Nonparametric Option Pricing by Transformation

Jin-Chuan Duan*

February 2002
(Incomplete)

Abstract

This paper develops a nonparametric option pricing theory and numerical method for European, American and path-dependent derivatives. In contrast to the nonparametric curve fitting techniques commonly seen in the literature, this nonparametric pricing theory is more in line with the canonical valuation method developed Stutzer (1996) for pricing options with only a sample of asset returns. Unlike the canonical valuation method, our nonparametric pricing theory characterizes the asset price behavior period-by-period and hence is able to price European, American and path-dependent derivatives. This nonparametric theory relies on transformation to normality and can deal with asset returns that are either i.i.d. or dynamic. Applications to simulated and real data are provided.

Key words: Risk-neutralization, relative entropy, Markov chain, GARCH, empirical distribution.

*Rotman School of Management, University of Toronto; Tel: 416-946-5653, Fax: 416-971-3048, E-mail: jcduan@rotman.utoronto.ca; Web: http://www.rotman.utoronto.ca/~jcduan. Duan acknowledges the support received as Manulife Chair in Financial Services at University of Toronto. This research is funded by grants from Social Sciences and Humanities Research Council of Canada and Natural Sciences and Engineering Council of Canada. The author thanks Michael Carey for computing assistance.
1 Introduction

Nonparametric techniques in option pricing applications typically use a sample of option prices to calibrate the relationship between the option price and the underlying asset price. Hutchinson, et al (1994), Derman and Kani (1994), Rubinstein (1994), Aït-Sahalia and Lo (1995), Buchen and Kelly (1996), Jackwerth and Rubinstein (1996), Jacquier and Jarrow (2000), Broadie, et al (2000) and Garcia and Gencay (2001) are some examples. In a nutshell, these papers apply sophisticated curve fitting techniques to hopefully extract the true option pricing function from the observed option prices and the underlying asset value. Some of these approaches are limited in the sense that a large amount of data are needed, for example, Aït-Sahalia and Lo (1995), and they are subject to the so-called curse of dimensionality. Others, such as Buchen and Kelly (1996) are limited in their applications to one maturity at a time because the nonparametric risk-neutral distributions can only be identified separately for different maturities. Consequently, they are not suitable for interpolation across maturity. Most of them cannot be used to price the derivative contracts that are not already covered in the data set in terms of contract features, because these methods are essentially interpolation devices. In other words, one cannot calibrate the model to European option data over a particular strike price range and hope to price an option with a strike price outside the range or to price path-dependent derivatives such as barrier options. For those can be used to extrapolate such as Derman and Kani (1994), Rubinstein (1994) and Jackwerth and Rubinstein (1996), the pricing system are too constrained to capture some important option price features. A commonality of these different approaches is the need to have some option data in order to implement the model.

The only nonparametric option pricing model that can value options solely based upon a sample of the underlying asset prices is, to our knowledge, the canonical valuation method of Stutzer (1996). It derives a risk-neutral distribution using the relative entropy principle. The risk-neutral distribution is a distribution function closest to the empirical distribution for the gross return over the maturity of interest subject to the condition that the expected return equals the risk-free rate. The canonical valuation method cannot deal with early exercise, however. This means that American style options cannot be priced using this method. The reason is that the canonical valuation method is silent on the period-by-period risk-neutral price dynamic. For the same reason, the canonical valuation method cannot be used to price path-dependent derivatives.

In a spirit similar to the canonical valuation method of Stutzer (1996), we develop a nonparametric option pricing theory which establishes the pricing relationship solely based upon the price data of the underlying asset without resorting to option prices. This non-parametric option pricing theory is not another curve fitting technique because it formalizes the risk-neutralization process so that one can infer directly from the price dynamic of the underlying asset to establish the risk-neutral pricing dynamic. In other words, the typical nonparametric option pricing technique requires of calibration of the model to option data.
But the nonparametric pricing theory proposed in this paper does not need to be calibrated to option data. This feature has a key advantage because one can price derivatives for which no comparable contingent claims are traded and the theory can also be subject to a direct test in terms of its ability to price exchange traded options. Since the entire risk-neutral pricing dynamic is fully characterized, one can use the theory to price European, American and a variety of path-dependent derivatives. It is in this regard that our nonparametric option pricing theory differs from the canonical valuation method of Stutzer (1996).

Transforming one-period asset return to normality is a key step in constructing our nonparametric option pricing theory. This transformation can be easily accomplished by the first applying the empirical distribution and then inverting by the standard normal distribution function. Applying the relative entropy principle with the condition that the expected asset return equals the risk-free rate, one can derive the risk-neutral distribution for the normalized asset return. This risk-neutral distribution turns out to be again the normal distribution but with a mean shift to absorb the asset risk premium. We show that the nonparametric theory is in a complete agreement with the Black-Scholes (1973) model if one assumes the asset return has a normal distribution. For a dynamic asset return model such as GARCH, we show that the nonparametric option pricing theory yields the same pricing conclusion as the GARCH option pricing model of Duan (1995).

To operationalize an option pricing theory, one needs to develop numerical schemes for pricing various kinds of derivatives. The nonparametric pricing theory developed in this paper can be easily implemented using Monte Carlo method for pricing European and many path-dependent derivatives. Recent advancements in the Monte Carlo method by Carriere (1996), Tsitsiklis and van Roy (1999), Longstaff and Schwartz (2001), Rogers (2001) and Andersen and Broadie (2001) make it possible to compute American options as well. For lower-dimensional valuation problems, the Monte Carlo is less attractive, however. We thus adapt the Markov chain method of Duan and Simonato (2001) to the nonparametric setting in computing European and American style options. We favor the Markov chain method because it is a more efficient numerical method for valuation problems which can be expressed as a one- or two-dimensional Markov system. There are two cases examined in this paper. The i.i.d. case constitutes a one-dimensional Markov system whereas the dynamic case can be expressed as a two-dimensional Markov system.

Our results in the i.i.d. case show that the nonparametric pricing theory performs reasonably well in the simulation environment when the data generating system is based on the Black-Scholes model. For the S&P 500 index data, the nonparametric method is found to produce volatility smile/smirk for short-maturity options. In other words, it reflects the skewness and kurtosis properties of the real data. This is encouraging because the S&P 500 index options are known to exhibit this pattern. The decaying pattern of the produced volatility smile/smirk over the maturity dimension is, however, inconsistent with our knowledge about the S&P 500 index options. It flattens out too fast and lacks the complexity of observed volatility surface. Moreover, the smile/smirk at short-maturity does not appear to
be as steep as one typically observe on the S&P 500 index options.

Such a result is actually expected. Financial returns are known to exhibit clustering stochastic volatilities. Empiricists often use GARCH processes to model them. In short, the i.i.d. assumption, implicitly in many theoretical models, is incompatible with data. Since our nonparametric pricing theory is not constrained by the i.i.d. assumption, we apply it to the S&P 500 index data by adopting a GARCH process as the description of the dynamic volatility structure. The results are pending at this moment.

2 The non-parametric option pricing theory

Consider a sequence of continuously compounded asset returns, denoted by \(\{ R_t; t = 1, 2, \cdots \} \). To develop an operational option pricing theory, there are two critical issues need to be addressed. First, one must derive a corresponding risk-neutral distribution for \(R_t \), which is a distribution function that can be used to price options as if economic agents were risk-neutral. Second, one must come up with a scheme for computing values for European, American and exotic derivatives. The first issue is the core of an option pricing theory whereas the second has an important operational significance and usually requires some numerical method. We now deal with the first issue and leave the second one to the next section.

