1 Preliminary

Data frame: \(n \) data points on \(p \) variables. We follow the notation commonly used in statistics.

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Obs 1</th>
<th>Variable 1</th>
<th>Variable 2</th>
<th>\cdots</th>
<th>Variable (k)</th>
<th>\cdots</th>
<th>Variable (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Obs 1</td>
<td>1 (x_{i1})</td>
<td>2 (x_{i2})</td>
<td>\cdots</td>
<td>(k) (x_{ik})</td>
<td>\cdots</td>
<td>(p) (x_{ip})</td>
</tr>
<tr>
<td>Item 2</td>
<td>Obs 2</td>
<td>1 (x_{21})</td>
<td>2 (x_{22})</td>
<td>\cdots</td>
<td>(k) (x_{2k})</td>
<td>\cdots</td>
<td>(p) (x_{2p})</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>Item 2</td>
<td>Obs (j)</td>
<td>1 (x_{i1})</td>
<td>2 (x_{i2})</td>
<td>\cdots</td>
<td>(k) (x_{ik})</td>
<td>\cdots</td>
<td>(p) (x_{ip})</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>Item (n)</td>
<td>Obs (n)</td>
<td>1 (x_{n1})</td>
<td>2 (x_{n2})</td>
<td>\cdots</td>
<td>(k) (x_{nk})</td>
<td>\cdots</td>
<td>(p) (x_{np})</td>
</tr>
</tbody>
</table>

Notation: \(x_{ik} \) = measurement of the \(k \)th variable on the \(i \)th item. Typically, column denotes variables and row denotes subjects.

In matrix notation: The \(j \)th observation is \(\mathbf{x}_j = (x_{j1}, \ldots, x_{jk})' \), and

\[
\mathbf{X} = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1p} \\
 x_{21} & x_{22} & \cdots & x_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix}_{n \times p} \equiv [x_{ik}] \quad \text{or} \quad \mathbf{X} = \begin{bmatrix}
 \mathbf{x}_1' \\
 \mathbf{x}_2' \\
 \vdots \\
 \mathbf{x}_n'
\end{bmatrix}.
\]

Vectors and matrices are used extensively in this class. If needed, students should review the basic concepts of vector and matrix.

Descriptive statistics

1. Sample means: \(\bar{x}_k = \frac{1}{n} \sum_{j=1}^{n} x_{jk}, \ k = 1, \ldots, p. \)

2. Sample variance: \(s_k^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_{jk} - \bar{x}_k)^2, \ k = 1, \ldots, p. \)

 Alternatively, \(s_k^2 = \frac{1}{n} \sum_{j=1}^{n} (x_{jk} - \bar{x}_k)^2. \)

3. Sample covariance: \(s_{ik} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k), \ i, k = 1, \ldots, p. \)
4. Sample correlation coefficients

\[r_{ik} = \frac{s_{ik}}{s_i \times s_k} = \frac{\sum_{j=1}^{n}(x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)}{\sqrt{\sum_{j=1}^{n}(x_{ji} - \bar{x}_i)^2 \times \sum_{j=1}^{n}(x_{jk} - \bar{x}_k)^2}}. \]

Remarks on correlation:

- \(-1 \leq r_{ik} \leq 1\).
- \(r_{ik}\) measures the strength of linear association.
- \(r_{ik}\) is scale invariant.
- \(r_{ik}\) is referred to as the **Pearson’s correlation coefficient**. For measurement of general dependence (including nonlinear dependence), one can use Kendall’s tau or Spearman’s rho.

Matrix representation:

(a) Sample mean: \(\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_p)’ = \frac{1}{n} \sum_{j=1}^{n} x_j.\)

(b) Sample covariance matrix: \(S_n = [s_{ik}] = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})’.\)

(c) Sample correlation matrix: \(R_n = [r_{ik}]\) with \(r_{ii} = 1\).

Example: The paper-quality measurements of Table 1.2, page 15.

R demonstration:

```r
> setwd("C:/teaching/ama")
> y=read.table("T1-2.dat")
> colnames(y) <- c("density","mach-dir","cross-dir")
> colMeans(y)
          density   mach-dir   cross-dir
0.8118537   120.9534146   67.7231707
> var(y)    % The command ‘’cov’’ works too.
          density   mach-dir   cross-dir
density  0.001264578   0.1684468   0.2252480
mach-dir  0.168446762  59.3211480   60.9925314
cross-dir  0.225247976  60.9925314  95.8566672
> apply(y,2,var)
          density   mach-dir   cross-dir
density  0.001264578   0.1684468   0.2252480
mach-dir  0.168446762  59.3211480   60.9925314
cross-dir  0.225247976  60.9925314  95.8566672
> cor(y)
          density   mach-dir   cross-dir
density 1.0000000   0.6150141   0.6469592
mach-dir 0.6150141  1.0000000   0.8088365
```
cross-dir 0.6469592 0.8088365 1.0000000

