Micro Data for Macro Models

Topic 4: Firm Lifecycle

Thomas Winberry

February 3rd, 2019
Stylized Facts About Firm Dynamics

1. New entrants smaller than the average firm

2. Young firms more likely to exit than average firm

3. Conditional on survival:
 • Young firms grow faster than average
 • Small firms grow faster than average, conditional on age

4. Distribution of firm size has fat tail
Benchmark Model of Firm (Non) Dynamics

- Consider firms i with production function
 $$y_{it} = e^{z_{it} k_{it}^{\theta} n_{it}^{\nu}}, \text{ where } \theta + \nu < 1$$

- Productivity shocks feature mean reversion
 $$z_{it+1} = \rho z_{it} + \varepsilon_{it+1}$$

- Suppose firms enter with average productivity z_{i0} and low capital $k_{i0} < \mathbb{E} [k_{it}]$

- Investment satisfies
 $$1 = \mathbb{E} [MPK_{it+1} + (1 - \delta)]$$

\implies All growth occurs in first period
Mechanisms Generating Firm Dynamics

1. **Selection** upon entry and exit (Hopenhayn 1992)
 - Surviving firms have higher productivity than entrants
 - Mean reversion + selection \rightarrow growth patterns

2. **Capital adjustment costs** (Clementi and Palazzo 2015)
 - Keeps investment from all happening in first period

3. **Financial frictions** (Ottonello and Winberry 2017)
 - Costly to finance investment

4. **Demand accumulation** (Foster, Haltiwanger, and Syverson 2016)
 - Another form of investment
Clementi and Palazzo (2015)

- Adds *capital adjustment costs* to Hopenhayn (1992) model
- Model matches *key stylized facts* about firm dynamics
 1. New entrants smaller than average
 2. Young firms more likely to exit
 3. Conditional on survival, young/small firms grow faster
- Generates *persistence* in response to aggregate shocks
Model Overview

Incumbent Firms
- Idiosyncratic + aggregate productivity shocks
- Fixed operating cost + exit
- Fixed + quadratic adjustment costs

Potential Entrants
- Fixed mass
- Signal of productivity if enter
- Fixed entry cost

Partial equilibrium
- Fixed discount factor $1/R$
- Labor supply function $L(w) = w^\gamma$
Incumbent Firms

- **Production function** \(y_{it} = e^{Z_t} e^{z_{it}} k_{it}^\theta n_{it}^{\nu} \)
 - Aggregate shock \(Z_{t+1} = \rho_Z Z_t + \varepsilon_{t+1}^Z \)
 - Idiosyncratic shock \(z_{it+1} = \rho_z Z_{it} + \varepsilon_{it+1}^Z \)

- **Capital accumulation** follows \(k_{it+1} = (1 - \delta) k_{it} + i_{it} \)
 - Fixed cost \(c_0 k_{it} \) if \(i_{it} \neq 0 \)
 - Quadratic adjustment cost \(-\frac{c_1}{2} \left(\frac{i_{it}}{k_{it}} \right)^2 k_{it} \)

- To continue into next period, must pay fixed operating cost \(c_f \sim \log N(\mu_{c_f}, \sigma_{c_f}) \)
Timing and Decision Problem

\[
v^1(z, k; s) = \max_n e^Z e^Z k^\theta n^\nu - w(s)n + E_c f \left[\max \{ v^0(k), v^2(z, k; s) - c_f \} \right]
\]

\[
v^2(z, k; s) = \max_{k'} - (k' - (1 - \delta)k) - AC(k', k) + \frac{1}{R} E_{z', z'|z, s} \left[v^1(z', k'; s') \right]
\]
Potential Entrants

• **Fixed mass** M of potential entrants
• **Draw signal** of future productivity $q \sim \text{Pareto}(q)$
 - $z' = \rho_s q + \eta', \eta' \sim \mathcal{N}(0, \sigma_s)$
• To become an incumbent, pay fixed entry cost c_e
Potential Entrants

• **Fixed mass** M of potential entrants
• **Draw signal** of future productivity $q \sim \text{Pareto}(q)$