Financial returns are well known to have some dynamic features. The most notable one is the volatility clustering phenomenon. In other words, \(\{ R_t; t = 1, 2, \cdots \} \) may be a stationary ergodic sequence but need not be an independent one. In order to develop the nonparametric option pricing theory we need to filter out the dynamic feature. Here we assume the dynamic feature occurs only in the one-period conditional mean and variance of \(R_t \), denoted by \(\mu_t \) and \(\sigma_t^2 \). We further assume that they are functions of past asset returns. This further assumption is needed because we want asset returns to form a self-determining stochastic system. Due to the assumptions, \(\{ \frac{R_t - \mu_t}{\sigma_t}; t = 1, 2, \cdots \} \) forms an i.i.d. sequence.

Let \(G(\cdot) \) be the distribution function of \(\frac{R_t - \mu_t}{\sigma_t} \). Define \(Z_t \equiv \Phi^{-1}(G(\frac{R_t - \mu_t}{\sigma_t})) \) where \(\Phi(\cdot) \) stands for the standard normal distribution function. It can be verified straightforwardly that \(Z_t \) is a standard normal random variable and the transformed variables \(\{ Z_t; t = 1, 2, \cdots \} \) form an i.i.d. sequence. We will refer to \(Z_t \) as the normalized asset return. The probability law governing \(R_t \) (or \(Z_t \)) is typically referred to as the physical probability measure. In parametric models, \(G(\cdot) \) is a function under the physical measure and can usually be deduced from assuming a stochastic process for the asset price dynamic. Since we deal with the valuation problem nonparametrically, \(G(\cdot) \) will be obtained via some nonparametric means. A concrete method will be provided later in the paper.

Knowing that the risk-neutral distribution is not the same as the physical distribution, it is natural to identify their differences. A key feature of the risk-neutral distribution is its expected return equal to the risk-free rate. In principle, one can estimate the expected return of the physical distribution which is typically different from the risk-free rate. It allows for at
most one degree of freedom in risk-neutralization if one is to completely characterize the risk-neutral distribution. Other than the expected return condition, there is no \textit{a priori} reason for the risk-neutral distribution to deviate from the physical distribution. In other words, it is natural to have a risk-neutral distribution that is as close to the physical distribution as possible while satisfying the condition on its expected value. To operationalize this concept, one can call upon the information theory to find the risk-neutral density function that minimizes the so-called relative entropy subject to its expected value condition. It is well known in information theory that the relative entropy principle can be justified axiomatically and is consistent with Bayesian method of statistical inference. For option pricing, the notion of relative entropy was previously utilized in Buchen and Kelly (1996) and Stutzer (1996). Specifically, we deal with the physical and risk-neutral density functions for the normalized return and introduce one degree of freedom so that it can be used to match the required expected return correctly. Note that the normalized return has a standard normal density function, $\phi(\cdot)$. Using the relative entropy principle, the risk-neutral density for the normalized return, Z_t, is the solution to the following problem: for some value c_t,

$$\min_{f(x)} \int_{-\infty}^{\infty} f(x) \ln \frac{f(x)}{\phi(x)} \, dx$$

subject to
$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$
$$\int_{-\infty}^{\infty} x f(x) \, dx = c_t.$$

Note that the subscript of c_t is meant to reflect the fact that the risk-neutral density for the one-period normalized return may be a function of time because of the potential dynamic structure in the conditional mean and variance. Indeed, we will show later that the risk-neutral density for the one-period normalized return is the same for all period if the mean and variance are constant.

It is well known in the information theory that the above programming problem has the solution in the form of

$$f(x; \lambda_t) = \frac{\phi(x) \exp(\lambda_t x)}{\int_{-\infty}^{\infty} \phi(x) \exp(\lambda_t x) \, dx} = \phi(x - \lambda_t).$$

Note that the first condition of being a density function is satisfied by the above solution and the value of λ_t simply corresponds to a given value of c_t. In other words, we might just as well ignore c_t and view the density function as parameterized by λ_t. The value of λ_t is of course determined by the fact that the risk-neutral density must give rise to an expected
asset return equal to the risk-free rate \(r \) (continuously compounded) minus the dividend yield \(d \) (continuously compounded). That is, \(\lambda^* \) solves

\[
\int_{-\infty}^{\infty} \exp \left[\sigma t G^{-1}(\Phi(x)) + \mu_t \right] \phi(x - \lambda^*_t) \, dx = \exp(r - d).
\]

(3)

Note that the above equation is due to \(R_t = \sigma t G^{-1}(\Phi(Z_t)) + \mu_t \) so that term \(\exp \left[\sigma t G^{-1}(\Phi(x)) + \mu_t \right] \) is the one-period gross return of the asset. It can be shown that left hand side of above equation is a monotonically increasing function of \(\lambda^*_t \), which implies a unique solution if the solution does exist. In general, the solution exists because the value of \(\mu_t \) must be tied to \(r \) in any sensible market equilibrium.

Using the transformation, the sequence of continuously compounded asset return can be expressed as \(\{ R_t; t = 1, 2, \ldots \} = \{ \sigma t G^{-1}(\Phi(Z_t)) + \mu_t; t = 1, 2, \ldots \} \) where \(Z_t \) is the normalized return and has the physical density function of \(\phi(x) \) and the risk-neutral density function of \(\phi(x - \lambda^*_t) \). Consequently, the risk-neutral asset value dynamic becomes

\[
S_t = S_{t-1} \exp \left[\sigma t G^{-1}(\Phi(Z_t)) + \mu_t \right]
\]

(4)

where \(Z_t \) is a normal random variable with mean \(\lambda^*_t \) and variance 1, which can be used to value contracts contingent upon the path of \(S_t \). In short, we have succeed in characterizing the risk-neutralized valuation system in terms of the normalized return.

Example 1: the Black-Scholes option pricing model

This nonparametric option pricing theory is compatible with the well-known parametric Black-Scholes model. We now substantiate this claim. Under the geometric Brownian motion assumption, the one-period continuously compounded return has a normal distribution with constant mean \(\mu \) and variance \(\sigma^2 \), which implies \(G(x) = \Phi(x) \) and \(G^{-1}(\Phi(Z_t)) = Z_t \). Assume \(d = 0 \). According to our nonparametric pricing theory, \(Z_t \) has the risk-neutral density of \(\phi(x - \lambda^*) \) where by the condition in (3), \(\lambda^* \) satisfies

\[
\int_{-\infty}^{\infty} \exp(\sigma x + \mu) \phi(x - \lambda^*) \, dx = \exp(r).
\]

(5)

It is obvious that \(\lambda^* \) will be a constant. Using the moment generating function of normal random variable, we obtain

\[
\lambda^* = -\frac{\mu - r + \frac{\sigma^2}{2}}{\sigma}.
\]

(6)

By equation (4), the risk-neutral asset price dynamic becomes

\[
S_t = S_{t-1} \exp \left(\sigma Z_t + \mu \right) = S_{t-1} \exp \left(r - \frac{\sigma^2}{2} + \sigma \varepsilon_t \right)
\]

(7)
where $\varepsilon_t = Z_t - \lambda^*$ is a standard normal random variable under the risk-neutral distribution. This result is in a complete agreement with the Black-Scholes model.

In reality, one does not know whether the asset price dynamic is governed by a geometric Brownian motion even if it were the case. What will happen if one applies our nonparametric option pricing theory in this situation? In other words, how well will the nonparametric option pricing theory perform if one only observes a sequence of realized returns generated by a geometric Brownian motion yet without knowing so? This issue will be addressed after we discuss a method of obtaining nonparametrically the function $G(\cdot)$.