> plot(y) # Pairwise-scatter plot. See Figure 1 for demonstration.
% 3-dimensional plot using the package "rgl".
> require(rgl)
> plot3d(y[,1],y[,2],y[,3],xlab="density",ylab='mach-dir',zlab='cross-dir')
> q() # exit R

Kendall’s tau: Let F be a continuous bivariate cumulative distribution function (CDF) of random variable $x = (x_1, x_2)'$. Let (X_1, X_2) and (Y_1, Y_2) be independent random pairs with distribution F. Then, Kendall’s tau is

\[
\tau = Pr[(X_1 - Y_1)(X_2 - Y_2) > 0] - Pr[(X_1 - Y_1)(X_2 - Y_2) < 0]
= 2Pr[(X_1 - Y_1)(X_2 - Y_2) > 0] - 1
= 4 \int FdF - 1.
\]

Kendall-τ is also known as Kendall rank correlation coefficient. It is a measure of the
similarity of the orderings of the data when ranked by each of the quantities.

\[\tau = \frac{n_c - n_d}{\frac{1}{2}n(n-1)}, \]

where \(n_c \) is the number of concordant pairs and \(n_d \) the number of discordant pairs in the data set. The denominator is the total number of pairs of the data. A high \(\tau \) indicates that most pairs are concordant, indicating that the two rankings are consistent.

For ease in notation, rewrite the pair of random vectors as \((X_1, Y_1)\) and \((X_2, Y_2)\). By a concordant pair, we mean \(\text{sign}(X_2 - X_1) = \text{sign}(Y_2 - Y_1)\), where \(\text{sign}(d) = -1, 0, 1\) for \(d < 0, = 0, > 0\), respectively. A pair is discordant if \(\text{sign}(X_2 - X_1) = -\text{sign}(Y_2 - Y_1)\).

Based on the sign function, Kendall-\(\tau\) can be rewritten as

\[\tau = \frac{\sum_{i<j} \text{sign}(X_j - X_i) \times \text{sign}(Y_j - Y_i)}{n(n-1)/2}. \]

Spearman’s rho: Let \(F \) be a continuous bivariate cumulative distribution function (CDF) of random variable \(x = (x_1, x_2)' \). Let \(F_1 \) and \(F_2 \) be the two marginal CDF. Assume \((X_1, X_2) \sim F\). Then, Spearman’s rho is the correlation of \(F_1(X_1) \) and \(F_2(X_2) \).

Since \(F_1(X_1) \) and \(F_2(X_2) \) are uniform \(U(0,1)\), their means are 1/2 and their variances are 1/12. Thus, Spearman’s rho is

\[\rho_s = 12 \int \int F_1(x_1)F_2(x_2)dF(x_1, x_2) - 3. \]

Spearman’s rho is also a rank correlation coefficient. For data \(\{(X_i, Y_i)\}_{i=1}^n\), let \(\{(x_i, y_i)\}_{i=1}^n\) be the corresponding rank pairs and \(d_i = x_i - y_i\) be the difference between the ranks. Then, Spearman’s rho is

\[\rho_s = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}, \]

assuming no ties in the data.

In R, the command `cor` can be used to compute Kendall’s tau and Spearman’s rho. See the subcommand method with `help(cor)` in R.

R Demonstration

```r
> x=rnorm(100)
> cor(x,x)
[1] 1
> cor(x,x*10)
[1] 1
> cor(exp(x),exp(x))
```
> cor(exp(x), exp(x*10))
[1] 0.7977132
> cor(exp(x), exp(x), method="kendall")
[1] 1
> cor(exp(x), exp(x*10), method="kendall")
[1] 1
> cor(exp(x), exp(x*10), method="spearman")
[1] 1

Discussion: Pearson’s correlation coefficient measures the linear relation. Nothing more! Kendall’s tau and Spearman’s rho, on the other hand, show more general dependence between the variables.

2 Some useful results of matrix theory

Eigenvalue and Eigenvector:
A p-dimensional vector \(\mathbf{x} \) is an eigenvector with eigenvalue \(\lambda \) of the \(m \times n \) matrix \(\mathbf{A} \) if \(\mathbf{A} \mathbf{x} = \lambda \mathbf{x} \).

