Booth Honor Code:
I pledge my honor that I have not violated the Honor Code during this examination.

Signature: Name: ID:

Notes:
• This is a 3-hour, open-book, and open-note exam.
• Write your answer in the blank space provided for each question.
• The exam has 18 pages, including some R output.
• For simplicity, if not specified, risk-measure calculations use 1% tail probability. Furthermore, unless specified, all value at risk (VaR) and expected shortfall (ES) are for the next trading day. Also, unless specified, all tests use 5% type-I error.
• Round your answer to 3 significant digits.
• You may bring a PC or calculator to the exam, but no Internet or email or any communication is allowed during the exam!

Problem A: (40 points) Answer briefly the following questions.

1. Give two advantages of using the sub-sampling method over the method of optimal sampling interval in computing (daily) realized volatility of a stock.

2. Assume that x_t follows the stochastic diffusion equation $dx_t = \mu dt + \sigma dw_t$, where w_t is the Wiener process. Let $G(x_t) = \exp(x_t/2)$. Derive the stochastic diffusion equation for $G(x_t)$.
3. Give two methods that can be used to specify the order of an autoregressive time series.

4. Describe two methods discussed in class that can be used to predict the direction of a price movement (up or down).

5. Describe two methods that can be used to obtain time-varying correlations between two asset returns.

6. Give two reasons that the observed log returns of an asset follow an MA(1) model.

7. Consider the time series model \(x_t = 0.1x_{t-1} + 0.72x_{t-2} + a_t \), where \(a_t \) are iid \(N(0, \sigma^2) \). Is the model mean-reverting? If yes, what is the half-life?

8. Give two special features of an ARCH(1) model that fare well with empirical features of asset returns.

9. Correlations play an important role in statistical analysis and applications. Provide two weakness of the usual Pearson correlation in measuring relationship between variables.

10. Suppose that we are interested in the log returns of an asset for the next five (5) trading days, i.e. \(r_t^{(5)} = r_{t+1} + r_{t+2} + \cdots + r_{t+5} \). State two conditions under which \(\text{Var}[r_t^{(5)}|F_{t-1}] = 5\text{Var}[r_{t+1}|F_{t-1}] \), where \(F_{t-1} \) denotes the information available at time \(t-1 \).
11. **(For Questions 11-15)**: Consider the adjusted daily stock prices of BHP and VALE used in Lecture Note 10. A linear model is used to find the linear relationship between the prices. Based on the fitted model, we define \(w_t = bhp_t - 2.718 \text{vale}_t \). An AR(4) model is selected. Write down the fitted model, including residual variance.

12. The Box-Ljung statistics give \(Q(10) = 6.00 \) for the residuals of the fitted AR(4) model. Based on the test statistic, are there residual serial correlations in the first 10 lags? Why?

13. Based on the ADF unit-root test and using the 1\% type-I error, is there any opportunity for pairs-trading using the two stocks? Why?

14. Consider a bi-variate time series of the two stock prices, namely \(\mathbf{x}_t = (bhp_t, \text{vale}_t)' \). If vector autoregressive models are entertained, what order is selected for the series? Why?

15. A VAR(2) model is entertained for \(\mathbf{x}_t \) series. Write down the fitted AR(1) coefficient matrix. Interpret the meaning of the \((1,2)\)-th element \(\phi_{12} \) of the AR(1) coefficient.

16. The Ljung-Box statistics are widely used in analyzing financial time series. Describe two specific applications of the statistics.

17. Give two characteristics of price changes in tick-by-tick transaction data.
18. R^2 is commonly used in linear regression analysis. Why is it not useful in time series analysis? State a condition under which R^2 can still be used in analyzing financial time series.

19. Describe two cases under which nonlinear models can be useful in analyzing financial data.

20. Give one advantage and one disadvantage of imposing price limits on stock trading.

Problem B. (16 points) Consider the daily log returns of Costco stock (COST) and the yield-to-maturity of U.S. 10-year treasure notes (TNX) for a period with sample size 2367. Suppose that the portfolio of interest consists of 10K of long position on each of the asset. Based on the attached output, answer the following questions. The variables used in R are “cost” and “tnx”, respectively.

