ defined on current consumption and the certainty equivalent function.

- Specifically, we have that the utility at time t is given by

 $$V_t = W(C_t, m[\tilde{V}_{t+1}|\mathcal{F}_t])$$

 - The certainty equivalent $m[\tilde{V}_{t+1}|\mathcal{F}_t]$ “records” the risk aversion component;

 - The function $W(x, y)$ records the relative preference for a good x today or the “certainty equivalent” of utility \tilde{V}_{t+1}, y, tomorrow.
Long Run Risk

- Aggregate dividends:
 \[
 \frac{dD_t}{D_t} = g_t dt + \sigma_D dB_t
 \]

- Drift rate of dividends:
 \[
 dg_t = (\eta - \eta_1 g_t) dt + \sigma_g dB_t
 \]

- In a nutshell, long run risk is the risk that is embedded in stocks due to their sensitivity to \(g_t \).

- Let returns be given by
 \[
 dR = (r (g_t) + \mu (g_t)) dt + \sigma_R (g_t) dB_t
 \]

- where \(r, \mu \) and \(\sigma_R \) will be determined in equilibrium.
Recursive Preferences in Continuous Time

- Consider a (representative) agent with Epstein - Zin (EZ) preferences.
- The agent maximizes

\[J_t = E_t \left[\int_t^\infty f(C_\tau, J_\tau) d\tau \right] \]

- subject to the usual wealth equation.
- The function \(f(C, J) \) is the (normalized) aggregator of current consumption and continuation value.
- Under EZ preferences, we have

\[f(C, J) = \frac{\phi}{\rho} \alpha J \left(\left(\frac{C}{(\alpha J)^{\frac{1}{\alpha}}} \right)^{\rho} - 1 \right) \]

- where

\[\rho = 1 - \frac{1}{\psi}; \alpha = 1 - \gamma \]

- and \(\gamma = RRA \) and \(\psi = EIS \).
The Bellman Equation

- The Bellman Equation is

\[0 = \max_{C, \theta} f(C, J) + J_gE[dg] + J_wE[dW] \]

\[+ \frac{1}{2} \left(J_{gg}E[dg^2] + 2J_gwE[dgdW] + J_{ww}E[dW^2] \right) \] \hspace{1cm} (1)

\[+ J_{ww} \sigma_R' \sigma_R \] \hspace{1cm} (2)

- The solution strategy is as usual.

 I. The FOC with respect to \(C \) and \(\theta \) are

\[f_c = J_w \]

\[0 = J_w W \mu(g) + J_g w W \sigma_R \sigma_g' + J_{ww} W^2 \theta \sigma_R \sigma_R \]

 II. Conjecture:

\[J(W, g) = F(g) \frac{W^\alpha}{\alpha} \]

 III. Compute \(J_w, J_{ww}, \) etc.
IV. Compute

\[C' = \phi^{\frac{1}{\rho - 1}} F(g)^{\frac{\rho}{\alpha \rho - 1}} W \]

\[\theta_t = \frac{1}{1 - \alpha} \frac{\mu_t}{\sigma_R \sigma'_R} + \frac{1}{1 - \alpha} \frac{\sigma_g \sigma'_R}{\sigma'_R} F_g \]

V. Resubstitute everything back into the Bellman Equation

\[0 = \alpha \left(\frac{1}{\rho} - 1 \right) \phi^{\frac{1}{\rho - 1}} F(g)^{\frac{\rho}{\alpha \rho - 1}} - \frac{\phi}{\rho} \alpha + \frac{F_g}{F} (\eta - \eta_1 \eta_t) + \alpha \theta_t \mu (g) + \alpha r (g) \]

\[+ \frac{1}{2} \left(\frac{F_g}{F} \sigma_g \sigma'_g + 2 \frac{F_g}{F} \alpha \theta \sigma_R \sigma'_R + \alpha (\alpha - 1) \theta^2 \sigma_R \sigma'_R \right) \]

VI. In a portfolio problem, we would substitute \(\theta \) as well, and solve the resulting PDE. Here, instead, we use market clearing conditions.

