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Abstract

In this paper, we build a model where the presence of liquidity constraints tends
to magnify the economy�s response to aggregate shocks. We consider a decentralized
model of trade, where agents may use money or credit to buy goods. When agents do
not have access to credit and the real value of money balances is low, agents are more
likely to be liquidity constrained. This makes them more concerned about their short-
term earning prospects when making their consumption decisions, and about their
short-term spending opportunities when making their production decisions. This
generates a coordination element in spending and production, which leads to greater
aggregate volatility and greater comovement across producers.
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1 Introduction

During recessions, consumers, facing a higher risk of unemployment and temporary income

losses, tend to hold on to their reserves of cash, bonds, and other liquid assets, as a form of

self-insurance. This precautionary behavior can lead to reduced spending and magnify the

initial decline in aggregate activity. In this paper, we explore formally this idea and show

that this ampli�cation mechanism depends crucially on the consumers�access to liquidity

in a broad sense. The scarcer the access to liquidity, the more consumers are likely to

be liquidity constrained in the near future. This means that they are more concerned

about their short-term earnings prospects when making their spending decisions, and these

decisions become more responsive to aggregate cyclical conditions. In other words, there

is a stronger �coordination e¤ect� which can magnify the e¤ect of aggregate shocks on

aggregate output and induce more comovement across di¤erent sectors of the economy.

We consider a decentralized model of production and exchange in the tradition of search

models of money, where credit frictions arise from the limited ability to verify the agents�

identity. There is a large number of households, each composed of a consumer and a

producer. Consumers and producers from di¤erent households meet and trade in spatially

separated markets, or islands. In each island, the gains from trade are determined by a

local productivity shock. An exogenous aggregate shock determines the distribution of local

shocks across islands. A good aggregate shock reduces the proportion of low productivity

islands and increases that of high productivity islands, that is, it leads to a �rst-order

stochastic shift in the distribution of local productivities. Due to limited credit access,

households accumulate precautionary money balances to bridge the gap between current

spending and current income. Money is supplied by the government and grows at a constant

rate. In a stationary equilibrium, the rate of return on money is equal to the inverse of the

money growth rate. A lower rate of return on money reduces the equilibrium real value of

the money stock.

In the model, we distinguish di¤erent regimes along two dimensions: credit access and

the rate of return on money. In regimes with less credit access and a lower rate of return

on money, agents are more likely to face binding liquidity constraints. In such regimes, we

show that there is a coordination element both in spending and in production decisions:

agents are less willing to trade (buy and sell) when they expect others to trade less. This
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leads both to greater aggregate volatility and to greater comovement among islands.

We �rst obtain analytical results in two polar cases which we call �unconstrained�and

�fully constrained�regimes. An unconstrained regime arises when either households have

unrestricted access to credit or the value of real money balances is su¢ ciently high. In this

case, households are never liquidity constrained in equilibrium. Our �rst result is that, in an

unconstrained regime, the quantity traded in each island is independent of what happens

in other islands. The result follows from the fact that households are essentially fully

insured against idiosyncratic shocks. This makes their expected marginal value of money

constant, allowing the consumer and the producer from the same household to make their

trading decisions independently. At the opposite end of the spectrum, a fully constrained

regime arises when households have no credit access and the value of real money balances

is su¢ ciently low, so that households expect to be liquidity constrained for all realizations

of the idiosyncratic shocks. In this case, the decisions of the consumer and the producer are

tightly linked. The consumer needs to forecast the producer�s earnings and the producer

needs to forecast the consumer�s spending in order to evaluate the household�s marginal

value of money.

Next, we look at the aggregate implications of these linkages. In all regimes, a bad

aggregate shock has a negative compositional e¤ect: as fewer islands have high productivity,

aggregate output decreases. However, in an unconstrained regime there is no feedback from

this aggregate fall in output to the level of trading in an island with a given local shock. In a

fully constrained regime, instead, the linkage between trading decisions in di¤erent islands

generates an additional e¤ect on trading and output. A bad aggregate shock reduces the

probability of high earnings for the producer, inducing the consumer to reduce spending.

At the same time, the producer expects his partner to spend less, reducing his incentive

to produce. These two e¤ects imply that a lower level of aggregate activity induces lower

levels of activity in each island, conditional on the local shock, leading to a magni�ed

fall in aggregate activity. Numerical results show that our mechanism is also at work

in intermediate regimes, where the liquidity constraint is occasionally binding, and that

reduced credit access and a lower rate of return on money lead to higher volatility and

comovement.

This paper is related to the literature on search models of decentralized trading, going

back to Diamond (1982, 1984) and Kiyotaki and Wright (1989). In particular, Diamond
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(1982) puts forth the idea that �the di¢ culty of coordination of trade�may contribute to

cyclical volatility. The contribution of our paper is to show that the presence of this coor-

dination e¤ect depends crucially on credit market conditions and on the monetary regime.

This allows us to identify a novel connection between �nancial development, liquidity sup-

ply, and aggregate dynamics. Our model allows for divisible money and uses the Lagos

and Wright (2005) approach to make the model tractable. In Lagos and Wright (2005)

agents alternate trading in a decentralized market to trading in a centralized competitive

market. The combination of quasi-linear preferences and periodic access to a centralized

market ensures that the distribution of money holdings is degenerate when agents enter the

decentralized market. Here we use these same two ingredients, with a modi�ed periodic

structure. In our model, agents have access to a centralized market every three periods.