1. Are the daily log returns of COST serially correlated? Write down the null hypothesis and draw your conclusion.

2. (3 points) A Gaussian ARMA-GARCH(1,1) model is entertained, but the estimated AR coefficients are relatively small and the normality test rejects the normality assumption. A GARCH(1,1) model with standardized Student-t distribution is fitted. Write down the fitted model, including innovations.

3. Predictions of the fitted GARCH(1,1) model are provided. Based on the predictions, compute VaR and Expected shortfall (ES) of holding the COST stock.
4. Compute the VaR and ES of the COST stock for the next 10 trading days.

5. If RiskMetrics is used, what are the VaR and ES for holding the COST stock?

6. (3 points) The sample correlations between the two log returns is 0.197. Compute the VaR of the portfolio.

7. If the long position of the treasury notes is changed to a short position, compute the VaR of the new portfolio.

Problem C. (19 points) Consider the daily log returns of Amazon (AMZN) stock and the ETF (exchange-traded fund) of VIX index (VXX) starting from January 30, 2009 for 1846 observations. In the R output, the variables of the daily log returns are “amzn” and “vxx”, respectively.

\[
y_{dt} = \begin{cases}
1 & \text{if } \text{amzn}_t \geq 0, \\
0 & \text{if } \text{amzn}_t < 0.
\end{cases}
\]

Similarly, we define \(y_{1d_t}\) and \(y_{2d_t}\) using \(\text{amzn}_{t-1}\) and \(\text{amzn}_{t-2}\), respectively. Let the lag-2 value of \(\text{amzn}_t\) as “\(y^2\)” in the R output.

1. A simple logistic regression is used to model \(y_{dt}\) using \(y_{1d_t}\) as the predictor. Write down the fitted model. What is the meaning of the fitted coefficient \(-0.172\) of \(y_{1d_t}\).
2. Another logistic regression is fitted to y_d_t using y_{t-2} and y_{1d_t} as regressors. Based on the AIC criterion, does y_{t-2} contribute significantly to modeling y_d_t? Why?

3. Suppose $y_{t-2} = 0.01$ and $y_{1d_t} = 0$. Use the fitted logistic model to compute the probability $P(y_d_t = 1)$.

4. (5 points) Using y_{t-2} and y_{1d_t} as input, a 2-4-1 neural network is fitted to y_d_t. Write down the fitted model.

5. Based on the fitted neural network model, compute $P(y_d_t = 1)$ given $y_{t-2} = 0.01$ and $y_{1d_t} = 0$.

6. Define the directions of lag-1 and lag-2 VXX log returns in a similar way as those of y_{1d_t} and y_{2d_t} and denote the variables by v_{1d_t} and v_{2d_t}. A logistic regression is entertained with regressors $y_{t-1}, y_{t-2}, y_{1d_t}, y_{2d_t}, v_{1d_t}$ and v_{2d_t}. Based on the fitted model, does lagged values of VXX log return contribute significantly in predicting the direction of AMZN price movement? Why?

7. Finally, let $r_t = (\text{amzn}_t, \text{vxx}_t)'$ be a bi-variate log return series. A dynamic conditional correlation model is fitted. Write down the fitted coefficients $\hat{\theta}_1$ and $\hat{\theta}_2$? Are these estimates statistically significant at the 5% level? Why?
8. Based on the output, what is the time-varying correlation between the two asset returns at \(t = 1843 \)?

Problem D. (25 points) Consider the daily log returns of Costco stock (COST) for a recent period with 2368 observations. For risk assessment, we assume a long position of $1 million on the stock. Based on the attached R output, answer the following questions.