Since \(\mathbf{A}(c \mathbf{x}) = \lambda (c \mathbf{x}) \) for any non-zero constant \(c \). Thus, eigenvector is not unique. Normalization is often used such as \(\| \mathbf{x} \| = 1 \), where \(\| . \| \) denotes the Euclidean norm, i.e. \(\| \mathbf{x} \| = \sqrt{\sum_{i=1}^{p} x_i^2} \) if \(\mathbf{x} = (x_1, \ldots, x_p)' \).

Positive definite matrix:
A square matrix \(\mathbf{A} \) is positive definite if (a) \(\mathbf{A} = \mathbf{A}' \), i.e. symmetric, and (b) \(\mathbf{x}' \mathbf{A} \mathbf{x} > 0 \) for any non-zero vector vector \(\mathbf{x} \).

If \(\mathbf{A} \) is positive definite matrix, then all eigenvalues of \(\mathbf{A} \) are positive.

Spectral decomposition: If \(\mathbf{A} \) is a \(p \times p \) symmetric matrix, then

\[
\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \cdots + \lambda_p \mathbf{e}_p \mathbf{e}_p',
\]

where \(\mathbf{e}_i \mathbf{e}_i' = 1 \) and \(\mathbf{e}_i \mathbf{e}_j' = 0 \) for \(i \neq j \). The \(\lambda_i \) are eigenvalues of \(\mathbf{A} \) and \(\mathbf{e}_i \) are the corresponding eigenvectors.

If \(\lambda_i > 0 \) for all \(i \), then \(\mathbf{A} \) is positive definite.
If \(\lambda_i = 0 \) for some \(i \), then \(\mathbf{A} \) is non-negative definite.

For a positive definite matrix \(\mathbf{A}_{p \times p} \), we have

1. \(\mathbf{A} = \sum_{i=1}^{p} \lambda_i \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Lambda \mathbf{P}' \), where \(\mathbf{P} = [\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_p] \) is the matrix of eigenvectors and \(\Lambda = \text{diag} \{ \lambda_1, \lambda_2, \ldots, \lambda_p \} \). Often we also assume that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \).

2. \(\mathbf{A}^{-1} = \mathbf{P} \Lambda^{-1} \mathbf{P}' = \sum_{i=1}^{p} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i' \).

3. The square-root matrix of \(\mathbf{A} \) is \(\mathbf{A}^{1/2} = \sum_{i=1}^{p} \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Lambda^{1/2} \mathbf{P}' \). The matrix \(\mathbf{A}^{1/2} \) is also positive definite.
Cauchy-Schwarz inequality: For any two \(p \)-dimensional vectors \(b \) and \(d \), we have

\[
(b'd)^2 \leq (b'b)(d'd)
\]

with equality if and only if \(b = cd \) for some constant \(c \).

Extension: \((b'd)^2 \leq (b'Bb)(d'B^{-1}d)\) for a positive definite matrix \(B_{p \times p} \).

Maximization Lemma: Let \(B_{p \times p} \) be positive definite and \(d \) a given \(p \)-dimensional vector. Then,

\[
\max_{x \neq 0} \frac{(x'd)^2}{x'Bx} = d'B^{-1}d
\]

with the maximum attained when \(x = cB^{-1}d \) for some non-zero constant \(c \).

Proof: By the extended Cauchy-Schwarz inequality.

More properties of positive definite matrix \(B_{p \times p} \). Let \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p > 0 \) be the eigenvalues and \(e_i \) are the corresponding eigenvectors so that \(B = \sum_{i=1}^{p} \lambda_i e_i e_i' \). Then,

1. \(\max_{x \neq 0} \frac{x'Bx}{x'x} = \lambda_1 \) (attained when \(x = e_1 \)).
2. \(\min_{x \neq 0} \frac{x'Bx}{x'x} = \lambda_p \) (attained when \(x = e_p \)).
3. \(\max_{x \perp e_1,...,e_{\ell}\neq 0} \frac{x'Bx}{x'x} = \lambda_{\ell+1} \) (attained when \(x = e_{\ell+1} \)).

Example: Compute eigenvalues and eigenvectors in R

```r
> x=matrix(c(2,1,1,4),2,2) % a simple 2-by-2 matrix.

> m1=eigen(x)
> names(m1)
[1] "values" "vectors"
> m1$values
[1] 4.414214 1.585786
> m1$vectors
[,1] [,2]
[1,] 0.3826834 0.9238795
[2,] 0.9238795 -0.3826834

%% Verification
> ev=m1$values
> vec=m1$vectors
> y=x%*%vec
> y
[,1]      [,2]
[1,] 6
```

6
$y_1 = v_1 \text{vec}^{\%} \text{diag}(ev)$

3 **Random vectors and matrices**

Definition: $X = [X_{ij}]_{n \times p}$ is a random matrix if X_{ij} is a random variable.

