Habits and Leverage

Tano Santos
Columbia University Graduate School of Business

Pietro Veronesi
University of Chicago Booth School of Business
Motivation

- Much discussion in the academic literature and in policy circles about leverage and its impact on the real economy and on financial markets

- Various related themes, such as:
 - Excess credit supply may lead to financial crisis
 - The excessive growth of household debt and the causal relation between households’ deleveraging and their low future consumption growth
 - Leverage cycle: Leverage is high when prices are high and volatility is low
 - Active deleveraging of financial institutions generate “fire sales” of risky financial assets, which further crash asset prices
 - The leverage ratio of financial institutions is a risk factor
 - Balance sheet recessions
 -
Motivation

• Much discussion in the academic literature and in policy circles about leverage and its impact on the real economy and on financial markets

• Various related themes, such as:
 – Excess credit supply may lead to financial crisis
 – The excessive growth of household debt and the causal relation between households’ deleveraging and their low future consumption growth
 – Leverage cycle: Leverage is high when prices are high and volatility is low
 – Active deleveraging of financial institutions generate “fire sales” of risky financial assets, which further crash asset prices
 – The leverage ratio of financial institutions is a risk factor
 – Balance sheet recessions
 –

• But leverage is endogenous....
What we do

• Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences

 – Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 - Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
- Model’s predictions consistent with empirical evidence
What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 - Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
- Model’s predictions consistent with empirical evidence
- Model aggregates to representative agent models with external habit
 \implies It can be calibrated to yield reasonable asset pricing quantities.
Preferences

- Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]
Preferences

- Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

- Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right) \]
• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:

\[X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right) \]

– *External Habit in Utility*: “Envy-the-Joneses”
• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:

\[X_{it} = g_{it} \left(D_t - \int X_{jt}dj \right) \]

– *External Habit in Utility*: “Envy-the-Joneses”

• Habits’ loadings:

\[g_{it} = a_i Y_t + b_i \]
Preferences

- Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

- Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} d\bar{j} \right) \]

 External Habit in Utility: “Envy-the-Joneses”

- Habits’ loadings: \[g_{it} = a_i Y_t + b_i \]

 (i) heterogeneous: \[a_i > 0 \text{ with } \int a_i d\bar{i} = 1 \]
Preferences

• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:

\[X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right) \]

– External Habit in Utility: “Envy-the-Joneses”

• Habits’ loadings:

\[g_{it} = a_i \boxed{Y_t} + b_i \]

(i) heterogeneous: \(a_i > 0 \) with \(\int a_i di = 1 \)

(ii) time varying: \(\boxed{Y_t} = \text{Recession Indicator} \) (next slide)

\[\Rightarrow \text{Habits matter more in bad times.} \]
Preferences

- Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

- Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right) \]

- Habits’ loadings: \[g_{it} = a_i \ Y_t + b_i \]

 (i) heterogeneous: \(a_i > 0 \) with \(\int a_i di = 1 \)

 (ii) time varying: \(Y_t = Recession \ Indicator \) (next slide)
 \[\implies \text{Habits matter more in bad times.} \]

- Endowments \(w_i \) are also heterogeneous, with \(\int w_i di = 1 \)
• Aggregate output:

\[
\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t
\]

\(- \sigma_D(Y_t) : Economic Uncertainty.\)
• Aggregate output:
\[
\frac{dD_t}{D_t} = \mu dD_t + \sigma_D(Y_t) dZ_t
\]
\[- \sigma_D(Y_t) : Economic Uncertainty.\]

• Recession indicator \(Y_t\):
\[
dY_t = k(\bar{Y} - Y_t)dt - \nu Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right]
\]
• Aggregate output:
\[
\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t)dZ_t
\]

- \(\sigma_D(Y_t)\): Economic Uncertainty.

• Recession indicator \(Y_t\):
\[
dY_t = k(Y - Y_t)dt - \nu Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right]
\]

\(\implies\) Bad shocks: \(\left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] < 0 \implies Y_t \uparrow\)
• Aggregate output:
\[
\frac{dD_t}{D_t} = \mu D dt + \sigma D(Y_t) dZ_t
\]

- \(\sigma D(Y_t)\): Economic Uncertainty.