1. Is the expected value of the log return zero? Why?

2. Is the distribution of the log returns skewed? Why? Perform a statistical test to support your answer.

3. Based on the fitted GARCH(1,1) model, does the stock have a leverage effect? Why?

4. Compute VaR and ES of the financial position using the fitted GARCH(1,1) model (denoted by \(h1 \) in the output).

5. Compute the VaR and ES of the position for the next 5 trading days using the fitted GARCH(1,1) model.

6. Compared with Question 3 of Problem B, does the leverage effect affect the VaR calculation? Why?
7. If the extreme value theory with block maximum (size 21) is used, what is the VaR for the next trading day? What is the VaR for the next 10-trading days?

8. If the theory of Peaks over Threshold with threshold 0.02 is used, write down the parameter estimates. Are these estimates significantly different from zero? Why?

9. If the theory of Peaks over Threshold with threshold 0.02 is employed, what are the VaR for the next trading day and the next 10 trading days?

10. If the theory of Peaks over Threshold with threshold 0.025 is used, what are the VaR and ES?

11. (1 point) Is VaR sensitive to the choice of thresholds in this particular case? Why?

12. The log returns of VIX index might be helpful in computing VaR for the financial position. To this end, a quantile regression (tau = 0.95) is used with four input variables (lag-1 and lag-2 of COST stock returns and lag-1 and lag-2 of VIX returns). Based on the fitted model, do the past values of VIX returns contribute significantly to model? Why?

13. Based on the quantile regression, what is the VaR$_{0.95}$ if the input variables assume the value (0.08, 0.01, 0.03, 0.01)?
Problem A

```r
> da <- read.table("d-bhp0206.txt",header=T)
> da1 <- read.table("d-vale0206.txt",header=T)
> bhp <- as.numeric(da$adjclose)
> vale <- da1$adjclose
> m1 <- lm(bhp~vale)
> summary(m1)
```

```
Call: lm(formula = bhp ~ vale)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)   5.3462     0.0757   70.61 <2e-16 ***
   vale        2.7183     0.0129   209.65 <2e-16 ***

---
```

```r
> wt <- bhp - 2.718*vale
> m2 <- arima(wt,order=c(4,0,0))
> m2
```

```
Call: arima(x = wt, order = c(4, 0, 0))

Coefficients:
      ar1    ar2    ar3    ar4  intercept
    0.8378  0.0544  0.0096  0.0687       5.3018

s.e.     0.0324  0.0424  0.0424  0.0325       0.3501

sigma^2 estimated as 0.1099: log likelihood = -299.31, aic = 610.62
```

```r
> require(fUnitRoots)
> adfTest(wt,lags=3,type="c")
```  

```
Title: Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
   Lag Order: 3

STATISTIC:
   Dickey-Fuller: -3.4238

P VALUE:
   0.01078
```

```r
> xt <- cbind(bhp,vale)
> require(MTS)
> VARorder(xt)
```

```
selected order: aic = 2
selected order: bic = 1
selected order: hq = 2

Summary table:

<table>
<thead>
<tr>
<th>p</th>
<th>AIC</th>
<th>BIC</th>
<th>HQ</th>
<th>M(p) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,] 0</td>
<td>2.5285</td>
<td>2.5285</td>
<td>2.5285</td>
<td>0.0000 0.0000</td>
</tr>
<tr>
<td>[2,] 1</td>
<td>-6.4209</td>
<td>-6.4004</td>
<td>-6.4131</td>
<td>8326.3509</td>
</tr>
<tr>
<td>[3,] 2</td>
<td>-6.4366</td>
<td>-6.3956</td>
<td>-6.4210</td>
<td>22.4069 0.0002</td>
</tr>
<tr>
<td>[4,] 3</td>
<td>-6.4358</td>
<td>-6.3743</td>
<td>-6.4123</td>
<td>7.0487 0.1333</td>
</tr>
</tbody>
</table>
```
> n1 <- VAR(xt,2)

Constant term:
Estimates: 0.09377638 -0.03698037
Std.Error: 0.05918219 0.02151984