Expectation: $E(X) = \left[E(X_{ij}) \right]$. There are two basic properties: (1) $E(X + Y) = E(X) + E(Y)$ and (2) $E(AXB) = AE(X)B$, where A and B are constant matrices.

If $p = 1$, the X is a n-dimensional random vector. Let $E(X) = \mu_x$ and $\text{cov}(X) = \Sigma_x$. Then, for any constant n-dimensional vector c, $E(c'X) = c'\mu_x$ and $\text{Var}(c'X) = c'\Sigma_x c$.

For a random vector X with mean μ_x and covariance matrix Σ_x, $E(XX') = \Sigma_x + \mu_x \mu_x'$. The generalized variance of a random vector X is $|\Sigma_x|$, the determinant of its covariance matrix.

Linear combination of random variables. A linear combination of random variables in X can be written as $Y = c'X$, where c is a p-dimensional constant vector. The mean and variance of Y are

- $E(Y) = c'\mu_x$.
- $\text{Var}(Y) = c'\Sigma_x c$.

4 **Random Samples**

Let X_1, \ldots, X_n be a random sample from a joint distribution that has mean vector μ and covariance matrix Σ_x. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'.$$

Then, $E(\bar{X}) = \mu$, $\text{cov}(\bar{X}) = \frac{1}{n} \Sigma_x$, and $E(S_n) = \frac{n-1}{n} \Sigma_x$.

Proof: $E(\bar{X}) = \mu$ is straightforward. For $\text{cov}(\bar{X})$, consider

$$(\bar{X} - \mu)(\bar{X} - \mu)' = \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) \right] \left[\frac{1}{n} \sum_{j=1}^{n} (X_j - \mu) \right]'$$
\[\sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - \mu)(X_j - \mu)'. \]

Therefore,

\[
\text{cov}(\bar{X}) = E[(\bar{X} - \mu)(\bar{X} - \mu)']
\]
\[
= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} E[(X_i - \mu)(X_j - \mu)']
\]
\[
= \frac{1}{n^2} \sum_{i=1}^{n} E[(X_i - \mu)(X_i - \mu)'] \quad \text{(because of independence)}
\]
\[
= \frac{1}{n^2} \sum_{i=1}^{n} \Sigma_x = \frac{1}{n} \Sigma_x.
\]

Finally,

\[
E(S_n) = \frac{1}{n} \sum_{i=1}^{n} E(X_i - \bar{X})(X_i - \bar{X})'
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} E(X_i X_i') - \Sigma_x + \bar{X} \Sigma_x \bar{X}' \right)
\]
\[
= \frac{1}{n} \left(\sum_{i=1}^{n} E(X_i X_i') \right) - nE(\bar{X} \Sigma_x \bar{X}')
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} E(X_i X_i') - E(\bar{X} \Sigma_x \bar{X}')
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} (\Sigma_x + \mu \mu') - \frac{1}{n} \Sigma_x + \mu \mu'
\]
\[
= \Sigma_x + \mu \mu' - \frac{1}{n} \Sigma_x - \mu \mu'
\]
\[
= \frac{n-1}{n} \Sigma_x.
\]

From the result, \(S_n \) is a biased estimate of \(\Sigma_x \), but \(S = \frac{n}{n-1} S_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})' \) is an unbiased estimate of \(\Sigma_x \).

5 Multivariate Normal Distribution

Definition: Let \(X = (X_1, \ldots, X_p)' \) be a p-dimensional random vector. We say that \(X \sim N_p(\mu, \Sigma) \) if the probability density function of \(X \) is

\[
f(x | \mu, \Sigma) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)' \Sigma^{-1} (x - \mu) \right],
\]
where $\mu = (\mu_1, \ldots, \mu_p)'$ and Σ is a positive definite $p \times p$ matrix.

Basic properties

- $E(X) = \mu$
- $\text{cov}(X) = \Sigma$
- Characteristic function: $\phi(t) = E(e^{it'X}) = \exp[i t'\mu - \frac{1}{2} t'\Sigma t]$, where $t = (t_1, \ldots, t_p)'$.
- Moment generating function: $\Phi(t) = \exp[t'\mu + \frac{1}{2} t'\Sigma t]$.

Alternative definition: X has a p-dimensional normal distribution if and only if $c'X$ is univariate normal for all fixed p-dimensional (nonzero) vector c.

Some plots of bivariate normal density function.