• Recession indicator \(Y_t\):
\[
dY_t = k(\bar{Y} - Y_t) dt - \nu Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right]
\]

\(\Rightarrow\) Bad shocks: \(\left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] < 0 \Rightarrow Y_t \uparrow\)

• Technical restrictions:
- \(Y_t > \lambda \geq 1\) for all \(t\): \(\sigma D(Y_t) \to 0\) as \(Y_t \to \lambda\). Otherwise \(\sigma D(Y_t)\) general.
- Endowments satisfy
\[
w_i > \frac{a_i(\bar{Y} - \lambda) + \lambda - 1}{\bar{Y}}
\]
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$
No consumption externalities \implies solve planner’s problem

Consumption shares:

$$s_{it} = \frac{C_{it}}{D_t} = a_i + \left(w_i - a_i \right) \frac{\bar{Y}}{Y_t}$$

- High endowment w_i or low habit loading a_i \implies $s_{it} \uparrow$ when $Y_t \downarrow$ (good times)
Optimal Risk Sharing

- No consumption externalities \(\implies\) solve planner’s problem

- **Consumption shares:**
 \[
 s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}
 \]
 - High endowment \(w_i\) or low habit loading \(a_i\) \(\implies s_{it} \uparrow\) when \(Y_t \downarrow\) (good times)

- **Risk aversion** (curvature):
 \[
 Curv_{it} = \frac{-C_{it} u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}
 \]
Optimal Risk Sharing

- No consumption externalities \(\implies\) solve planner’s problem

- Consumption shares:
 \[s_{it} = \frac{C_{it}}{Y_t} = a_i + (w_i - a_i) \frac{Y}{Y_t} \]
 - High endowment \(w_i\) or low habit loading \(a_i\) \(\implies\) \(s_{it} \uparrow\) when \(Y_t \downarrow\) (good times)

- Risk aversion (curvature):
 \[Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_iY - a_i(Y - \lambda) - \lambda + 1} \]
 - Cross-section: risk aversion \(\downarrow\) if \(w_i \uparrow\) or \(a_i \downarrow\)
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- **Consumption shares:**
 $$s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$$

 - High endowment w_i or low habit loading a_i \implies $s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- **Risk aversion** (curvature):
 $$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}$$

 - Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$

 - **Time-series:** (1) all agents’ risk aversion \uparrow if $Y_t \uparrow$

 (2) risk aversion of $i \uparrow$ more if w_i is low or a_i is high
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- **Consumption shares:**
 $$s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{Y}{Y_t}$$
 - High endowment w_i or low habit loading a_i \implies $s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- **Risk aversion** (curvature):
 $$Curv_{it} = - \frac{C_{it} u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}$$
 - Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$
 - Time-series: (1) all agents’ risk aversion \uparrow if $Y_t \uparrow$
 (2) risk aversion of $i \uparrow$ more if w_i is low or a_i is high

- Less risk averse agents provide insurance to more risk averse agents
• Our model aggregates to Menzly, Santos, and Veronesi (2004):

• As in Campbell and Cochrane (1999), define

\[
Surplus\ consumption\ ratio = S_t = \frac{D_t - \int X_{it} \, di}{D_t} = \frac{1}{Y_t}
\]
Our model aggregates to Menzly, Santos, and Veronesi (2004):

As in Campbell and Cochrane (1999), define

\[
Surplus consumption ratio = S_t = \frac{D_t - \int X_{it} \, di}{D_t} = \frac{1}{Y_t}
\]

(1)

Proposition. The equilibrium state price density

\[
M_t = e^{-\rho t} D_t^{-1} S_t^{-1}
\]

(2)

– which follows

\[
dM_t/M_t = -r_t \, dt - \sigma_{M,t} \, dZ_t \quad \text{with} \quad \sigma_{M,t} = (1 + v)\sigma_D(S_t)
\]

We use \(S_t\) as state variable for notational convenience.
Proposition. The competitive equilibrium has:

Stock price: \[P_t = \left(\frac{\rho + k\bar{Y}S_t}{\rho (\rho + k)} \right) D_t \]

Risk-free rate: \[r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k \left(1 - \bar{Y}S_t \right) \]
• **Proposition.** The competitive equilibrium has:

(Stock price) \[P_t = \left(\frac{\rho + k\overline{Y}S_t}{\rho(\rho + k)} \right) D_t \]

(Risk-free rate) \[r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k(1 - \overline{Y}S_t) \]

(Stock holdings) \[N_{it} = a_i + (\rho + k)(1 + v)(w_i - a_i) H(S_t) \]

(Bond holdings) \[N^0_{it}B_t = -v(w_i - a_i) H(S_t)D_t \]

where \[H(S_t) = \frac{\overline{Y}S_t}{\rho + k(1 + v)\overline{Y}S_t} \]
• **Proposition.** The competitive equilibrium has:

(Stock price) \[P_t = \left(\frac{\rho + k\bar{Y}S_t}{\rho (\rho + k)} \right) D_t \]

(Risk-free rate) \[r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k (1 - \bar{Y}S_t) \]

(Stock holdings) \[N_{it} = a_i + (\rho + k)(1 + v)(w_i - a_i) H(S_t) \]

(Bond holdings) \[N_{it}^0B_t = -v(w_i - a_i) H(S_t) D_t \]

where \[H(S_t) = \frac{\bar{Y}S_t}{\rho + k(1 + v)\bar{Y}S_t} \]

• Stock and bond holdings depend on \(w_i - a_i \) and the function \(H(S_t) \).
• **Proposition.** The competitive equilibrium has:

(Stock price) \[P_t = \left(\frac{\rho + kY S_t}{\rho (\rho + k)} \right) D_t \]

(Risk-free rate) \[r_t = \rho + \mu_D - (1 + v) \sigma_D (S_t)^2 + k \left(1 - \overline{Y} S_t \right) \]

(Stock holdings) \[N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t) \]

(Bond holdings) \[N_{it}^0 B_t = -v (w_i - a_i) H(S_t) D_t \]

where \[H(S_t) = \frac{\overline{Y} S_t}{\rho + k(1 + v)\overline{Y} S_t} \]

• Stock and bond holdings depend on \(w_i - a_i \) and the function \(H(S_t) \).
Proposition. The competitive equilibrium has:

(Stock price) \[P_t = \left(\frac{\rho + kY S_t}{\rho (\rho + k)} \right) D_t \]

(Risk-free rate) \[r_t = \rho + \mu_D - (1 + v)\sigma_D (S_t)^2 + k \left(1 - \bar{Y} S_t \right) \]

(Stock holdings) \[N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t) \]

(Bond holdings) \[N_{it}^0 B_t = -v (w_i - a_i) H(S_t) D_t \]

where \[H(S_t) = \frac{\bar{Y} S_t}{\rho + k(1 + v)\bar{Y} S_t} \]

Stock and bond holdings depend on \(w_i - a_i \) and the function \(H(S_t) \).

Stock price and risk-free rate are independent of distribution of \(w_i \) and \(a_i \).

\[\Rightarrow \] Prices and quantities have no causal relation with each other.
• **Results**: Agents with $w_i - a_i > 0$:
 (i) take on leverage ($N_{it}^0 B_t < 0$);
Results: Agents with $w_i - a_i > 0$:

(i) take on leverage ($N_{it}^0 B_t < 0$);

(ii) “over-invest” in risky assets ($\frac{N_{it} P_t}{W_{it}} > 1$)
Results: Agents with $w_i - a_i > 0$:

(i) take on leverage ($N_{it}^0 B_t < 0$);

(ii) “over-invest” in risky assets ($\frac{N_{it} P_t}{W_{it}} > 1$)

(iii) increase their debt in good times ($H'(S_t) > 0$)
 when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk
• **Results:** Agents with $w_i - a_i > 0$:

 (i) take on leverage ($N_{it}^0 B_t < 0$);

 (ii) “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)

 (iii) increase their debt in good times ($H'(S_t) > 0$)

 when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk

 (iv) enjoy high consumption share s_{it} when their debt is high

 * Leverage \implies higher return \implies higher consumption in good times

 * Lower risk aversion \implies even more debt in good times
Implications: Leverage, Consumption, and Business Cycle