AR coefficient matrix
AR(1)-matrix

[,1] [,2]
[1,] 0.9092 0.42
[2,] 0.0305 1.02

standard error

[,1] [,2]
[1,] 0.0399 0.11
[2,] 0.0145 0.04

AR(2)-matrix

[,1] [,2]
[1,] 0.0756 -0.3751
[2,] -0.0226 -0.0451

standard error

[,1] [,2]
[1,] 0.0400 0.11
[2,] 0.0145 0.04

Residuals cov-mtx:

[,1] [,2]
[1,] 0.13450932 0.02856833
[2,] 0.02856833 0.01778478

Problem B

> getSymbols("COST",from=XXXX,to=XXXX)
> getSymbols("^TNX",from=XXXX,to=XXXX)
> X1 <- COST[-951,] #Adjusting for difference in trading days.
> cost <- diff(log(as.numeric(X1[,6])))
> tnx <- diff(log(as.numeric(TNX[,6])))
> Box.test(cost,lag=10,type='Ljung')

Box-Ljung test

data: cost
X-squared = 36.87, df = 10, p-value = 5.96e-05

> m1 <- arima(cost,order=c(4,0,0))
> require(fGarch)
> ncost <- -cost ### Long position
> m2 <- garchFit(arma(4,0)+garch(1,1),data=ncost,trace=F)
> summary(m2)
Title: GARCH Modelling
Std. Errors: based on Hessian

Error Analysis:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|----------|------------|---------|----------|
| mu | -9.252e-04 | 2.389e-04 | 3.872 | 0.000108 *** |
| ar1 | -3.302e-02 | 2.198e-02 | -1.502 | 0.133046 |
| ar2 | -2.526e-02 | 2.174e-02 | -1.162 | 0.245196 |
| ar3 | -2.620e-02 | 2.187e-02 | -1.198 | 0.230887 |
| ar4 | -4.929e-02 | 2.186e-02 | -2.255 | 0.024130 * |
| omega | 2.386e-06 | 6.924e-07 | 3.446 | 0.000569 *** |
| alpha1 | 5.731e-02 | 9.474e-03 | 6.049 | 1.45e-09 *** |
| beta1 | 9.314e-01 | 1.112e-02 | 83.746 | < 2e-16 *** |

> m3 <- garchFit(~garch(1,1), data=ncost, trace=F, cond.dist="std")
> summary(m3)

Title: GARCH Modelling
Call:
garchFit(formula=ncost~garch(1,1), data=ncost, cond.dist="std", trace=F)

Error Analysis:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------|----------|------------|---------|----------|
| mu | -5.714e-04 | 2.172e-04 | 2.631 | 0.00851 ** |
| omega | 1.122e-06 | 4.877e-07 | 2.300 | 0.02145 * |
| alpha1 | 3.555e-02 | 7.377e-03 | 4.820 | 1.44e-06 *** |
| beta1 | 9.586e-01 | 8.501e-03 | 112.764 | < 2e-16 *** |
| shape | 5.293e+00 | 5.487e-01 | 9.645 | < 2e-16 *** |

Standardised Residuals Tests:

<table>
<thead>
<tr>
<th></th>
<th>Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarque-Bera Test</td>
<td>R Chi^2</td>
<td>1520.714</td>
</tr>
<tr>
<td>Shapiro-Wilk Test</td>
<td>R W</td>
<td>0.9657504</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R Q(10)</td>
<td>17.18641</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R Q(20)</td>
<td>22.22114</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R^2 Q(10)</td>
<td>13.37984</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R^2 Q(20)</td>
<td>18.78798</td>
</tr>
</tbody>
</table>

> pm3 <- predict(m3, 5)
> pm3

```
meanForecast meanError standardDeviation
1 -0.0005713715 0.01310475 0.01310475
2 -0.0005713715 0.01310953 0.01310953
3 -0.0005713715 0.01311428 0.01311428
4 -0.0005713715 0.01311900 0.01311900
5 -0.0005713715 0.01312369 0.01312369
```

> sqrt(sum(pm3$standardDeviation^2))

```
[1] 0.02932435
```
> source("RMfit.R")
> RMfit(cost)
Coefficient(s):