Key properties of $X \sim N_p(\mu, \Sigma)$
Figure 3: Bivariate normal with correlation 0.9
Figure 4: Bivariate normal with correlation -0.9
1. Linear combinations of the components of \(X \) are normally distributed. Let \(Y = CX \), where \(C \) is a \(k \times p \) matrix with \(\text{Rank}(C) = k \leq p \). Then, \(Y \sim N_k(C\mu, C\Sigma C') \).

[Can easily be shown by using the characteristic function.]

2. All subsets of the components of \(X \) have a (multivariate) normal distribution. Let \(X = (X_1', X_2')' \) where \(X_1 = (X_1, \ldots, X_k)' \) and \(X_2 = (X_{k+1}, \ldots, X_p)' \) with \(1 \leq k \leq p \). Partition \(\mu \) and \(\Sigma \) accordingly as

\[
\mu = (\mu_1', \mu_2'), \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}.
\]

Then, \(X_1 \sim N_k(\mu_1, \Sigma_{11}) \). In particular, each component \(X_i \sim N(\mu_i, \sigma_{ii}) \), where \(\sigma_{ii} \) is the \((i, i)\)th element of \(\Sigma \).

The converse is not necessarily true. Specifically, if \(X_i \sim N(\mu_i, \sigma_{ii}) \), then \(X = (X_1, \ldots, X_p)' \) may not be normally distributed.

Example. Suppose \(X_1 \sim N(0, 1) \) and \(X_2 \) is defined as

\[
X_2 = \begin{cases}
-X_1 & \text{if } -1 \leq X_1 \leq 1 \\
X_1 & \text{otherwise.}
\end{cases}
\]

Then, \(X_2 \) is also \(N(0, 1) \), but \(X = (X_1, X_2)' \) is not bivariate normal.

Reason: The linear combination \(X_1 - X_2 \) is not normally distributed. More precisely, \(Pr(X_1 - X_2 = 0) = Pr(|X_1| > 1) = 1 - Pr(|X_1| \leq 1) = 0.3174 \).

3. If \(X = (X_1', X_2')' \sim N_p(\mu, \Sigma) \), then \(X_1 \) and \(X_2 \) are independent if and only if \(\text{cov}(X_1, X_2) = 0 \).

In general, if \(X_1 \) and \(X_2 \) are independent, then \(\text{cov}(X_1, X_2) = 0 \). On the other hand, if \(X_i \sim N_{k_i}(\mu_i, \Sigma_{ii}) \) and are independent, where \(k_i \) is the dimension of \(X_i \), then \(X = (X_1', X_2')' \) is jointly multivariate normal with mean \(\mu = (\mu_1', \mu_2')' \) and \(\text{cov}(X) = \text{diag}\{\Sigma_{11}, \Sigma_{22}\} \).

4. The conditional distributions of the components are (multivariate) normal. Again, consider the partition mentioned before. We have

\[
X_1 | X_2 = x_2 \sim N_{k_1}[\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}],
\]

where \(\Sigma_{22} \) is positive definite.

This property is very important and widely used. For example, it is the theory behind the well known Kalman Filter in time series analysis and the forward filtering backward sampling (FFBS) algorithm in Markov chain Monte Carlo methods.

5. \((X - \mu)\Sigma^{-1}(X - \mu) \sim \chi^2_p \), chi-square distribution with \(p \) degrees of freedom.
Maximum likelihood estimation: Let \(x_1, \ldots, x_n \) be i.i.d. random samples from \(N_p(\mu, \Sigma) \). The joint probability density function (pdf) is

\[
f(x_1, \ldots, x_n | \mu, \Sigma) = \prod_{i=1}^{n} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x_i - \mu)' \Sigma^{-1} (x_i - \mu) \right] = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1} (x_i - \mu) \right].
\]

Treating \(x_1, \ldots, x_n \) as given, \(f(x_1, \ldots, x_n | \mu, \Sigma) \) is a function of \(\mu \) and \(\Sigma \). It is called the likelihood function of the random sample. The values of \(\mu \) and \(\Sigma \) that maximize \(f(x_1, \ldots, x_n | \mu, \Sigma) \) are called the maximum likelihood estimate (MLE) of \(\mu \) and \(\Sigma \), respectively.

It turns out that the MLEs are

\[
\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,
\]
\[
\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})'.
\]

To derive the results, we make use of the following two properties of a \(p \times p \) symmetric matrix \(A \):

1. \(x' A x = tr(x' A x) = tr(A x x') \).
2. \(tr(A) = \text{sum of the eigenvalues of} \ A \).