- **Results**: Agents with $w_i - a_i > 0$:
 1. take on leverage ($N_{it}^0 B_t < 0$);
 2. “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)
 3. increase their debt in good times ($H'(S_t) > 0$)
 - when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk
 4. enjoy high consumption share s_it when their debt is high
 - Leverage \implies higher return \implies higher consumption in good times
 - Lower risk aversion \implies even more debt in good times
 5. suffer consumption decline after consumption boom

- Spatial interpretation: e.g. counties with high w_i or low a_i
 - Good times \implies debt \uparrow and consumption \uparrow \implies but lower future growth.
 - Crucial role of identification strategies to provide causal link between leverage and future consumption
• **Results (cntd.).** Agents with $w_i - a_i > 0$:

 (vi) increase stock holdings in good times (trend chasers)
Implications: Active Trading

- **Results (cntd.).** Agents with $w_i - a_i > 0$:

 (vi) increase stock holdings in good times (trend chasers)

 (vii) drastically decrease stock holdings in bad times ($H(S)$ concave)
• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies
Implications for Intermediary Asset Pricing

• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies
• In our model, agents with \(w_i > a_i \) leverage by issuing risk-free bonds to others
Implications for Intermediary Asset Pricing

- Much recent research on role of intermediaries’ leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
- If habit S_t is unobservable, leverage is a proxy for habit.
Implications for Intermediary Asset Pricing

- Much recent research on role of intermediaries’ leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with \(w_i > a_i \) leverage by issuing risk-free bonds to others
- If habit \(S_t \) is unobservable, leverage is a proxy for habit.
- Let \(\ell_t = Q(S_t) \), and hence \(S_t = q(\ell_t) = Q^{-1}(\ell_t) \)
 \[\Rightarrow SDF = M_t = e^{-\rho t}D_t^{-1}S_t^{-1} = e^{-\rho t}D_t^{-1}q(\ell_t)^{-1} \]
Implications for Intermediary Asset Pricing

• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies

• In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others

• If habit S_t is unobservable, leverage is a proxy for habit.

• Let $\ell_t = Q(S_t)$, and hence $S_t = q(\ell_t) = Q^{-1}(\ell_t)$
 $$\implies SDF = M_t = e^{-\rho t} D_t^{-1} S_t^{-1} = e^{-\rho t} D_t^{-1} q(\ell_t)^{-1}$$

• The risk premium for any asset with return $dR_{it} = (dP_{it} + D_{it})/P_{it}$ is
 $$E_t[dR_{it} - r_t dt] = Cov_t \left(\frac{dD_t}{D_t}, dR_{it} \right) + \frac{q'(\ell_t)}{q(\ell_t)} Cov_t (d\ell_t, dR_{it})$$
 \underbrace{\text{Consumption CAPM}} \quad \underbrace{\text{Leverage risk premium}}
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N^0_{it}B_t}{D_t} = \nu (w_i - a_i) H(S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N^0_{it}B_t}{W_{it}} = \frac{\sigma W_i(S_t)}{\sigma_P(S)} - 1 \)
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \[\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = v \left(w_i - a_i\right) H(S_t) \]

 Debt/Equity Ratio: \[\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma_{W_i}(S_t)}{\sigma_P(S)} - 1 \]
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = u(w_i - a_i) H(S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma W_i(S_t)}{\sigma P(S)} - 1 \)

 - Increasing in \(S \)
 - Decreasing in \(S \)
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = v(w_i - a_i) H(S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma_{Wi}(S_t)}{\sigma_P(S)} - 1 \)

- Result: The price of leverage risk is

 (a) \(\lambda_t^{D/O} = \frac{q_{D/O}'(\ell_t)}{q_{D/O}(\ell_t)} \geq 0 \) if \(\ell_t = \) Debt/Output Ratio (“book leverage”).

 (b) \(\lambda_t^{D/W} = \frac{q_{D/W}'(\ell_t)}{q_{D/W}(\ell_t)} < 0 \) if \(\ell_t = \) Debt/Equity Ratio (“market leverage”).