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| beta | 0.96219179 | 0.00523815 | 183.689 < 2.22e-16 *** |

Volatility prediction:

<table>
<thead>
<tr>
<th>Orig</th>
<th>Vpred</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>2367 0.01289863</td>
</tr>
</tbody>
</table>

Risk measure based on RiskMetrics:

<table>
<thead>
<tr>
<th>prob</th>
<th>VaR</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.950</td>
<td>0.02121635 0.02660616</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.990</td>
<td>0.03000669 0.03437760</td>
</tr>
<tr>
<td>[3,]</td>
<td>0.999</td>
<td>0.03985975 0.04343083</td>
</tr>
</tbody>
</table>

> RMfit(tnx)
Coefficient(s):

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| beta | 0.94653947 | 0.00541354 | 174.847 < 2.22e-16 *** |

Volatility prediction:

<table>
<thead>
<tr>
<th>Orig</th>
<th>Vpred</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>2367 0.0217353</td>
</tr>
</tbody>
</table>

Risk measure based on RiskMetrics:

<table>
<thead>
<tr>
<th>prob</th>
<th>VaR</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.950</td>
<td>0.03575139 0.04483369</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.990</td>
<td>0.05056388 0.05792924</td>
</tr>
<tr>
<td>[3,]</td>
<td>0.999</td>
<td>0.06716714 0.07318473</td>
</tr>
</tbody>
</table>

> cor(cost,tnx)
[1] 0.196606

Problem C
> getSymbols("VXX",from=XXXX,to=XXXX)
[1] "VXX"
> getSymbols("AMZN",from=XXXX,to=XXXX)
[1] "AMZN"
> vxx <- diff(log(as.numeric(VXX[,6])))
> amzn <- diff(log(as.numeric(AMZN[,6])))
> cor(vxx,amzn)
[1] -0.4458341
> y <- amzn[3:1845]; y1 <- amzn[2:1844]; y2 <- amzn[1:1843]
> v1 <- vxx[2:1844]; v2 <- vxx[1:1843]
> yd <- ifelse(y >= 0, 1,0) ## create indicator for y >= 0.
> y1d <- ifelse(y1 >= 0,1,0)
> y2d <- ifelse(y2 >= 0,1,0)
> v1d <- ifelse(v1 >= 0,1,0)
> v2d <- ifelse(v2 >= 0,1,0)
> k2 <- glm(yd ~ y1d,family=binomial)
> summary(k2)
Call:glm(formula = yd ~ y1d, family = binomial)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.15276 0.06716 2.275 0.0229 *
y1d -0.17169 0.09336 -1.839 0.0659 .

AIC: 2553.7

> k5 <- glm(yd~y2+y1d,family=binomial)
> summary(k5)
Call:glm(formula =yd ~ y2 + y1d, family = binomial)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.15997 0.06735 2.375 0.0175 *
y2 -3.72009 2.13469 -1.743 0.0814 .
y1d -0.17575 0.09348 -1.880 0.0601 .