- But the type of solution is similar.
Market Clearing

• Use the equilibrium condition $\theta_t = 1$ to obtain two equations

I. Equity Premium

$\mu_t = (1 - \alpha) \sigma_R \sigma'_R - \sigma_g \sigma'_R \frac{F_g}{F}$

II. Bellman Equation

$0 = \alpha \left(\frac{1 - \rho}{\rho} \right) \phi^{\frac{1}{\rho - 1}} F(g)^{\frac{1}{\rho - 1}} - \frac{\phi}{\rho} \alpha + \frac{F_g}{F} (\eta - \eta_1 g_t) + \frac{1}{2} \alpha (1 - \alpha) \sigma_R \sigma'_R + \alpha r(g) + \frac{1}{2} \frac{F_{gg}}{F} \sigma_g \sigma'_g$

• We still need to determine $\sigma_R \sigma'_R$ and $r(g)$.

• Use market clearing conditions

$C = D; \quad W = P$

• Substitute in the consumption equation

$C = \phi^{-\frac{1}{\rho - 1}} F(g)^{\frac{1}{\rho - 1}} W$
Consumption Claim

- we obtain the price of a consumption claim

\[P_t = C_t \phi^{\frac{1}{p-1}} F(g_t)^K \]

where

\[K = \frac{\rho}{\alpha (1 - \rho)} \]

- Use Ito’s Lemma to find

\[\frac{dP}{P} = \mu_P dt + \sigma_P dB_t \]

- where

\[\mu_P = \left(g_t + K \frac{F_g}{F} (\eta - \eta_1 g_t) + \frac{1}{2} \left(K (K - 1) \left(\frac{F_g}{F} \right)^2 + K \frac{F_{gg}}{F} \right) \sigma_g \sigma_g' + K \frac{F_g}{F} \sigma_g \sigma_D' \right) \]

\[\sigma_P = \sigma_R = \left(\sigma_D + K \frac{F_g}{F} \sigma_g \right) \]

- We can substitute \(\sigma_R \) into the BE. But we still need the risk free rate \(r(g) \).
Consumption Claim

• We know that

\[E \left[\frac{dP}{P} + \frac{C}{P} \, dt \right] - r(g) = \mu_t \]

• Thus from above

\[r(g) = \mu_P + \frac{C}{P} - \mu_t \]

 - Note: \(\mu_P \) comes from Ito’s Lemma above \((dP/P)\), while \(\mu_t \) comes from the equilibrium condition \(\theta_t = 1 \).

• Finally, substitute everything back in the Bellman Equation to obtain

\[
0 = \frac{1}{\rho} \phi \rho^{-1} F (g) \frac{1}{\rho} - \phi + \alpha g_t + (1 + \alpha K) \frac{F_g}{F} (\eta - \eta_1 g_t) - \frac{1}{2} \alpha (1 - \alpha) \sigma_D \sigma_D
\]

\[
+ (1 + K \alpha) \frac{F_g}{F} \sigma_D \sigma'_g + (1 + \alpha K) \frac{1}{2} \frac{F_{gg}}{F} \sigma_g \sigma'_g + (1 + \alpha K) \frac{1}{2} \alpha K \left(\frac{F_g}{F} \right)^2 \sigma_g \sigma'_g
\]

• It looks tough, but we can apply Campbell and Viceira log-linearization methodologies.
Log-Linear Solution

- Log linearization: The first term is
 \[
 \frac{C}{W} = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho-1}{\alpha}}
 \]

- Approximate
 \[
 \frac{C}{W} \approx h_0 + h_1 (c - w)
 \]
 where \(h_1 = e^{c-w} \) and \(h_0 = h_1(1 - \log(h_1)) \).