- In bad times:
 - agents deleverage \(\Rightarrow \) debt/output ↓ \(\Rightarrow \) book leverage risk price > 0.
 - high discounts \(\Rightarrow \) debt/equity ↑ \(\Rightarrow \) market leverage risk price < 0.
Quantitative Predictions

• Previous results independent of the functional form of $\sigma_D(Y_t)$.

• Assume now a specific functional form to make model comparable to MSV and obtain reasonable asset pricing implications:

$$\sigma_D(Y_t) = \sigma^{max}(1 - \lambda Y_t^{-1})$$

• \Rightarrow Economic uncertainty increases in bad times, but bounded between $[0, \sigma^{max}]$

• \Rightarrow Obtain same process for Y_t as in MSV \Rightarrow Use their same parameters.

 – Additional parameter σ^{max} chosen to fit average consumption volatility

• All asset pricing results are similar (or stronger) than MSV.
Calibrate to Household Consumption Systematic Volatility

• $a_i \sim U(\overline{a}, \overline{a})$ and Pareto weights $\phi_i = \log N \left(-\frac{1}{2}\sigma_\psi^2, \sigma_\psi^2 \right)$

Table 2. Cross Sectional Parameters and Household Consumption Moments

Panel A. Households Quarterly Consumption Moments. Data

<table>
<thead>
<tr>
<th>Growth Rate (%)</th>
<th>Volatility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>6.04</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>-0.59</td>
</tr>
</tbody>
</table>

Panel B. Households Quarterly Consumption Moments. Model

<table>
<thead>
<tr>
<th>$U[\overline{a}, \overline{a}], \sigma_\phi$</th>
<th>Arithmetic Growth Rate (%)</th>
<th>Volatility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U[0, 2], 3$</td>
<td>0.73</td>
<td>0.52</td>
</tr>
<tr>
<td>$U[1, 1], 3$</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>$U[0, 2], 0$</td>
<td>0.73</td>
<td>0.52</td>
</tr>
<tr>
<td>$U[1, 1], 0$</td>
<td>0.52</td>
<td>0.52</td>
</tr>
</tbody>
</table>
The Cross-Section of Agents’ Behavior: Who Levers?

Uniform Habits

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

LEVERAGED AGENTS

UNLEVERAGED AGENTS
The Cross-Section of Agents’ Behavior: Who Levers?

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

Positively skewed wealth distribution
The Cross-Section of Agents’ Behavior: Who Levers?

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

Agents missing due to endowment constraint
The Cross-Section of Agents’ Behavior: Who Levers?

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

- Poor agents borrow``
- Rich agents borrow
Household Leverage in Good and Bad Times

Panel A. Agents' Debt/Asset: Model

- **Boom**
- **Recession**
- **Crisis**

<table>
<thead>
<tr>
<th>Net Worth</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 25</td>
<td></td>
</tr>
<tr>
<td>25 - 49.5</td>
<td></td>
</tr>
<tr>
<td>50 - 74.9</td>
<td></td>
</tr>
<tr>
<td>75 - 89.9</td>
<td></td>
</tr>
<tr>
<td>90 - 100</td>
<td></td>
</tr>
</tbody>
</table>
Household Leverage in Good and Bad Times

Panel A. Agents' Debt/Asset: Model

Panel B. Agents' Debt / Assets: Data.
“Fire Sales” in a Simulation Run
“Fire Sales” in a Simulation Run

A. Surplus Consumption Ratio

B. Economic Uncertainty

C. Price / Dividend Ratio

D. Return Volatility

E. Aggregate Debt/Output and Stock Holdings

F. Aggregate Debt/Wealth
“Fire Sales” in a Simulation Run

A. Surplus Consumption Ratio

B. Economic Uncertainty

C. Price / Dividend Ratio

D. Return Volatility

E. Aggregate Debt/Output and Stock Holdings

F. Aggregate Debt/Wealth

Market Leverage

Book Leverage
Table 3: The Market Price of Leverage Risk

<table>
<thead>
<tr>
<th></th>
<th>Panel A - Data</th>
<th></th>
<th>Panel B - Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>3.19</td>
<td>0.76</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(3.05)</td>
<td>(0.62)</td>
<td>(0.97)</td>
</tr>
<tr>
<td>Market Return</td>
<td>-0.89</td>
<td>0.97</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>(-0.72)</td>
<td>(0.69)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>Market Leverage</td>
<td>-0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Leverage</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2) (%)</td>
<td>6.54</td>
<td>50.77</td>
<td>53.35</td>
</tr>
</tbody>
</table>
Table 4: The Predictability of Aggregate Stock Returns