AIC: 2552.6

> require(nnet)
> XX <- cbind(y2,y1d)
> colnames(XX) <- c("y2","y1d")
> n3 <- nnet(XX,yd,size=4,linout=F,skip=T)
weights: 19
initial value 618.865386
iter 10 value 454.523935
final value 454.503412
converged
> summary(n3)
a 2-4-1 network with 19 weights
options were - skip-layer connections
b->h1 i1->h1 i2->h1
 1.13 0.15 -0.43
b->h2 i1->h2 i2->h2
 0.66 0.50 -0.06
b->h3 i1->h3 i2->h3
 1.06 0.44 -0.95
b->h4 i1->h4 i2->h4
 1.03 0.42 -0.73
b->o h1->o h2->o h3->o h4->o i1->o i2->o
-0.52 0.08 0.59 0.46 -0.01 -0.29 0.05
> new <- matrix(c(0.01,-0.01,0,1),2,2)
```r
> colnames(new) <- colnames(XX)
> predict(n3,new)

[,1]
[1,] 0.564652
[2,] 0.551463

> k3 <- glm(yd~y1+y2+y1d+y2d+v1d+v2d,family=binomial)
> summary(k3)

Call:
glm(formula = yd ~ y1 + y2 + y1d + y2d + v1d + v2d, family = binomial)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.19450  0.13031  1.4920  0.13560
y1          0.80378  2.94600  0.2734  0.78500
y2         -6.67216  3.07156 -2.1718  0.02982 *
  y1d       -0.20637  0.13231 -1.5601  0.12194
y2d           0.11323  0.13394  0.8448  0.39806
  v1d       -0.02392  0.10218 -0.2340  0.81518
  v2d      -0.15337  0.10242 -1.4982  0.13425
---
AIC: 2556.8

> require(MTS)
> rt <- cbind(amzn,vxx)
> m1=dccPre(rt)

Sample mean of the returns: 0.0005850894 -0.003360788
Component: 1
Estimates: 3e-06 0.129885 0.843406
se.coef  : 1e-06 0.016406 0.017044
t-value : 4.893239 7.917109 49.48264
Component: 2
Estimates: 0.000116 0.151948 0.774099
se.coef  : 2.3e-05 0.020891 0.027977
t-value : 5.022571 7.273467 27.66958

> names(m1)
[1] "marVol" "sresi" "est" "se.coef"
> sresi <- m1$sresi
> m2 <- dccFit(sresi)

Estimates: 0.87732 0.01393715 7.768572
st.errors: 0.07609449 0.00736214 0.8419459
t-values: 11.52935 1.819736 9.226925

> names(m2)
[1] "estimates" "Hessian" "rho.t"
> dim(rt)
[1] 1843 2
> m2$rho.t[1843,]
[1] 1.000000 -0.869967 -0.869967  1.000000
```
Problem D

```r
cost
nobs 2368.000000
Minimum -0.126729
Maximum 0.102118
Mean 0.000526
Median 0.000251
SE Mean 0.000297
LCL Mean -0.000056
UCL Mean 0.001108
Variance 0.000209
Stdev 0.014442
Skewness -0.061145
Kurtosis 8.075124

> ncost <- -cost  ## logb position
> h1 <- garchFit(~garch(1,1),data=ncost,leverage=T,trace=F,cond.dist="std")
> summary(h1)
Title: GARCH Modelling
Call: garchFit(formula = ~garch(1, 1), data = ncost, cond.dist = "std",
leverage = T, trace = F)
Conditional Distribution: std

Error Analysis:

| Estimate      | Std. Error | t value | Pr(>|t|) |
|---------------|------------|---------|----------|
| mu            | -4.563e-04 | 2.159e-04 | -2.114   | 0.034525 * |
| omega         | 1.877e-06  | 6.824e-07 | 2.750    | 0.005954 ** |
| alpha1        | 3.419e-02  | 9.475e-03 | 3.608    | 0.000308 *** |
| gamma1        | -4.993e-01 | 1.537e-01 | -3.248   | 0.001161 ** |
| beta1         | 9.490e-01  | 1.149e-02 | 82.623   | < 2e-16 *** |
| shape         | 5.577e+00  | 6.047e-01 | 9.224    | < 2e-16 *** |

---

Standardised Residuals Tests:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ljung-Box Test</td>
<td>R Q(10) 14.76373 0.1409164</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R Q(20) 19.77384 0.4721548</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R^2 Q(10) 7.22006 0.7045194</td>
</tr>
<tr>
<td>Ljung-Box Test</td>
<td>R^2 Q(20) 14.02298 0.8293291</td>
</tr>
<tr>
<td>LM Arch Test</td>
<td>R TR^2 9.447568 0.6643011</td>
</tr>
</tbody>
</table>

> ph1 <- predict(h1,5)

> ph1

<table>
<thead>
<tr>
<th>meanForecast</th>
<th>meanError</th>
<th>standardDeviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -0.0004563202</td>
<td>0.01312495</td>
<td>0.01312495</td>
</tr>
<tr>
<td>2 -0.0004563202</td>
<td>0.01308631</td>
<td>0.01308631</td>
</tr>
</tbody>
</table>
```
> sqrt(sum(ph1$standardDeviation^2))
[1] 0.0291781
> h2 <- gev(ncost,block=21)
> h2
$n.all
[1] 2367
$n
[1] 113
$data
[1] 0.023584785 0.035464721 0.033704948 0.016477272 0.012010509 0.010082928
[109] 0.025570888 0.033117406 0.030701923 0.024521016 0.016449090
$block
[1] 21
$par.ests
 xi sigma mu
0.293758810 0.008000867 0.016330655
$par.ses
 xi sigma mu
0.0837917491 0.0006299979 0.0008514014
$converged
[1] 0