 - $z' = \rho_s q + \eta'$, $\eta' \sim \mathcal{N}(0, \sigma_s)$

• To become an incumbent, pay fixed entry cost c_e
Potential Entrants

- **Fixed mass** M of potential entrants
- **Draw signal** of future productivity $q \sim \text{Pareto}(q)$
 - $z' = \rho_s q + \eta'$, $\eta' \sim N(0, \sigma_s)$
- To become an incumbent, pay fixed entry cost c_e

$$ v(q; s) = -k' + \frac{1}{R} \mathbb{E}_{z', z'|z, q} \left[v^1(z', k'; s') \right] $$
Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital share</td>
<td>(\alpha)</td>
<td>0.3</td>
</tr>
<tr>
<td>Span of control</td>
<td>(\theta)</td>
<td>0.8</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>(\delta)</td>
<td>0.1</td>
</tr>
<tr>
<td>Interest rate</td>
<td>(R)</td>
<td>1.04</td>
</tr>
<tr>
<td>Labor supply elasticity</td>
<td>(\gamma)</td>
<td>2.0</td>
</tr>
<tr>
<td>Mass of potential entrants</td>
<td>(M)</td>
<td>1,766.29</td>
</tr>
<tr>
<td>Persistence idiosync. shock</td>
<td>(\rho_s)</td>
<td>0.55</td>
</tr>
<tr>
<td>Variance idiosync. shock</td>
<td>(\sigma_s)</td>
<td>0.22</td>
</tr>
<tr>
<td>Operating cost – mean parameter</td>
<td>(\mu_{c_f})</td>
<td>-5.63872</td>
</tr>
<tr>
<td>Operating cost – var parameter</td>
<td>(\sigma_{c_f})</td>
<td>0.90277</td>
</tr>
<tr>
<td>Fixed cost of investment</td>
<td>(c_0)</td>
<td>0.00011</td>
</tr>
<tr>
<td>Variable cost of investment</td>
<td>(c_1)</td>
<td>0.03141</td>
</tr>
<tr>
<td>Pareto exponent</td>
<td>(\xi)</td>
<td>2.69</td>
</tr>
<tr>
<td>Entry cost</td>
<td>(c_e)</td>
<td>0.005347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean investment rate</td>
<td>0.153</td>
<td>0.122</td>
</tr>
<tr>
<td>Std. Dev. investment rate</td>
<td>0.325</td>
<td>0.337</td>
</tr>
<tr>
<td>Investment autocorrelation</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td>Inaction rate</td>
<td>0.067</td>
<td>0.081</td>
</tr>
<tr>
<td>Entry rate</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>Entrants’ relative size</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>Exiters’ relative size</td>
<td>0.47</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Survival Probability by Age

- Survival probability decreases with age
 - Productivity increases with age
Growth by Age and Size

• Growth rate **decreasing in size**
 • Mean reversion in productivity

• Growth rate **decreasing in age**
 • Young firms have lower capital
Calibrating Aggregate TFP Shocks

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor supply elasticity</td>
<td>γ</td>
<td>2.0</td>
</tr>
<tr>
<td>Persist. aggregate shock</td>
<td>ρ_z</td>
<td>0.685</td>
</tr>
<tr>
<td>Std. Dev. aggregate shock</td>
<td>σ_z</td>
<td>0.0163</td>
</tr>
</tbody>
</table>

Targets

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation output growth</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>Autocorrelation output growth</td>
<td>0.069</td>
<td>0.063</td>
</tr>
<tr>
<td>Std. dev. employment growth (rel. to output growth)</td>
<td>0.656</td>
<td>0.667</td>
</tr>
</tbody>
</table>
Calibrating Aggregate TFP Shocks

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor supply elasticity</td>
<td>γ</td>
<td>2.0</td>
</tr>
<tr>
<td>Persist. aggregate shock</td>
<td>ρ_z</td>
<td>0.685</td>
</tr>
<tr>
<td>Std. Dev. aggregate shock</td>
<td>σ_z</td>
<td>0.0163</td>
</tr>
</tbody>
</table>

Targets

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation output growth</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>Autocorrelation output growth</td>
<td>0.069</td>
<td>0.063</td>
</tr>
<tr>
<td>Std. dev. employment growth (rel. to output growth)</td>
<td>0.656</td>
<td>0.667</td>
</tr>
</tbody>
</table>

Entry and Exit Over the Cycle

<table>
<thead>
<tr>
<th>Entry Rate</th>
<th>Exit Rate</th>
<th>Entrants’ Size</th>
<th>Exiters’ Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.402</td>
<td>-0.779</td>
<td>-0.725</td>
<td>-0.892</td>
</tr>
</tbody>
</table>
Aggregate Impulse Responses