| Panel A. Predictability with Book Leverage. Data |
|---|---|
| Coef (×100) | 1 year | 2 year | 3 year | 4 year | 5 year |
|---|---|---|---|---|
| Coef (×100) | -1.78 | -1.79 | -2.17 | -3.13 | -9.89 |
| (-0.83) | (-0.72) | (-0.89) | (-1.03) | (-3.29) |
| R^2 | 0.01 | 0.01 | 0.01 | 0.01 | 0.07 |

| Panel B. Predictability with Market Leverage. Data |
|---|---|
| Coef (×100) | 3.66 | 6.21 | 8.56 | 10.03 | 13.06 |
| (1.57) | (1.50) | (2.18) | (2.51) | (3.84) |
| R^2 | 0.04 | 0.07 | 0.10 | 0.12 | 0.19 |

| Panel C. Predictability with Book Leverage. Model |
|---|---|
| Coef (×100) | -3.57 | -7.28 | -10.49 | -12.62 | -14.13 |
| (-3.45) | (-3.09) | (-3.18) | (-3.34) | (-3.52) |
| R^2 | 0.02 | 0.05 | 0.08 | 0.10 | 0.12 |

| Panel D. Predictability with Market Leverage. Model |
|---|---|
| Coef (×100) | 5.86 | 10.91 | 14.69 | 17.35 | 19.36 |
| (8.08) | (7.69) | (7.55) | (7.54) | (7.74) |
| R^2 | 0.06 | 0.12 | 0.17 | 0.20 | 0.22 |
Conclusions

• A frictionless dynamic general equilibrium model with heterogeneous agents and external habits seem consistent with many stylized facts.

• Risk sharing motives generate endogenous leverage dynamics

• Our model predicts:
 1. Aggregate debt ↑ in good times when prices ↑ and volatility ↓
 2. Poorer agents borrow more than richer agents
 3. Leveraged agents enjoy a “consumption boom” in good times, followed by a consumption slump
 4. Crisis time ⇒ leveraged agents delever by “fire-selling” stocks, but their debt/wealth ratio ↑ due to strong discount effects.
 5. Intermediaries leverage is a priced risk factor.
 6. Wealth dispersion ↑ in good times

• Leverage dynamics is due to the differential impact of aggregate shocks on agents’ risk aversion.
Table 1. Parameters and Moments

<table>
<thead>
<tr>
<th>Panel A. Parameters (MSV)</th>
<th>ρ</th>
<th>k</th>
<th>Y</th>
<th>λ</th>
<th>v</th>
<th>μ</th>
<th>σ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0416</td>
<td>0.1567</td>
<td>34</td>
<td>20</td>
<td>1.1194</td>
<td>0.0218</td>
<td>0.0641</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B. Moments (1952 – 2014)</th>
<th>(E[R])</th>
<th>(Std(R))</th>
<th>(E[r_f])</th>
<th>(Std(r_f))</th>
<th>(E[P/D])</th>
<th>(Std[P/D])</th>
<th>(SR)</th>
<th>(E[\sigma_i])</th>
<th>(Std(\sigma_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>7.13%</td>
<td>16.55%</td>
<td>1.00%</td>
<td>1.00%</td>
<td>38</td>
<td>15</td>
<td>43%</td>
<td>1.41%</td>
<td>0.52%</td>
</tr>
<tr>
<td>Model</td>
<td>8.19%</td>
<td>25.08%</td>
<td>0.54%</td>
<td>3.77%</td>
<td>30.30</td>
<td>5.80</td>
<td>32.64%</td>
<td>1.43%</td>
<td>1.18%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C. P/D Predictability (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>Model</td>
</tr>
</tbody>
</table>

- Model matches asset pricing moments well.
A. Stationary Distribution

B. Price-Consumption Ratio

C. Risk Premium, Volatility, and Risk Free Rate

D. Sharpe Ratio

Conditional Moments