Derivation of MLE for Gaussian distribution:

First, focus on the exponent of the likelihood function

\[
(x_i - \mu)' \Sigma^{-1} (x_i - \mu) = tr[(x_i - \mu)' \Sigma^{-1} (x_i - \mu)] = tr[\Sigma^{-1} (x_i - \mu)(x_i - \mu)'].
\]

Therefore,

\[
\sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1} (x_i - \mu) = \sum_{i=1}^{n} tr[\Sigma^{-1} (x_i - \mu)(x_i - \mu)'] = tr\left[\Sigma^{-1} \left(\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)\right) \right].
\]

Next, adding and subtracting \(\bar{x} \), we have

\[
\sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \mu)(x_i - \bar{x} + \bar{x} - \mu)' = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' + n(\bar{x} - \mu)(\bar{x} - \mu)',
\]

because the cross-product terms are zero.

Denoting the likelihood function by \(L(\mu, \Sigma) \), we have

\[
L(\mu, \Sigma) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} tr\left(\Sigma^{-1} \left(\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' + n(\bar{x} - \mu)(\bar{x} - \mu)\right) \right) \right] = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left[-\frac{1}{2} tr\left(\Sigma^{-1} \left(\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' \right) \right) - \frac{n}{2} (\bar{x} - \mu)' \Sigma^{-1} (\bar{x} - \mu) \right].
\]

13
From the prior equation, μ only appears on the 2nd term so that the likelihood function is maximized with respect to μ when the 2nd term is 0. Furthermore, since Σ is positive definite, Σ^{-1} is also positive definite. Thus, $(\bar{x} - \mu)' \Sigma^{-1} (\bar{x} - \mu) = 0$ if and only if $\bar{x} = \mu$. Consequently, $\hat{\mu} = \bar{x}$.

To obtain $\hat{\Sigma}$, we make use of the following inequality:

Result 4.10 of the textbook: Given a $p \times p$ positive definite matrix B and a scalar $b > 0$, it follows that

$$\frac{1}{|\Sigma|^b} e^{-tr(\Sigma^{-1}B)/2} \leq \frac{1}{|B|^b} (2b)^{bp} e^{-bp},$$

for all positive definite matrix $\Sigma_{p \times p}$, with equality holding only for $\Sigma = (1/2b)B$.

Proof of Result 4.10 can be found on pages 170-171 of the textbook.

Return to MLE. Plugging in the estimate $\hat{\mu} = \bar{x}$, we obtain the likelihood function as

$$L(\hat{\mu}, \Sigma) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp \left[-\frac{1}{2} tr \left(\Sigma^{-1} \left(\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' \right) \right) \right],$$

which is a function of Σ. Let $b = n/2$ and $B = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})'$. Apply Result 4.10, the maximum of the likelihood function occurs at

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' \cdot$$

The maximized likelihood function value is

$$L(\hat{\mu}, \hat{\Sigma}) = \frac{1}{(2\pi)^{np/2}} e^{-(np)/2} \frac{1}{|\Sigma|^{n/2}}.$$

Furthermore, since $|\hat{\Sigma}| = [(n-1)/n]^p |S|$, where S is the unbiased estimate of the covariance matrix, the maximized likelihood function value is

$$L(\hat{\mu}, \hat{\Sigma}) = \text{constant} \times (\text{generalized variance})^{-n/2}.$$

The maximized likelihood function plays an important role in model selection using information criteria, e.g. AIC and BIC. It is the measure of goodness-of-fit of the model to the data.

Remark: MLEs possess an invariance property. Let $\hat{\theta}$ be the MLE of θ and $h(\theta)$ be a function of θ. Then the MLE of $h(\theta)$ is $h(\hat{\theta})$. For instance, the MLE of the individual variances of the components of X are $\hat{\sigma}_{ii} = \frac{1}{n} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2$, for $i = 1, \ldots, p$.

Sufficient statistics: Since the likelihood function of a random sample of normal distribution only depends on the sample mean \bar{x} and the sum-of-squares-and-cross-product matrix $\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' = (n-1)S$, we say that \bar{x} and S are the sufficient statistics of the multivariate normal distribution.
5.1 The sampling distribution of \bar{X} and S

Based on the prior discussion, for a random sample X_1, \ldots, X_n from $N_p(\mu, \Sigma)$, the maximum likelihood estimators are $\hat{\mu} = \bar{X}$ and $\hat{\Sigma} = \frac{n-1}{n}S$. What are the sampling distributions of \bar{X} and S?

For \bar{X}, the answer is simple because $\bar{X} \sim N_p(\mu, \frac{1}{n} \Sigma)$.