- Taking logs in \(C/W \)
 \[
 c - w = -\frac{1}{\rho - 1} \log(\phi) - K \log(F(g))
 \]

- We then obtain the approximation
 \[
 \frac{C'}{W} = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho-1}{\alpha}}
 \approx h_0 + h_1 (c - w)
 = h_0 - \frac{h_1}{\rho - 1} \log(\phi) - h_1 K \log(F(g))
 \]
An Approximate Solution to the PDE

- Substitute in the PDE

\[0 \approx \frac{1}{\rho} h_0 - \frac{\alpha}{\rho} \frac{h_1}{\rho} \log (\phi) - \frac{\alpha}{\rho} h_1 K \log (F(g)) \]

\[-\frac{\phi}{\rho} \alpha + \alpha g_t + (1 + \alpha K) \frac{F_g}{F} (\eta - \eta_1 g_t) - \frac{1}{2} \alpha (1 - \alpha) \sigma_D \sigma_D \]

\[+ (1 + K\alpha) \frac{F_g}{F} \sigma_D \sigma'_g + (1 + \alpha K) \frac{1}{2} F_{gg} \sigma_g \sigma'_g + (1 + \alpha K) \frac{1}{2} \alpha K \left(\frac{F_g}{F} \right)^2 \sigma_g \sigma'_g \]

- The solution to this PDE has the form

\[F(g) = e^{A_0 + A_1 g} \]

- Use method of undetermined coefficients and find

\[A_1 = \frac{\alpha (1 - \rho)}{h_1 + \eta_1} \]

- and another equation for \(A_0 \).
The Results

I. Price consumption ratio

\[\frac{P_t}{C_t} = \phi^{-\psi} \exp \left(K A_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) g_t \right) \]

- Notably: \(P/C \) is increasing in \(g_t \) iff \(EIS = \psi > 1 \)
- Powerful additional variation in prices due to variation in \(g_t \).
- E.g. With learning, \(D_t \) and \(g_t \) are positively correlated \(\Rightarrow \) higher premium than \(EIS < 1 \).

II. Diffusion term in \(dR \)

\[\sigma_R = \sigma_D + \frac{1 - 1/\psi}{h_1 + \eta_1} \sigma_g \]

- The diffusion component of returns shows two sources of risk
 (A) Contemporaneous dividend shocks, from \(D_t \)
 (B) Long Run risk, from \(g_t \)
- Second component is higher for \(EIS > 1 \).
The Results

III. Equity premium

\[
\mu_t = \gamma \sigma_R \sigma'_R - \frac{\gamma (1 - 1/\psi)}{h_1 + \eta_1} \sigma_R \sigma'_g \\
= \gamma \sigma_D \sigma'_D + \left(\frac{2\gamma - \gamma/\psi - 1/\psi}{h_1 + \eta_1} \right) \sigma_D \sigma'_g + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) \sigma_g \sigma'_g
\]

- The first equation shows that if \(EIS > 1 \), then the equity premium increase because \(\sigma_R \sigma'_R \) increases, but it may decrease because of the Merton hedging demand component \(\sigma_R \sigma'_g \).

IV. Risk free rate

\[
r = \phi + \frac{1}{\psi} g_t - \frac{1}{2} \gamma \left(1 + \frac{1}{\psi} \right) \sigma_D \sigma'_D - \frac{1}{2} \gamma \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right)^2 \sigma_g \sigma'_g + \left(\frac{1}{\psi} \gamma \right) \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) \sigma'_g \sigma'_D
\]

- The risk-free rate puzzle was due to \(\gamma \) multiplying \(g_t \) under CRRA utility.
- We can now increase \(\gamma \) without affecting the \(EIS \), resolving in part the risk free puzzle.
Quantitative Results

- Can this model explain the various puzzles \textit{quantitatively}?
 - Some, but not all.
 - The following table uses the parameters obtained by Bansal and Yaron (2005, JF).
 - In monthly units: \(E[dC/C] = \eta/\eta_1 = .0015, \eta_1 = .0212, \sigma_c = .0078, \sigma_g = 0.3432 \times 10^{-3} \)

\[
\begin{array}{cccccc}
\gamma & \psi & \mu_R & \sigma_R & r_f & \sigma(r_f) \\
7.5 & 0.5 & -0.81 & 5.65 & 4.26 & 4.00 \\
7.5 & 1.5 & 1.15 & 3.20 & 3.04 & 1.33 \\
10 & 0.5 & -1.28 & 5.70 & 3.65 & 4.00 \\
10 & 1.5 & 1.55 & 3.20 & 2.85 & 1.33 \\
45 & 0.5 & -9.34 & 6.05 & -5.53 & 3.99 \\
45 & 1.5 & 6.71 & 3.14 & 0.29 & 1.33 \\
\end{array}
\]

- In addition, expected returns and volatility are constant.
Extension 1: Dividend Claim

- Consider an additional asset whose dividend follows the process
 \[\frac{d\delta}{\delta} = (\mu_d + \lambda g_t) dt + \sigma_d dB_t \]

 - \(\lambda \) consumption leverage parameter (Abel (1990)).
 * Measure of long run cash flow risk.