Example 2: the GARCH option pricing model

Suppose we assume the asset return volatility follows a linear GARCH dynamic: $\sigma^2_t = \beta_0 + \beta_1 \sigma^2_{t-1} + \beta_2 (R_{t-1} - \mu_{t-1})^2$. Moreover, the conditional mean has the form as $\mu_t = r + \eta \sigma_t - \frac{1}{2} \sigma^2_t$ and the conditional distribution is normal. Note that we have implicitly assumed $d = 0$. Under these assumptions, $G(x) = \Phi(x)$ and the condition in (3) implies that λ^*_t solves

\[\int_{-\infty}^{\infty} \exp(\sigma_t x + r + \eta \sigma_t - \frac{1}{2} \sigma^2_t) \phi(x - \lambda^*_t) \, dx = \exp(r). \]

By the moment generating function of the normal random variable, it becomes

\[\exp(r + \eta \sigma_t + \lambda^*_t \sigma_t) = \exp(r), \]

which in turn implies $\lambda^*_t = -\eta$. The risk-neutral asset price dynamic becomes

\[S_t = S_{t-1} \exp(\sigma_t Z_t + \mu_t) \]
\[= S_{t-1} \exp \left(r - \frac{\sigma^2_t}{2} + \sigma_t \varepsilon_t \right). \]

Thus, the nonparametric option pricing theory yields a result agreeing with the GARCH option pricing model of Duan (1995).

Duan (1999) assumes a parametric form for the conditional distribution to allow for conditional leptokurtosis and derives an option pricing theory using an equilibrium argument similar to Duan (1995). In contrast, the nonparametric option pricing theory does not require any prior knowledge on the conditional distribution and uses the relative entropy principle as the basis for deriving the theory. In the next section, we will implement a version of the GARCH model to real data without assuming any prior knowledge on the conditional distribution.
3 Implementing algorithm for the nonparametric pricing theory

In order to implement the nonparametric pricing theory, one must first obtain a nonparametric distribution function for the continuously compounded return. There are many ways of constructing a nonparametric distribution function from a sequence of data. In this section, we consider a simple procedure of using the empirical distribution, which we find it convenient for our purpose of option valuation. One important feature required of the construction method is to be able to invert the distribution function quickly because its inversion is required in identifying λ_t^*. We will proceed with the i.i.d. case first and later move on to the dynamic model.

3.1 I.I.D. case

This is a simpler case in terms of identifying the nonparametric distribution function as well as for valuing derivatives numerically. We adopt the following procedure:

Step 1: Identify the empirical distribution from a sample of one-period continuously compounded asset returns $\{R_i; i = 1, \ldots, N\}$. We first compute the sample mean and standard deviation, denoted by μ and σ, respectively. The empirical distribution function for a sample, $\mathbf{R} = \{R_i; i = 1, \ldots, N\}$, is formally defined as $\hat{G}(x; \mathbf{R}) \equiv \frac{1}{N} \sum_{i=1}^{N} 1\{\frac{R_i - \mu}{\sigma} \leq x\}$ where $1\{\cdot\}$ is an indicator function giving a value of 1 if the condition is true and 0 otherwise. Note that $\hat{G}(x; \mathbf{R})$ is actually a step function and is not invertible. The empirical distribution is also subject to sampling variation. It is therefore preferable to use a smoothed version to make it invertible and to dampen out the sampling fluctuation. The particular smoothing technique used in this paper is described in Appendix. Figures 1a and 1b show the empirical distribution and its smoothed version for the simulated samples with 252 and 1260 standard normal random variates. The functions for the S&P 500 index return data sample is given in Figure 1c.

Step 2: Solve for λ^* numerically by

$$\int_{-\infty}^{\infty} \exp \left[\sigma G^{-1} \left(\Phi(x); \hat{\Theta} \right) + \mu \right] \phi(x - \lambda^*) \, dx = \exp(r - d).$$ \hspace{1cm} (12)

We use a binary search to find λ^* where the integral is evaluated numerically and $\Phi(x)$ is evaluated using the standard polynomial approximation formula. Note that μ and σ do not need to share the same values as μ and σ. One may want to use, for example, two years worth of past return data to come up with $G(x; \hat{\Theta})$ but decide to use other value of μ and σ for the future to better reflect the new market conditions. This can
be justified if, for example, the interest rate has gone up substantially relative to the interest rates during the period the sample is taken. The future expected continuously compounded return μ need to reflect the new level of interest rates even if one keep the same volatility level. One can, for example, use a value of μ equal to the sum of the new interest rate and the historical risk premium minus the anticipated dividend yield for the period to come.

Step 3: Choose a numerical scheme to generate the asset price until the maturity of an contingent contract according to the following system:

$$S_t = S_{t-1} \exp \left[\sigma G^{-1} \left(\Phi(Z_t); \Phi \right) + \mu \right]$$

(13)

where Z_t is a sequence of independent normal random variables with mean λ^* and variance 1. Then compute the expected value of the contingent payoff. For example, one may use Monte Carlo simulation to perform this task. In this paper, we will use the Markov chain method for the valuation task because it is a more efficient algorithm and can be used for European and American style derivatives. The technical details are given in Appendix.

We consider two examples. First, we implement the nonparametric pricing technique using the artificial data sets generated according to a geometric Browning motion. We then implement the method on the real data set of the S&P 500 index returns. In the first case, we assess the values for a set of European call options using the nonparametric pricing technique for each of the simulated data sets. As a comparison, we apply the Black-Scholes model to the same data set to obtain the corresponding pricing results. The comparison in this case is to assess how well the Black-Scholes theoretical values can be recovered by our nonparametric method. In the case of using real data, we compute option values using both our nonparametric pricing technique and the Black-Scholes model. This comparison sheds light on the consequence of assuming lognormality for the real data that are known to be negatively skewed and fat-tailed. In addition to European calls, we also compute American puts to demonstrate that our nonparametric method is applicable to derivatives with early exercise possibilities.

To simulate the data according to the geometric Brownian motion, we assume $\mu = 0.1$ and $\sigma = 0.15$ (annualized). We also assume $d = 0$ and $r = 0.05$ in the simulation study. The nonparametric method is subject to sampling errors in a way similar to implementing the Black-Scholes model with the estimated sample standard deviation. We consider two sample sizes: 1 year (252 days) and 5 years (1260 days). Note that the parameters need to be converted to the ones suitable for daily frequency because one trading day is regarded as the length of one period in this analysis. The statistics on mean, median, standard deviation, maximum and minimum are calculated using 200 Monte Carlo repetitions. The results are summarized in Tables 1 and 2. In these tables, we have in the first row, corresponding to each
maturity, the Black-Scholes theoretical values using the true parameter value, i.e., $\sigma = 0.15$. Two groups of results are reported with the first computed using our nonparametric pricing method and the second using the sample standard deviation. In each group, we report five numbers: mean, median, standard deviation, minimum and maximum of the estimated option prices obtained in 200 simulation runs. For the sample size of 252, the statistics indicate that the nonparametric technique performs reasonably well in comparison to the results using the Black-Scholes model with the estimated volatility, keeping in mind that using the Black-Scholes model is expected to perform better because the additional knowledge about the true nature of the data generating process is utilized in its implementation. Even taking advantage of the additional information about the simulated data, the improvement over the nonparametric pricing technique is not great as measured by the standard deviation. Both methods seem to yield upward biased price estimates with a larger bias for the nonparametric method. The general properties remain the same when the sample size is increased to 1260. Not surprisingly, the standard deviation decreases as the sample size increases.