If $p = 1$, then $(n - 1)S = \sum_{i=1}^{n}(X_i - \bar{X})^2$ is distributed as σ^2 times a chi-square random variable with $(n - 1)$ degrees of freedom. What is the generalization? It turns out that $(n - 1)S$ follows a Wishart random matrix with $(n - 1)$ degrees of freedom.

Finally, similar to the univariate case, \bar{X} and S are independent.

Wishart distribution:

Definition: Let Z_1, \ldots, Z_m be a random sample from $N_p(0, \Sigma)$, where Σ is positive definite. Then, the distribution of $\sum_{i=1}^{m} Z_i Z_i'$ is called a Wishart distribution with m degrees of freedom and is denoted by $W_m(\cdot | \Sigma)$.

If $\Sigma = I_p$, then we have a standard Wishart distribution with m degrees of freedom. Note that the dimension of Wishart distribution is implicitly given by Σ.

When $m > p$, the probability density function (pdf) of a Wishart distribution $W_m(\cdot | \Sigma)$ is

$$w_m(A|\Sigma) = \frac{|A|^{(m-p-1)/2}e^{-tr(A\Sigma^{-1})/2}}{2^{pm/2}\pi^{p(p-1)/4}|\Sigma|^{m/2} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(m + 1 - i))}$$

where $\Gamma(\cdot)$ is the gamma function and A is positive definite. See Anderson’s book.

Some properties of the Wishart distribution:

1. If $M \sim W_m(\cdot | \Sigma)$ and B is a $p \times q$ matrix, then $B'MB \sim W_m(\cdot, B'\Sigma B)$.

2. If $M_i \sim W_{m_i}(\cdot, \Sigma)$ for $i = 1$ and 2. In addition, M_1 and M_2 are independent, then $M_1 + M_2 \sim W_{m_1 + m_2}(\cdot, \Sigma)$.

3. If $M \sim W_m(\cdot, \Sigma)$ and a is any fixed p-dimensional vector such that $a'\Sigma a \neq 0$, then $a'Ma/(a'\Sigma a) \sim \chi^2_{m}$.

6 Large sample properties

Suppose that X_1, \ldots, X_n are random samples from a population distribution with mean μ and covariance matrix Σ. If the population is normally distributed, then the finite-sample behavior of \bar{X} and S is stated earlier. Here we consider the case in which the population distribution is not normal.

Law of Large Number:

1. \bar{X} converges in probability to μ as $n \to \infty$.

2. \(S \) converges in probability to \(\Sigma \) as \(n \to \infty \).

Central Limit Theorem:

1. \(\sqrt{n}(\bar{X} - \mu) \to_d N_p(0, \Sigma) \) as \(n \to \infty \), where \(\to_d \) denotes convergence in distribution.
2. \(n(\bar{X} - \mu)'S^{-1}(\bar{X} - \mu) \to_d \chi^2_p \) as \(n \to \infty \).

7 Assessing the normality assumption

Recall that in the univariate case a simple approach to assess the normality assumption if the normal probability plot, i.e. the normal quantile to quantile (QQ) plot.

Univariate QQ-plot: Let \(x_1, \ldots, x_n \) be a random sample from a population distribution. Let \(\{x(i)\} \) be the ordered sample, i.e. \(x(1) \leq x(2) \leq \cdots \leq x(n) \). When \(x_i \) are distinct, then there are exactly \(j \) observations that are smaller than or equal to \(x(j) \). That is, \(x(j) \) is the \(j/n \)th quantile of the sample. Let \(q(j) \) be the \((j - 0.5)/n \) quantile of a standard normal distribution. The plot of \((q(j), x(j))\) is called normal probability plot or the normal QQ-plot of the random sample. If \(x_i \)'s are indeed from a normal distribution, then the QQ-plot should show a straight line. Note that the subtraction of 0.5 from \(j \) is referred to as the continuity correction.

The following R commands create the normal QQ-plot shown in Figure 5.

```r
> x=rnorm(100)
> par(mfcol=c(2,1))
> hist(x)
> qqnorm(x)
> prob=(c(1:100)-0.5)/100
> z=qnorm(prob)
> y=sort(x)
> cor(y,z)
```

A simple statistic to check the straight line in a QQ-plot is the correlation coefficient between \(\{(q(j), x(j))\} \). Specifically,

\[
r_q = \frac{\sum_{j=1}^{n} (x(j) - \bar{x})(q(j) - \bar{q})}{\sqrt{\sum_{j=1}^{n} (x(j) - \bar{x})^2 \sum_{j=1}^{n} (q(j) - \bar{q})^2}}.
\]

A table of critical values for \(r_q \) is given in Table 4.2 of the textbook, page 181. For the simulated example, \(r_Q = 0.9961 \) so that, as expected, we cannot reject the normality assumption. [For \(n = 100 \), the 5% critical value of the correlation coefficient is 0.9873.]