- \(\sqrt{\sigma_\delta \sigma_\delta'} \) = dividend volatility.
 * Higher than consumption volatility.

- Same methodology as before.
- Price of dividend claim
 \[\frac{S_t}{\delta_t} = \exp \left(A_0^\delta + \left(\frac{\lambda - 1/\psi}{h_1^\delta + \eta_1} \right) g_t \right) \]
Extension 1: Dividend Claim

- The diffusion of stock return

\[\sigma_{R}^\delta = \sigma_{\delta} + \left(\frac{\lambda - 1/\psi}{h_{1} + \eta_{1}} \right) \sigma_{g} \]

- A higher \(\lambda \) increases the volatility of stock returns

- The return premium of the dividend claim must be given by

\[\mu_{R}^\delta = \gamma \sigma_{R}^\delta \sigma_{R}' - \frac{\gamma (1 - 1/\psi)}{h_{1} + \eta_{1}} \sigma_{R}^\delta \sigma_{g}' \]

- A higher \(\lambda \) increases the equity risk premium.
Can this model explain the returns and volatility *quantitatively*?

- Yes.

<table>
<thead>
<tr>
<th>Dividend Claim</th>
<th>Risk Free Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>ψ</td>
</tr>
<tr>
<td>Panel A: $\lambda = 3$, $\eta_1 = 0.0212$</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Panel B: $\lambda = 3.5$, $\eta_1 = 0.0212$</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Extension 2: Stochastic Volatility

- Assume

\[
\frac{dD_t}{D_t} = g_t dt + \sqrt{v_t} \sigma_D dB_t
\]

\[
\frac{d\delta}{\delta} = (\mu_d + \lambda g_t) dt + \sqrt{v_t} \sigma_\delta dB_t
\]

where

\[
dg_t = (\eta - \eta_1 g_t) dt + \sqrt{v_t} \sigma_g dB_t
\]

\[
dv_t = (n - n_1 v_t) dt + \sqrt{v_t} \sigma_v dB_t
\]

- Use the same methodology.
I. Price consumption ratio

\[
\frac{P_t}{C_t} = \phi^{-\psi} \exp \left(KA_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1} \right) g_t + A_2^c v_t \right)
\]

- \(A_2^c < 0 \): An increase in consumption volatility decreases the P/C ratio.

II. The consumption claim equity premium

\[
\mu_t = v_t \left(\gamma \bar{\sigma}_R \bar{\sigma}'_R - \frac{\gamma \left(1 - 1/\psi \right)}{h_1 + \eta_1} \sigma_g \bar{\sigma}'_R - A_2 \sigma_v \bar{\sigma}'_R \right)
\]

where

\[
\bar{\sigma}_R = \sigma_D + \frac{1 - 1/\psi}{h_1 + \eta_1} \sigma_g + KA_2 \sigma_v
\]
Results

III. The price dividend ratio of dividend claim

\[
\frac{S_t}{\delta_t} = \exp \left(A_0^\delta + \left(\frac{\lambda - 1/\psi}{h_1^\delta + \eta_1} \right) g_t + A_2^\delta v_t \right)
\]

- \(A_2^\delta < 0 \): An increase in consumption volatility decreases the P/D ratio.