> h3 <- gpd(ncost,thres=0.02)
> h3
$n
[1] 2367
$data
[1] 0.02358479 0.03546472 0.03370495 0.02094755 0.02668065 0.02351547
[127] 0.02358891 0.03311741 0.03070192 0.02209922 0.02452102
$threshold
[1] 0.02
$p.less.thresh
[1] 0.9446557
$n.exceed
[1] 131
$par.ests
 xi beta
0.208974758 0.009144701
$par.ses
 xi beta
0.099859198 0.001165717
$converged
[1] 0
> riskmeasures(h3,c(0.95,0.99,0.999))
 p quantile sfall
[1,] 0.950 0.02093858 0.03274710
[2,] 0.990 0.03880916 0.05533877
[3,] 0.999 0.07747592 0.10422060
> h4 <- gpd(ncost,threshold=0.03)
> h4
$data
[1] 0.03546472 0.03370495 0.03873395 0.03382808 0.04328677 0.03633464
[49] 0.03311741 0.03070192
$threshold
[1] 0.03
$p.less.thresh
[1] 0.9788762
$n.exceed
[1] 50
$par.est$s
 xi beta
0.393991088 0.008764191
$par.se$s
 xi beta
0.21968994 0.00217236
> riskmeasures(h4,c(0.95,0.99,0.999))
 p quantile sfall
[1,] 0.950 0.02359680 0.03389596
[2,] 0.990 0.03762174 0.05703909
[3,] 0.999 0.08174547 0.12984946
> getSymbols("^VIX",from=XXXX,to=XXXX)
[1] "VIX"
> vix <- diff(log(as.numeric(VIX[,6])))
> ncost <- -cost
> y <- ncost[3:2368]
> y1 <- ncost[2:2367]
> y2 <- ncost[1:2366]
> vix1 <- vix[2:2367]
> vix2 <- vix[1:2366]
> require(quantreg)
> XX <- cbind(y1,y2,vix1,vix2)
> colnames(XX) <- c("ym1","ym2","vixm1","vixm2")
> mm <- rq(y~.,data=data.frame(XX),tau=0.95)
> summary(mm)
Call: rq(formula = y ~ ., tau = 0.95, data = data.frame(XX))
tau: [1] 0.95
Coefficients:

| | Value | Std. Error | t value | Pr(>|t|) |
|------------|-----------|------------|---------|----------|
| (Intercept)| 0.02121 | 0.00097 | 21.80417| 0.00000 |
| ym1 | 0.07188 | 0.06557 | 1.09619 | 0.27311 |
| ym2 | 0.00879 | 0.07377 | 0.11911 | 0.90520 |
| vixm1 | -0.03493 | 0.01322 | -2.64118| 0.00832 |
| vixm2 | 0.00807 | 0.01353 | 0.59651 | 0.55089 |

> names(mm)
[1] "coefficients" "x" "y" "residuals"
[5] "dual" "fitted.values" "formula" "terms"
[9] "xlevels" "call" "tau" "rho"
[13] "method" "model"
> new <- matrix(c(0.08,0.01,0.03,0.01),1,4)
> colnames(new) <- colnames(XX)
> predict(mm,data.frame(new))
 1
0.02608507