We now turn to the implementation using real data. The data set consists of the S&P500 index (total return) and the three-month Treasury bill rates on a daily basis from the last trading day of 1995 to the last trading day of 2000. This yields 1263 daily excess returns in the sample. We conduct the option valuation on December 29, 2000 which is the last day of the data sample. The prevailing interest rate was 5.89%. After converting it to the continuously compounded rate, we have $r = 0.057231$. For option valuation under the i.i.d. assumption, we thus use $\mu = 0.101397769 + 0.057231$ and $\sigma = 0.184390836$. Note that since the parameters were estimated using the S&P500 total return index, we can set $d = 0$. Both the nonparametric technique and the Black-Scholes model are applied to the data set as a comparison. The results for European calls are summarized in Figure 2 where the option values produced by the nonparametric method are converted to the implied volatilities using the Black-Scholes formula. Such a plot is usually referred to as the implied volatility surface. Whenever the implied volatility is higher (lower) than 0.184390836, the nonparametric method yields a higher (lower) option value relative to the Black-Scholes model. Figure 2 reports the implied volatilities from 7 trading days to 6 months over the moneyness range from 0.85 to 1.15. It is clear that option prices inferred from the real data differ from those suggested by the Black-Scholes model. For short-term options, there is a clear pattern of volatility smile/smirk, suggesting that for in-the-money call options, the nonparametric method yields values higher than those by the Black-Scholes model. For out-of-the-money calls, the increase is much smaller in magnitude. This pattern is not at all surprising given that the sample skewness and kurtosis are -0.340393637 and 6.568075038, respectively. Fat-tailedness is expected to give rise to higher values for in- and out-of-the-money call options relative to the Black-Scholes model values. The negative skewness, however, makes in-the-money calls even more valuable but lessens the effect of fat-tails on out-of-the-money calls. Since this is the typical pattern exhibited by market prices of the S&P 500 index options, the nonparametric method which truthfully reflects the actual
empirical distribution appears to be a superior way of approaching option valuation.

The smile/smirk pattern quickly disappears when maturity is increased. This feature is, however, at odd with the empirical regularities of the S&P 500 index options for which the smile/smirk pattern does not dissipate so quickly. Our nonparametric pricing results are of course computed under the i.i.d. assumption. The empirical evidence has long suggested that a dynamic structure such as the GARCH effect is clearly present in financial data. In other words, this result is not surprising. The flattening out of the smile/smirk is actually driven by the Central Limit Theorem. With the typical dynamic structure observed in data, convergence to normality is expected to take place slower. The implication of this result is not trivial because any model with i.i.d. returns is expected to behave the same way in the maturity dimension. Different models only produce different degrees of smile/smirk for a given maturity. When maturity is further increased, the same rate of reversion to normality applies to all models with i.i.d. returns, suggesting that these models will not be able to fit the implied volatility surface well.

For American options, we use puts instead of calls because American calls are effectively European calls when there is no dividends. American puts are priced using the nonparametric method and the Black-Scholes model and the results are reported in Table 3. As opposed to the method of Stutzer (1996), we are able to price American options nonparametrically because the nonparametric pricing system is developed on a period-by-period basis instead of fixing the risk-neutral distribution for a given maturity. For any maturity, one simply goes through our nonparametric pricing system period-by-period and recursively assesses the early exercise possibility. The numerical technique described in Appendix is suitable for European and American options. It can also be used to price barrier options using the idea of Duan, et al (1999).

For the ease of comparison, all American option values reported are based on assuming the index level of 100 and these values can be easily translated to reflect the actual index level. All values are computed by allowing early exercise on a daily basis because one trading day is considered to be one period. The results are grouped according to the pricing method. For in-the-money puts at the highest strike price of 110, the nonparametric method yields higher values across all maturities. In the case of out-of-the-money puts, the Black-Scholes approach gives rise to higher option values. The intuition for these results is not entirely clear. Although it is obvious that out-of-the-money European puts should have higher values under the nonparametric method due to negative skewness of the S&P 500 index return, early exercise has significantly complicated the intuition. It may be helpful to consider a two-period out-of-the-money put option. The stock price at time 1 is likely to be high because the original high price makes it out-of-the-money. This makes early exercise unwise. The value of holding on to the option is lower, however, if the return distribution is negatively skewed. That is to say the nonparametric method will assign a lower value than does the Black-Scholes model. This perhaps explain why American out-of-the-money puts have higher values using the Black-Scholes model. In terms of dollar values, two valuation
methods do not generate significant differences. Percentage wise, however, the difference can be substantial for out-of-the-money options.

3.2 Dynamic case

We now describe the implementation steps of the nonparametric option pricing theory for asset returns exhibiting a dynamic structure. Recall our assumption that the dynamic structure is only present in the conditional mean and variance and they must be some functions of past returns.

Step 1: Identify econometrically suitable dynamic structures for the conditional mean μ_t and variance σ_t^2 using a sample of one-period continuously compounded asset returns $\{R_i; i = 1, \cdots, N\}$; for example, a GARCH-in-mean model without specifying the conditional distribution. To make the numerical valuation task more manageable, it is advisable to assume that the conditional mean is some function of conditional standard variance because of the need to solve for λ_t^*.

Step 2: Construct a smoothed version of the empirical distribution just as in Step 1 of the preceding section using the normalized sample, $R = \{R_i - \mu_i / \sigma_i; i = 1, \cdots, N\}$. Specifically, we have $\hat{G}(x; \Theta) \equiv \frac{1}{N} \sum_{i=1}^{N} 1\{R_i - \mu_i / \sigma_i \leq x\}$ where $1\{\cdot\}$ is an indicator function giving a value of 1 if the condition is true and 0 otherwise. Again, we use the smoothed version of the empirical distribution function $G(x; \Theta)$.

Step 3: Solve for λ_t^* numerically by

$$\int_{-\infty}^{\infty} \exp \left[\sigma_t G^{-1} \left(\Phi(x); \hat{\Theta} \right) + \mu_t \right] \phi(x - \lambda_t^*) \, dx = \exp(r - d).$$

We use a binary search to find λ_t^* where the integral is evaluated numerically and $\Phi(x)$ is evaluated using the standard polynomial approximation formula. Note that λ_t^* must be solved for every pair of (μ_t, σ_t) and that is why parametrizing μ_t as a function of σ_t will simplify the numerical task. Note that the numerical method used later partitions σ_t into n states. As a result, λ_t^* only needs to evaluated n times under the assumption that μ_t is a function of σ_t.

Step 4: Choose a numerical scheme to generate the asset price until the maturity of an contingent contract according to the following system:

$$S_t = S_{t-1} \exp \left[\sigma_t G^{-1} \left(\Phi(Z_t); \hat{\Theta} \right) + \mu_t \right]$$

where Z_t is a sequence of independent normal random variables with mean λ_t^* and variance 1. Note that μ_t, σ_t and λ_t^* are known at time $(t-1)$ because of the assumption that μ_t and σ_t are functions of past returns. (For example, this is indeed the case for the GARCH model.) Then compute the expected value of the contingent payoff.
To demonstrate the use of nonparametric option pricing theory with dynamic asset returns, we assume the following nonlinear asymmetric GARCH-in-mean model:

\[
R_t = \mu_t + \sigma_t Z_t
\]
\[
\mu_t = r - d + \eta \sigma_t - \frac{1}{2} \sigma_t^2
\]
\[
\sigma_t^2 = \beta_0 + \beta_1 \sigma_{t-1}^2 + \beta_2 \sigma_{t-1}^2 (Z_{t-1} - \theta)^2
\]

where \(Z_t\)'s are i.i.d. random variables with mean 0 and variance 1 without specifying its distribution. We use the Markov chain method for the valuation task and the technical details for this particular dynamic model are given in Appendix. The parameters in the above system are estimated using the quasi-maximum likelihood method because we do not assume any conditional distribution function. The data set is the S&P500 index excess return described in the preceding section. The parameter values obtained by the quasi-maximum likelihood estimation are \(\eta = 0.0381459263\), \(\beta_0 = 0.0000072571\), \(\beta_1 = 0.7026496515\), \(\beta_2 = 0.0748155199\) and \(\theta = 1.5299656423\). As a by-product of estimation, the sample \(R = \{R_i - \mu_i \sigma_i; i = 1, \cdots 1263\}\) is also obtained. Note that \(d = 0\) because we use the total return index in our estimation.