Next, consider the Radiation data on Table 4.1 of the text with 42 observations. The normal QQ-plot is given in Figure 6. The correlation coefficient is 0.9279, which is smaller than the approximate 5% critical value 0.9749. Thus, the normality assumption is rejected.
Figure 5: A random sample of 100 points from $N(0,1)$: (a) histogram, (b) QQ-plot with a straight line imposed.
Figure 6: Normal QQ-plot for the Radiation Data of Table 4.1
Multivariate case: Here we make use of the properties of multivariate normal distribution. In particular,
\[d_j^2 = (x_j - \bar{x})'S^{-1}(x_j - \bar{x}) \sim \chi^2_p. \]
Thus, we may use the chi-square QQ-plot of \(\{d_j\} \) to check the multivariate normality assumption.

Remark: Programs to construct chi-square QQ-plot for R, Matlab and S-Plus are available from the course web page. For illustration, Figure 7 shows the chi-square QQ-plot for the Stiffness Data on Table 4.3 of the textbook. The R commands used are given below:

```r
> x=read.table(`'T4-3.DAT'`) # Load the data into R workspace
> x=x[,1:4]
> source(`'ama.R'`) # Compile a collection of multivariate analysis commands.
> qqchi2(x)
```

In practice, one can also assess the normality of any (non-zero) linear combination of \(X \). In particular, the marginal distributions are often checked.

Remark: Some researchers show that the chi-square approximation of \(d_j^2 \) can be poor. An alternative is to use the result of Gnanadesikan and Ketternring (1972), who show that
\[u_i = \frac{nd_j^2}{(n-1)^2}, \]
has a beta distribution with parameter \(\alpha = p/2 \) and \(\beta = (n-p-1)/2 \) and the corresponding quantile \(v_i \) for the ordered \(u_{(i)} \) is given by the probability \((i - a)/(n - a - b + 1) \) with \(a = (p - 2)/(2p) \) and \(b = (n - p - 3)/[2(n - p - 1)] \). The R script for this alternative is `qqbeta.R` on the course web.

8 Outliers

Often the random sample contains a few unusual observations that do not seem to belong to the pattern of variability produced by the other observations. These unusual observations are called outliers of the data set. Note that not all outliers are wrong numbers. They are just different from the majority of the data.

In multivariate case, some steps can be taken to identify possible outliers.

1. Examine the dot plot of each variable
2. Study the scatter plot for each pair of the variables.
3. Calculate the generalized squared distance \(d_j^2 = (x_j - \bar{x})'S^{-1}(x_j - \bar{x}) \). Examine the unusually large values of \(d_j^2 \). A chi-square QQ-plot might be helpful here.
Figure 7: Chi-square QQ-plot for the Stiffness Data of Table 4.3
9 Transformation to near normality

Some transformations are known to move the data close to being normal.

1. Counts, y: square-root transformation $z = \sqrt{y}$.

2. Proportion p: Logit(p) = $\frac{1}{2} \ln \left(\frac{p}{1-p} \right)$.

3. Correlation r: $z(r) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$.

For other cases, the Box-Cox transformation can be used. In the univariate case, the power transformation is

$$x^{(\lambda)} = \begin{cases}
\frac{x^{\lambda-1}}{\lambda} & \text{if } \lambda \neq 0 \\
\ln(x) & \lambda = 0
\end{cases}$$

And λ is obtained by maximizing

$$\ell(\lambda) = -\frac{n}{2} \ln \left[\frac{1}{n} \sum_{j=1}^{n} (x_j^{(\lambda)} - \overline{x^{(\lambda)}})^2 \right] + (\lambda - 1) \sum_{j=1}^{n} \ln(x_j),$$

where $x^{(\lambda)}$ is defined earlier and

$$\overline{x^{(\lambda)}} = \frac{1}{n} \sum_{i=1}^{n} x_i^{(\lambda)} = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{x_j^{\lambda} - 1}{\lambda} \right)$$

is the arithmetic average of the transformed data.

In the multivariate case, one can transform the components either individually or jointly. Let λ_i be the power of the transformation of the ith variable. These λ_is can be estimated jointly by maximizing the function $\ell(\lambda_1, \ldots, \lambda_p)$ given in Eq. (4.40) of the textbook.

R packages: The packages quantmod and quantdl allow user to download many economic and financial data via Internet. The sources include FRED (Federal Reserve Economic Data) of the Federal Reserve Bank of St. Louis, Yahoo, Google, etc.