- **Aggregate Productivity**
- **Wage**
- **Entry Rate**
- **Output**
- **Employment**
- **Exit Rate**
Aggregate Impulse Responses

Number of Firms

Entrants’ Avg Idiosync Prod

Exiters’ Avg Idiosync Prod

Avg. Idiosyncratic Productivity

Entrants’ Average Size Relative to Incumbents

Exiters’ Average Size Relative to Non-Exiters
Propagation

Output – Impulse Response

Percentage Deviation

Time

With entry & exit
Without
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^\alpha, \text{ where} \]

\[A_t = Z_t \]
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^\alpha N_t^{1-\alpha}, \text{ where} \]

\[A_t = Z_t \left(\left(\mathbb{E}_t \left[Z_{jt}^{1/(1-\alpha)} \right] \mathbb{E}_t \left[k_{jt}^{\theta/(1-\alpha)} \right] \right) + \text{Cov}_t(Z_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)}) / K_t \right)^{1-\alpha} \]
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^{\alpha} N_t^{1-\alpha}, \] where

\[A_t = Z_t \left(\left(E_t \left[Z_{jt}^{1/(1-\alpha)} \right] E_t \left[k_{jt}^{\theta/(1-\alpha)} \right] + \text{Cov}_t(Z_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)}) \right) / K_t \right)^{1-\alpha} \]

1. **External propagation**: exogenous component of TFP
 \[Z_t = \rho Z_{t-1} + \varepsilon_t \]
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^\alpha N_t^{1-\alpha}, \text{ where} \]

\[A_t = Z_t \left(\left(\mathbb{E}_t \left[S_{jt}^{1/(1-\alpha)} \right] \mathbb{E}_t \left[k_{jt}^{\theta/(1-\alpha)} \right] + \text{Cov}_t(S_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)}) \right) / K_t \right)^{1-\alpha} \]

1. **External propagation**: exogenous component of TFP
 \[Z_t = \rho Z_{t-1} + \varepsilon_t \]

2. **Internal propagation**:
 - Capital accumulation
Three New Propagation Mechanisms in This Model

\(Y_t = A_tK_t^{1-\alpha}L_t^\alpha N_t^{1-\alpha} \), where

\[
A_t = Z_t \left(\left(\mathbb{E}_t \left[Z_{jt}^{1/(1-\alpha)} \right] \mathbb{E}_t \left[k_{jt}^{\theta/(1-\alpha)} \right] + \text{Cov}_t \left(Z_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)} \right) \right) / K_t \right)^{1-\alpha}
\]

1. **External propagation**: exogenous component of TFP
 \(Z_t = \rho Z_{t-1} + \varepsilon_t \)

2. **Internal propagation**:
 - Capital accumulation
 - Firm accumulation
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^\alpha N_t^{1-\alpha}, \text{ where} \]

\[A_t = Z_t \left(\left(\mathbb{E}_t \left[Z_{jt}^{1/(1-\alpha)} \right] \mathbb{E}_t \left[k_{jt}^{\theta/(1-\alpha)} \right] + \text{Cov}_t(z_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)}) / K_t \right) \right)^{1-\alpha} \]

1. **External propagation**: exogenous component of TFP
 \[Z_t = \rho Z_{t-1} + \epsilon_t \]

2. **Internal propagation**:
 - Capital accumulation
 - Firm accumulation
 - Selection
Three New Propagation Mechanisms in This Model

\[Y_t = A_t K_t^{1-\alpha} L_t^\alpha N_t^{1-\alpha}, \text{ where} \]

\[A_t = Z_t \left(\left(E_t \left[Z_{jt}^{1/(1-\alpha)} \right] \right) \left(E_t \left[k_{jt}^{\theta/(1-\alpha)} \right] \right) + \text{Cov}_t (Z_{jt}^{1/(1-\alpha)}, k_{jt}^{\theta/(1-\alpha)}) \right) / K_t \right)^{1-\alpha} \]

1. **External propagation**: exogenous component of TFP
 \[Z_t = \rho Z_{t-1} + \varepsilon_t \]

2. **Internal propagation**:
 - Capital accumulation
 - Firm accumulation
 - Selection
 - Allocation