Assume that we conduct the option valuation on December 29, 2000 which is the last day of the data sample. The prevailing interest rate was 5.89%, which is translated into \(r = 0.057231\). The conditional standard deviation for the next day was estimated to be 0.22237484 (annualized), which will be used in the option valuation as the initial value of the volatility. Again, for the ease of comparison all option values are computed based on assuming the index value of 100, and the parameters need to be converted for daily frequency because one trading day is regarded as the length of one period.

[Results to be added later]

The dynamic model also allows one to consider the effect of the market condition at the time of option valuation. On December 20, 2000, the next day conditional volatility actually reached 0.35018012 due to a 3.1% drop in the market value. This volatility is substantially higher than the one a few days later used as our day of option valuation. We now conduct option valuation on December 20, 2000 to examine the impact of a higher market volatility.

[Results to be added later]

4 Extension to derivatives on multiple assets

In order to price the derivatives on more than one asset, we generalize the theory to the case of multiple assets. Consider a sequence of \(k\)-dimensional vector of continuously compounded asset returns, denoted by \(\{R_t; t = 1, 2, \cdots\}\). We again assume that the dynamic feature occurs only in the one-period conditional mean and variance for each element of \(R_t\), denoted by \(\mu_{i,t}\) and \(\sigma_{i,t}^2\). We further assume that they are functions of past asset returns so that asset
returns form a self-determining k-dimensional stochastic system. Due to the assumptions, \(\left\{ \left(\frac{R_{1,t}-\mu_{1,t}}{\sigma_{1,t}}, \frac{R_{2,t}-\mu_{2,t}}{\sigma_{2,t}} \ldots \frac{R_{k,t}-\mu_{k,t}}{\sigma_{k,t}} \right) ; t = 1, 2, \ldots \right\} \) forms an i.i.d. sequence of random vectors. Let $G_i(\cdot)$ be the marginal distribution function of $\frac{R_{i,t}-\mu_{i,t}}{\sigma_{i,t}}$. Define $Z_{i,t} \equiv \Phi^{-1}\left(G_i\left(\frac{R_{i,t}-\mu_{i,t}}{\sigma_{i,t}} \right) \right)$ where $\Phi(\cdot)$ stands for the standard normal distribution function. Similar to the earlier result, each $Z_{i,t}$ is a standard normal random variable, but together the k-dimensional vector of transformed returns need not follow a multivariate normal distribution. Here we assume they form a multivariate normal distribution. This assumption amounts to assuming a normal copula in forming a joint distribution from marginal ones. Let Ω be the $k \times k$ correlation matrix. Denote by $\phi(x; \Omega)$ and $\Phi(x; \Omega)$ be the k-dimensional multivariate normal density and distribution functions with mean vector 0 and covariance matrix Ω.

Similar to the development in the earlier section, the risk-neutral density for the normalized returns is the solution to the following problem: for some set of values \(\{c_{1,t}, c_{2,t}, \ldots c_{k,t}\} \) reflecting potentially time-varying nature of these values,

$$
\min_{f(x)} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x) \ln \frac{f(x)}{\phi(x; \Omega)} \, dx
$$

subject to

$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x) \, dx = 1
$$

$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_i f(x) \, dx = c_{i,t}, \text{ for } i = 1, 2, \ldots, k.
$$

The solution to the above programming problem is in the form of

$$
f(x; \lambda_t) = \frac{\phi(x; \Omega) \exp \left(\sum_{i=1}^{k} q_{i,t} x_i \right)}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x; \Omega) \exp \left(\sum_{i=1}^{k} q_{i,t} x_i \right) \, dx} = \phi(x - \lambda_t; \Omega) \tag{20}
$$

where λ_t is a k-dimensional vector corresponding to $\{q_{1,t}, q_{2,t}, \ldots q_{k,t}\}$, which in turn corresponds to $\{c_{1,t}, c_{2,t}, \ldots c_{k,t}\}$. In other words, we might just as well ignore $\{c_{1,t}, c_{2,t}, \ldots c_{k,t}\}$ and view the density function as parameterized by λ_t. The value of λ_t is of course determined by the fact that the risk-neutral density must give rise to an expected asset return equal to the risk-free rate r (continuously compounded) minus the dividend yield d_i (continuously compounded) on an asset-by-asset basis. Due to multivariate normality, this can be solved individually using the risk-neutral marginal distribution; that is, λ_t solves

$$
\int_{-\infty}^{\infty} \exp \left[\sigma_{i,t} G_i^{-1}(\Phi(x)) + \mu_{i,t} \right] \phi(x - \lambda_{t,i}) \, dx = \exp(r - d_i). \tag{21}
$$

Note that the above equation is again due to $R_{i,t} = \sigma_{i,t} G_i^{-1}(\Phi(Z_{i,t})) + \mu_{i,t}$ so that term $\exp \left[\sigma_{i,t} G_i^{-1}(\Phi(x)) + \mu_{i,t} \right]$ is the one-period gross return of the asset.
Using the transformation, the sequence of continuously compounded return for the i-th asset can be expressed as \(\{ R_{i,t}; t = 1, 2, \cdots \} = \{ \sigma_i G_i^{-1}(\Phi(Z_{i,t})) + \mu_{i,t}; t = 1, 2, \cdots \} \) where $Z_{i,t}$ is the normalized return and has the physical density function of $\phi(x)$ and the risk-neutral density function of $\phi(x - \lambda^*_t)$. Note that the correlation between $Z_{i,t}$ and $Z_{j,t}$ equals the (i, j)-th element of Ω under both the physical and risk-neutral distributions. As a result, the risk-neutral asset value dynamic becomes

\[
S_{i,t} = S_{i,t-1} \exp \left[\sigma_i G_i^{-1}(\Phi(Z_{i,t})) + \mu_{i,t} \right] \text{, for } i = 1, 2, \cdots, k
\]

(22)

where $Z_{i,t}$ is a normal random variable with mean λ^*_t and variance 1 and the correlation between $Z_{i,t}$ and $Z_{j,t}$ equal to the (i, j)-th element of Ω. The multivariate option pricing system is thus completely characterized.

5 Appendix

5.1 Smoothing the empirical distribution function

For this purpose, we piece together three functions to form the smoothed version of the empirical distribution function. First we define a cubic polynomial twisted version of the standard normal distribution function as

\[
Q(x) = a\Phi(x)^3 + b\Phi(x)^2 + c\Phi(x) + d.
\]

Next we define the general Pareto distribution, for $\omega > 0$,

\[
H_{\delta, \omega}(y) = \begin{cases}
1 - \left(1 + \frac{\delta y}{\omega}\right)^{-\frac{1}{\delta}} & \text{if } \delta \neq 0, \\
1 - \exp\left(-\frac{y}{\omega}\right) & \text{if } \delta = 0
\end{cases}
\]

where the support is $y \geq 0$ if $\delta \geq 0$ and $0 \leq y \leq -\frac{\omega}{\delta}$ if $\delta < 0$. The distributions corresponding to $\delta > 0$ are fat-tailed whereas those corresponding to $\delta < 0$ have bounded tails. By the extreme value theory, most distribution functions have their exceedance distribution functions (distribution function conditional on a tail) well approximated by the general Pareto distribution. Technically, the following result, due to Balkema and de Haan (1974) and Pickands (1975), serves as the theoretical basis for this assertion: there is a positive measurable function $\omega(u)$ such that

\[
\lim_{u \to \infty} \sup_{0 < y < \infty} \left| \Pr \{ Y - u \leq y | Y > u \} - H_{\delta, \omega(u)}(y) \right| = 0.
\]

This provides an flexible way of fixing the functional form for both the right and left tails. For the middle portion, we use the cubic polynomial twisted normal distribution function.
Piecing three functions together in a continuous and differential manner gives rise to

$$G(x; \Theta) = \begin{cases}
Q(u_1) - Q(u_1)H_{\delta_1, \omega_1}(e^{u_1 - x} - 1) & \text{if } x < u_1 \\
Q(x) & \text{if } u_1 \leq x \leq u_2 \\
Q(u_2) + [1 - Q(u_2)]H_{\delta_2, \omega_2}(e^{x - u_2} - 1) & \text{if } x > u_2
\end{cases}$$

for $u_2 > u_1$. The tail probabilities are modeled by the exceedance distribution on the exponential of x to ensure that the expected gross return is finite. If the expected gross return does not exist, the expected future stock price must be infinity and all call option values also become unbounded. Since x is a normalized continuously compounded return, the expected gross return amounts to the moment generating function evaluated at σ. For $\delta > 0$, the moment generating function does not exist because the tail probability rate is governed by a power function. Using the exponential x in the exceedance distribution ensures existence of the moment generating function.