IV. The dividend claim equity premium

\[
\mu_R^\delta = v_t \left(\gamma \tilde{\sigma}_R \tilde{\sigma}'_R - \frac{\gamma (1 - 1/\psi)}{h_1 + \eta_1} \tilde{\sigma}_R \tilde{\sigma}'_g - A_2 \tilde{\sigma}_R \tilde{\sigma}'_v \right)
\]

where

\[
\tilde{\sigma}_R^\delta = \left(\sigma + \left(\frac{\lambda - 1/\psi}{h_1^\delta + \eta_1} \right) \sigma'_g + A_2^\delta \sigma'_v \right)
\]
Quantitative Results

- Using the parameters in Bansal and Yaron (2006)
Quantitative Results

- Especially along the volatility axis $\sqrt{v_t}$, there is a negative relation between P/D and $E_t[dR_t]$
 - \implies Predictability of stock returns
Recent Application: The Cross-Section of Stock Returns

- Bansal, Dittmar and Lundblad (2005, JF) show that value stocks have a higher cash flow risk λ
- They run a regression on quarterly data

$$g_{i,t} = \gamma_i \left(\frac{1}{K} \sum_{k=1}^{K} g_{c,t-k} \right) + u_{i,t} \quad K = 8$$

where

- $g_{i,t} \rightarrow$ Demeaned log real dividend growth rate on portfolio i.
- $g_{c,t} \rightarrow$ Demeaned log real growth rate in aggregate consumption.

<table>
<thead>
<tr>
<th>Cash-flow def.</th>
<th>Growth</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>γ_i</td>
<td>2.98</td>
<td>-3.43</td>
</tr>
<tr>
<td>std. err.</td>
<td>(2.90)</td>
<td>(2.27)</td>
</tr>
</tbody>
</table>
Cash Flow Risk and the Cross-Section of Stock Returns

- For $\lambda = 3$: $ER = 5.13\%$ and $\log(P/D) = 2.89$;
- For $\lambda = 8$: $ER = 13.83\%$ and $\log(P/D) = 2.23$;
 - Theoretically: high P/D correlates with low ER
 - \implies Value premium
 - References: Hansen, Heaton and Li (2005), Kiku (2005)

- This is good: But this per se’ does not resolve the Value Premium Puzzle
 - One needs to show that market beta does not explain the return differential
 - Need of a full fledged calibration / simulation.

- For instance, the theoretical betas with respect to consumption claim are
 - $\lambda = 3$: $\beta = \frac{\sigma^\delta_R \sigma'_R}{\sigma_R \sigma'_R} = 1.79$
 - $\lambda = 8$: $\beta = \frac{\sigma^\delta_R \sigma'_R}{\sigma_R \sigma'_R} = 4.83$
 - \implies value has a higher beta than growth.

- The question is then whether it is sufficiently high to justify the spread differential (in the model).
The following figure plots $E[dR^δ]$ versus $β \times μc$ for $λ = 1, ..., 8$.

- **CAPM Expected Return and Actual Expected Return**
- **log P/D ratio**
Long Run Risk and Value Premium Puzzle

• Delicate interpretation of these results:
 – Bansal et al (2005) estimates of λ are at the portfolio level.
 – I.e. these are the characteristics of mutual funds that pay dividends according to a specific trading strategy
 * Stocks are sorted by M/B and placed in bins.
 * Dividends are calculated as the total dividend payouts from these portfolios
 * Importantly, the amount reinvested in the portfolio at year end is equal to the total capital gain.
 – Characteristics of portfolio cash flows may differ from those of value and growth firms
 * E.g. Average growth rate of cash flows is 4% / year for value, while it is .76%/year for growth
 * Curious result: At the individual firm level, Fama and French show that value firms grow less than growth firms.
 * But portfolio cash flows are contaminated by re-investment policy.
 – Deeper investigation needed.
Conclusions

• Two leading models to explain asset returns in macro finance

 I. Habit preferences \implies variation in market price of risk.

 II. Long run risk \implies variation in the amount of risk.

• Habit preferences explain a wide variety of facts

 – But need to assume unrealistic amount of cash flow risk to overcome growth premium induced by “discount effects”

• Long run risk also explain a wide variety of facts

 – But research so far has only looked at portfolio cash flows, and not individual cash flows.

 – Moreover, it is not a general equilibrium model. Market clearing restrictions are not imposed.

• Long run risk is the hot topic of the moment. Habit has lost its allure.

• Additional applications

 – Lettau, Ludvigson and Wachter (Forthcoming, RFS): Lower consumption volatility pushed up prices in the 1990s.

 – Croce, Lettau and Ludvigson (2006): Learning, long run risk and the value premium