Note that there are eight parameters in the system, but six of them are free due to the smooth pasting requirement. These free parameters are $\Theta = (a, b, c, d, \delta_1, \delta_2)$ because continuity is a natural result of the construction. Only differentiability at u_1 and u_2 constrains two parameters - ω_1 and ω_2. In the implementation, we use $u_1 = -1.5$ and $u_2 = 1.5$. We find $\hat{\Theta}$ by solving the following nonlinear regression problem:

$$\min_{\hat{\theta}} \sum_{i=1}^{N} \left[\hat{G} \left(\frac{R_i - \bar{R}}{\sigma}; \mathbf{R} \right) - G \left(\frac{R_i - \bar{R}}{\sigma}; \hat{\Theta} \right) \right]^2.$$

5.2 Option valuation: the I.I.D. case

We use the method of Duan and Simonato (2001) to come up an m-state time-homogeneous Markov chain to approximate the stochastic process of the transformed variable $X_t = \ln S_t - (r - d)t$ under the risk-neutral distribution. Let m be an odd integer to simplify the construction. Let x_U and x_L denote the largest and smallest state values used and make the center of the interval equal to the initial value of the target chain X_0. Equally partition the interval into $m - 1$ cells and denote the set of m states by $\{x_1, x_2, \cdots, x_m\}$ with $x_1 = x_L$, $x_{(m+1)/2} = X_0$ and $x_m = x_U$. To facilitate the following derivation, we conveniently let $x_0 = -\infty$ and $x_{m+1} = \infty$. The m-state Markov chain has the transition probability from the ith state to jth state defined as

$$\pi_{ij} = \Pr \left\{ \frac{x_{j-1} + x_j}{2} < X_{t+1} \leq \frac{x_j + x_{j+1}}{2} \bigg| X_t = x_i \right\}$$

$$= \Pr \left\{ \frac{x_{j-1} + x_j}{2} < x_i - r + d + \sigma G^{-1} \left(\Phi(Z_{t+1}; \hat{\Theta}) + \mu \right) \leq \frac{x_j + x_{j+1}}{2} \right\}$$

$$= \Pr \left\{ \frac{1}{\sigma} \left(\frac{x_{j-1} + x_j}{2} - x_i + r - d - \mu \right) < G^{-1} \left(\Phi(Z_{t+1}; \hat{\Theta}) \right) \leq \frac{1}{\sigma} \left(\frac{x_j + x_{j+1}}{2} - x_i + r - d - \mu \right) \right\}$$

16
\[
\begin{align*}
&= \Pr \left\{ \Phi^{-1} \left[G \left(\frac{1}{\sigma} \left(\frac{x_{i-1} + x_i}{2} - x_i + r - d - \mu \right); \tilde{\Theta} \right) \right] < Z_{t+1} \right\} \\
&= \Phi \left\{ \Phi^{-1} \left[G \left(\frac{1}{\sigma} \left(\frac{x_{i-1} + x_i}{2} - x_i + r - d - \mu \right); \tilde{\Theta} \right) \right] - \lambda^* \right\} \\
&- \Phi \left\{ \Phi^{-1} \left[G \left(\frac{1}{\sigma} \left(\frac{x_j + x_{j+1}}{2} - x_i + r - d - \mu \right); \tilde{\Theta} \right) \right] - \lambda^* \right\} .
\end{align*}
\]

Since \(\pi_{ij} \) does not depend on \(t \), the Markov chain is time-homogeneous. Denote the transition probability matrix by \(\Pi \) with its \((i, j)\)-th entry being \(\pi_{ij} \). Note that \(\Pi \) is a highly sparse matrix by the nature of the problem. Let the \(m \)-dimensional value vector at time \(t \) be \(V_t \). Denote the contingent payoff function by \(f(S_t) \) and the payoff vector corresponding to \(m \) values of \(x_i \) by \(F_t \). In other words, the \(i \)th element of \(F_t \) is \(f(\exp(x_i + (r - d)T)) \). At maturity, \(V_T = F_T \). The following recursive system can be used to value American style options:

\[
V_t = \max \left\{ F_t, e^{-r \Pi V_{t+1}} \right\}.
\]

For European style options, it can be simplified to \(V_t = e^{-r(T-t)} \Pi^{T-t} F_T \). The option value corresponding to the current stock price is the enter element of \(V_t \).

In our implementation, we let \(x_g = 3\sigma \sqrt{T - t} \). The value for \(x_U \) and \(x_L \) are determined by

\[
\begin{align*}
 x_U &= X_0 + x_g \sqrt{\frac{m - 1}{100}} \\
 x_L &= X_0 - x_g \sqrt{\frac{m - 1}{100}}.
\end{align*}
\]

Note that we treat \(m = 101 \) as the base case for which the Markov chain is constructed to cover the target variable at the maturity of the option over the range of three standard deviations in each direction. Such a construction can ensure that the partition condition given in Duan and Simonato (2001) is satisfied so that the approximation algorithm will converge to the right theoretical value as \(m \) tends to infinity. The results reported in the paper are computed using \(m = 501 \).

5.3 Option valuation: the dynamic case

In the following description, we use the return dynamic given in (16)-(18). These restrictions make the target system into a two-dimensional Markov process. We again follow the idea of Duan and Simonato (2001) to come up an \(m \times n \)-state time-homogeneous Markov chain to approximate the stochastic process for the pair of transformed variable \(X_{1t} = \ln S_t - (r - d)T \) and \(X_{2t} = \ln \sigma_{t+1}^2 \) under the risk-neutral distribution (with \(m \) values for \(X_{1t} \) and \(n \) values for
which is derived from equation (14). Thus, we have cells and denote the Cartesian product of x_1 to equations (16)-(18).

Note that the indicator function comes into play because for a bivariate Markovian system so that the Markov chain method can apply. Again m and n are odd integers to simplify the construction of the Markov chain.

Let x_{1U} and x_{1L} denote the largest and smallest state values used for X_{1l}. Similarly, we have x_{2U} and x_{2L} for X_{2t}. We make the centers of the two intervals equal to the initial values of the two variables, i.e., X_{10} and X_{20}. Equally partition these intervals into $m - 1$ and $n - 1$ cells and denote the Cartesian product of $m \times n$ states by $\{(x_{1i}, x_{2j}) : i = 1, \ldots, m; j = 1, \ldots, n\}$ where $x_{11} = x_{1L}$, $x_{1(m+1)/2} = X_{10}$, $x_{1m} = x_{1U}$, $x_{21} = x_{2L}$, $x_{2(n+1)/2} = X_{20}$ and $x_{2m} = x_{2U}$. To facilitate the following derivation, we conveniently let $x_{10} = -\infty$ and $x_{1(m+1)} = \infty$. The $m \times n$-state Markov chain has the transition probability from the (i, j)-th state to (k, l)-th state defined as

$$
\pi(i, j; k, l) = \Pr \left\{ \frac{x_{1(k-1)} + x_{1k}}{2} < X_{1(t+1)} \leq \frac{x_{1k} + x_{1(k+1)}}{2} \Big| X_{1t} = x_{1i}, X_{2t} = x_{2j} \right\}
\times \Pr \left\{ \frac{x_{2(l-1)} + x_{2l}}{2} < \Gamma(x_{1i}, x_{1k}, x_{2j}) \leq \frac{x_{2l} + x_{2(l+1)}}{2} \right\}
$$

where

$$
\Gamma(x, y, z) = \ln \left[\beta_0 + \beta_1 e^z + \beta_2 \left(y - x - (\eta + \theta)e^z/2 + \frac{1}{2} e^z \right)^2 \right].
$$

Note that the indicator function comes into play because $X_{2(t+1)} = \Gamma \left(X_{1t}, X_{1(t+1)}, X_{2t} \right)$ due to equations (16)-(18).

Numerically solve for λ_j^* corresponding to each x_{2j} by

$$
\int_{-\infty}^{\infty} \exp \left[e^{x_{2j}/2} G^{-1} \left(\Phi \left(x \right); \hat{\Theta} \right) + \eta e^{x_{2j}/2} - \frac{1}{2} e^{x_{2j}} \right] \phi(x - \lambda_j^*) \, dx = 1,
$$

which is derived from equation (14). Thus,

$$
\Pr \left\{ \frac{x_{1(k-1)} + x_{1k}}{2} < X_{1(t+1)} \leq \frac{x_{1k} + x_{1(k+1)}}{2} \Big| X_{1t} = x_{1i}, X_{2t} = x_{2j} \right\} = \Pr \left\{ e^{-x_{2j}/2} \left(\frac{x_{1(k-1)/2} + x_{1k}}{2} - x_{1i} + \frac{1}{2} e^{x_{2j}} \right) - \eta < G^{-1} \left(\Phi \left(Z_{t+1} \right); \hat{\Theta} \right) \leq e^{-x_{2j}/2} \left(\frac{x_{1k} + x_{1(k+1)/2}}{2} - x_{1i} + \frac{1}{2} e^{x_{2j}} \right) - \eta \right\}
$$

$$
= \Pr \left\{ \Phi^{-1} \left[G \left(e^{-x_{2j}/2} \left(\frac{x_{1(k-1)/2} + x_{1k}}{2} - x_{1i} + \frac{1}{2} e^{x_{2j}} \right) - \eta; \hat{\Theta} \right) \right] < Z_{t+1} \right\}
$$

$$
= \Phi \left\{ \Phi^{-1} \left[G \left(e^{-x_{2j}/2} \left(\frac{x_{1k} + x_{1(k+1)/2}}{2} - x_{1i} + \frac{1}{2} e^{x_{2j}} \right) - \eta; \hat{\Theta} \right) \right] - \lambda_j^* \right\} - \Phi \left\{ \Phi^{-1} \left[G \left(e^{-x_{2j}/2} \left(\frac{x_{1(k-1)/2} + x_{1k}}{2} - x_{1i} + \frac{1}{2} e^{x_{2j}} \right) - \eta; \hat{\Theta} \right) \right] - \lambda_j^* \right\}.
$$

18
It is clear that $\pi(i, j; k, l)$ does not depend on t and thus the Markov chain is time-homogeneous. Denote the $mn \times mn$ transition probability matrix by Π with $\pi(i, j; k, l)$ as its entry. It should be pointed out that Π is a highly sparse matrix by the nature of the problem. Let the mn-dimensional value vector at time t be V_t. Denote the contingent payoff function by $f(S_t)$ and the mn-dimensional payoff vector corresponding to m values of x_{1i} by F_t (Note that the payoff function only depends on price not volatility. Thus, the mn-dimensional payoff factor consists of the m-dimensional vector repeated for n times.) In other words, the element of F_t corresponding to x_{1i} is always $f(\exp(x_{1i} + (r - d)t))$. At maturity, $V_T = F_T$. The following recursive system can be used to value American style options:

$$V_t = \max \{ F_t, e^{-r} \Pi V_{t+1} \}.$$

For European style options, it can be simplified to $V_t = e^{-r(T-t)} \Pi^{T-t} F_T$. The option value corresponding to the current stock price is the enter element of V_t.

Unlike the GARCH case in Duan and Simonato (2001), we do not have analytical formulas, due to the nonparametric nature of the conditional return distribution, to help set the upper and lower bounds for the Markov chain. In our implementation, we let $(x_{1\text{max}}, x_{1\text{min}})$ and $(x_{2\text{max}}, x_{2\text{min}})$ denote the maximum and minimum pairs for the first and second variables obtained in 100 simulated paths. Let $x_{1g} = \max \{ x_{1\text{max}} - X_{10}, X_{10} - x_{1\text{min}} \}$ and $x_{2g} = \max \{ x_{2\text{max}} - X_{20}, X_{20} - x_{2\text{min}} \}$. The value for x_{iU} and x_{iL} ($i = 1, 2$) are determined by

$$x_{1U} = X_{10} + x_{1g} \sqrt{\frac{m - 1}{100}}, \quad x_{1L} = X_{10} - x_{1g} \sqrt{\frac{m - 1}{100}},$$
$$x_{2U} = X_{20} + x_{2g} \sqrt{\frac{n - 1}{50}}, \quad x_{2L} = X_{20} - x_{2g} \sqrt{\frac{n - 1}{50}}.$$

Note that we use $m = 101$ and $n = 51$ as the base case. Such formulas can ensure that the partition condition given in Duan and Simonato (2001) is satisfied so that the approximation algorithm will converge to the right theoretical value as both m and n tend to infinity. The results reported in the paper are computed using $m = 501$ and $n = 101$.

References

Table 1. A comparison of the nonparametric method with the Black-Scholes model using 252 simulated returns. The following parameter values are used: $\mu = 0.1$ and $\sigma = 0.15$ and $r = 0.05$. Maturity in terms of trading days is determined by using 252 trading days per year and rounding it to the nearest integer. Statistics are computed using 200 simulation runs.

<table>
<thead>
<tr>
<th>$T = 1$ month</th>
<th>Strike price/stock price</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Scholes (True parameter)</td>
<td>10.3817</td>
<td>5.5947</td>
<td>1.9396</td>
<td>0.3479</td>
<td>0.0289</td>
<td></td>
</tr>
<tr>
<td>NP (i.i.d.; N = 252)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10.3815</td>
<td>5.6121</td>
<td>1.9755</td>
<td>0.3663</td>
<td>0.0335</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.1139</td>
<td>0.1099</td>
<td>0.1113</td>
<td>0.0606</td>
<td>0.0123</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>10.3920</td>
<td>5.6283</td>
<td>1.9871</td>
<td>0.3743</td>
<td>0.0340</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>9.8420</td>
<td>5.0962</td>
<td>1.6090</td>
<td>0.2270</td>
<td>0.0104</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10.7723</td>
<td>5.9158</td>
<td>2.2320</td>
<td>0.5435</td>
<td>0.0794</td>
<td></td>
</tr>
<tr>
<td>Black-Scholes (Est. parameter; N = 252)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10.3824</td>
<td>5.5984</td>
<td>1.9449</td>
<td>0.3524</td>
<td>0.0306</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.0035</td>
<td>0.0361</td>
<td>0.0836</td>
<td>0.0506</td>
<td>0.0099</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>10.3823</td>
<td>5.6010</td>
<td>1.9542</td>
<td>0.3567</td>
<td>0.0306</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>10.3764</td>
<td>5.5152</td>
<td>1.7340</td>
<td>0.2319</td>
<td>0.0111</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10.3979</td>
<td>5.7223</td>
<td>2.2045</td>
<td>0.5200</td>
<td>0.0704</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$T = 6$ months</th>
<th>Strike price/stock price</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Scholes (True parameter)</td>
<td>12.7467</td>
<td>8.7561</td>
<td>5.5271</td>
<td>3.1837</td>
<td>1.6694</td>
<td></td>
</tr>
<tr>
<td>NP (i.i.d.; N = 252)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>12.7817</td>
<td>8.8194</td>
<td>5.6098</td>
<td>3.2692</td>
<td>1.7441</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.6244</td>
<td>0.5584</td>
<td>0.4702</td>
<td>0.3680</td>
<td>0.2633</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.8399</td>
<td>8.8937</td>
<td>5.6646</td>
<td>3.3207</td>
<td>1.7828</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>9.8909</td>
<td>6.3083</td>
<td>3.6301</td>
<td>1.8720</td>
<td>0.8646</td>
<td></td>
</tr>
<tr>
<td>Black-Scholes (Est. parameter; N = 252)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>12.7558</td>
<td>8.7677</td>
<td>5.5399</td>
<td>3.1968</td>
<td>1.6821</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.0907</td>
<td>0.1529</td>
<td>0.1978</td>
<td>0.2032</td>
<td>0.1711</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.7626</td>
<td>8.7828</td>
<td>5.5615</td>
<td>3.2190</td>
<td>1.6992</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>12.5450</td>
<td>8.3924</td>
<td>5.0421</td>
<td>2.6852</td>
<td>1.2603</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. A comparison of the nonparametric method with the Black-Scholes model using 1260 simulated returns. The following parameter values are used: $\mu = 0.1$ and $\sigma = 0.15$ and $r = 0.05$. Maturity in terms of trading days is determined by using 252 trading days per year and rounding it to the nearest integer. Statistics are computed using 200 simulation runs.

<table>
<thead>
<tr>
<th>T = 1 month</th>
<th>Strike price/stock price</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Scholes (True parameter)</td>
<td>10.3817</td>
<td>5.5947</td>
<td>1.9396</td>
<td>0.3479</td>
<td>0.0289</td>
<td></td>
</tr>
<tr>
<td>NP (i.i.d.; N = 1260)</td>
<td>Mean</td>
<td>10.3902</td>
<td>5.6231</td>
<td>1.9914</td>
<td>0.3747</td>
<td>0.0346</td>
</tr>
<tr>
<td>Std</td>
<td>0.0241</td>
<td>0.0271</td>
<td>0.0406</td>
<td>0.0246</td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>10.3906</td>
<td>5.6235</td>
<td>1.9939</td>
<td>0.3754</td>
<td>0.0347</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>10.2267</td>
<td>5.4413</td>
<td>1.8061</td>
<td>0.2829</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10.5411</td>
<td>5.7496</td>
<td>2.0979</td>
<td>0.441</td>
<td>0.0487</td>
<td></td>
</tr>
<tr>
<td>Black-Scholes (Est. parameter; N = 1260)</td>
<td>Mean</td>
<td>10.3819</td>
<td>5.5959</td>
<td>1.9417</td>
<td>0.3494</td>
<td>0.0294</td>
</tr>
<tr>
<td>Std</td>
<td>0.0015</td>
<td>0.0164</td>
<td>0.0379</td>
<td>0.0229</td>
<td>0.0044</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>10.3819</td>
<td>5.5962</td>
<td>1.9432</td>
<td>0.3501</td>
<td>0.0293</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>10.3782</td>
<td>5.5490</td>
<td>1.8275</td>
<td>0.2825</td>
<td>0.0178</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10.3884</td>
<td>5.6562</td>
<td>2.0739</td>
<td>0.4324</td>
<td>0.0471</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T = 6 months</th>
<th>Strike price/stock price</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Scholes (True parameter)</td>
<td>12.7467</td>
<td>8.7561</td>
<td>5.5271</td>
<td>3.1837</td>
<td>1.6694</td>
<td></td>
</tr>
<tr>
<td>NP (i.i.d.; N = 1260)</td>
<td>Mean</td>
<td>12.8338</td>
<td>8.8728</td>
<td>5.6612</td>
<td>3.3127</td>
<td>1.7753</td>
</tr>
<tr>
<td>Std</td>
<td>0.1371</td>
<td>0.1334</td>
<td>0.1277</td>
<td>0.1136</td>
<td>0.0899</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.835</td>
<td>8.8793</td>
<td>5.6673</td>
<td>3.3152</td>
<td>1.7778</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>11.8658</td>
<td>7.9520</td>
<td>4.8506</td>
<td>2.6699</td>
<td>1.3226</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>13.6547</td>
<td>9.5823</td>
<td>6.2235</td>
<td>3.7171</td>
<td>2.0385</td>
<td></td>
</tr>
<tr>
<td>Black-Scholes (Est. parameter; N = 1260)</td>
<td>Mean</td>
<td>12.7497</td>
<td>8.7603</td>
<td>5.5322</td>
<td>3.1889</td>
<td>1.6741</td>
</tr>
<tr>
<td>Std</td>
<td>0.0411</td>
<td>0.0693</td>
<td>0.0896</td>
<td>0.0921</td>
<td>0.0776</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.7506</td>
<td>8.7627</td>
<td>5.5356</td>
<td>3.1924</td>
<td>1.6768</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>12.6313</td>
<td>8.5545</td>
<td>5.2624</td>
<td>2.9117</td>
<td>1.4433</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>12.9006</td>
<td>9.0065</td>
<td>5.8454</td>
<td>3.5106</td>
<td>1.9488</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. American put prices based on the nonparametric method (under the i.i.d. assumption) and the Black-Scholes model. The data set contains daily S&P 500 index excess returns from the first trading day of 1996 to the last trading day of 2000 totaling 1263 data points. The current stock price is 100 and \(r = 0.057231 \). The sample standard deviation equals 0.184390836. Maturity in terms of trading days is determined by using 252 trading days per year and rounding it to the nearest integer.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Strike price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td>NP (i.i.d.; N = 1263)</td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0331</td>
</tr>
<tr>
<td>2 months</td>
<td>0.1815</td>
</tr>
<tr>
<td>3 months</td>
<td>0.3749</td>
</tr>
<tr>
<td>4 months</td>
<td>0.5722</td>
</tr>
<tr>
<td>5 months</td>
<td>0.7623</td>
</tr>
<tr>
<td>6 months</td>
<td>0.9428</td>
</tr>
<tr>
<td>Black-Scholes (Est. parameter; N = 1263)</td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>0.0380</td>
</tr>
<tr>
<td>2 months</td>
<td>0.1996</td>
</tr>
<tr>
<td>3 months</td>
<td>0.3994</td>
</tr>
<tr>
<td>4 months</td>
<td>0.5974</td>
</tr>
<tr>
<td>5 months</td>
<td>0.7844</td>
</tr>
<tr>
<td>6 months</td>
<td>0.9593</td>
</tr>
</tbody>
</table>
Figure 1a. The empirical distribution and its smoothed version for a simulated sample of 252 standard normal random variates.

Figure 1b. The empirical distribution and its smoothed version for a simulated sample of 1260 standard normal random variates.
Figure 1c. The empirical distribution and its smoothed version for the S&P 500 index return data (standardized).
Figure 2. The implied volatility surface of the European call option values computed with the nonparametric pricing method (under the i.i.d. assumption). The data set contains daily S&P 500 index excess returns from the first trading day of 1996 to the last trading day of 2000 totaling 1263 data points. Maturity is stated in fractions of one year and stock-to-strike price ratio is used to represent moneyness.