The extra period of decentralized trading is necessary to make the precautionary motive

matter for trading decisions in the decentralized market of the previous period. This is at

the core of our ampli�cation mechanism. A three-period structure is also used by Berentsen,

Camera and Waller (2005) to study the short-run neutrality of money. They show that,

away from the Friedman rule, random monetary injections can be non-neutral, since they

have a di¤erential e¤ect on agents with heterogeneous money holdings. Although di¤erent

in its objectives, their analysis also relies on the lack of consumption insurance. Our work

is also related to a large number of papers who have explored the implications of di¤erent

monetary regimes for risk sharing, in environments with idiosyncratic risk (e.g. Aiyagari

and Williamson, 2000, Reed and Waller, 2006) and is related to Rocheteau and Wright

(2005) for the use of competitive pricing à la Lucas and Prescott (1974) in a money search

model.

More broadly, the paper is related to the literature exploring the relation between �nan-

cial frictions and aggregate volatility, including Bernanke and Gertler (1989), Bencivenga

and Smith (1991), Acemoglu and Zilibotti (1997), and Kiyotaki and Moore (1997). In par-

ticular, Kiyotaki and Moore (2001) also emphasize the e¤ect of a limited supply of liquid

assets (money) on aggregate dynamics. Their paper studies a di¤erent channel by which

limited liquidity can a¤ect the transmission of aggregate shocks, focusing on the e¤ects on

investment and capital accumulation.

Our paper is also related to the vast literature on the e¤ect of liquidity constraints on

consumption decisions. In particular, our argument relies on the idea that when liquidity
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constraints are binding less often, consumption becomes less sensitive to short-term income

expectations. Some evidence consistent with this idea is in Jappelli and Pagano (1989),

who show that the excess sensitivity of consumption to current income is less pronounced in

countries with more developed credit markets, and in Bacchetta and Gerlach (1997), who

show that excess sensitivity has declined in the United States as a consequence of �nancial

innovations.

The rest of the paper is organized as follows. In Section 2, we introduce a baseline

model, with simple binary shocks and no credit access, and derive our main analytical

results. In Section 3, we analyze an extended version of the model, generalizing the shock

distribution and allowing for credit access. Section 5 presents a further extension with

imperfect information and public signals. Section 6 concludes. The appendix contains all

the proofs not in the text.

2 The Model

The economy is populated by a unit mass of in�nitely-lived households, composed of two

agents, a consumer and a producer. Time is discrete and each period agents produce

and consume a single, perishable consumption good. The economy has a simple periodic

structure: each time period t is divided into three subperiods, s = 1; 2; 3. We will call them

�periods�whenever there is no risk of confusion.

In periods 1 and 2, the consumer and the producer from each household travel to

spatially separated markets, or islands, where they interact with consumers and producers

from other households. There is a continuum of islands and each island receives the same

mass of consumers and producers in both periods 1 and 2. The assignment of agents

to islands is random and satis�es a law of large numbers, so that each island receives a

representative sample of consumers and producers. In each island there is a competitive

goods market, as in Lucas and Prescott (1974). The consumer and the producer from the

same household do not communicate while traveling in periods 1 and 2, but get together

at the end of each period. In period 3, all consumers and producers trade in a single

centralized market.1

1The use of a household made of two agents who are spatially separated during a trading period, goes
back to Lucas (1990) and Fuerst (1992).
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In period 1 of time t, a producer located in island k, has access to the linear technology

yt;1 = �
k
tnt;

where yt;1 is output, nt is labor e¤ort, and �
k
t is the local level of productivity, which is

random and can take two values: 0 and � > 0. At time t, a fraction �t of islands is

randomly assigned the high productivity level �, while a fraction 1 � �t is unproductive.
The aggregate shock �t is independently drawn and publicly revealed at the beginning of

period 1, and takes two values, �H and �L, in (0; 1), with probabilities � and 1 � �. The
island-speci�c productivity �kt is only observed by the consumers and producers located in

island k. In Section 3, we will generalize the distributions of local and aggregate shocks.

In periods 2 and 3, each producer has a �xed endowment of consumption goods, yt;2 = e2

and yt;3 = e3. We assume that the value of e3 is large, so as to ensure that equilibrium

consumption in period 3 is strictly positive for all households.

The household�s preferences are represented by the utility function

E

" 1X
t=0

�t(u(ct;1)� v(nt) + U(ct;2) + ct;3)
#
;

where ct;s is consumption in subperiod (t; s) and � 2 (0; 1) is the discount factor. Both
u and U are increasing, strictly concave, with continuous �rst and second derivatives on

(0;1). The function u is bounded below, with u(0) = 0, has �nite right-derivative at 0 and
satis�es the Inada condition limc!1 u

0 (c) = 0. The function U satis�es the Inada conditions

limc!0 U
0 (c) =1 and limc!1 U

0 (c) = 0. The function v represents the disutility of e¤ort,

is increasing and convex, has continuous �rst and second derivatives on [0; �n) and satis�es

v0(0) = 0 and limn!�n v
0 (n) =1.

We assume that the consumers� identity cannot be veri�ed in the islands they visit

in periods 1 and 2, so credit contracts are not feasible. There is an exogenous supply of

perfectly divisible notes issued by the government, money, and the only feasible trades in

periods 1 and 2 are trades of money for goods. Each household is endowed with a stock of

money M0 at date 0. At the end of each subperiod 3, the government injects ( � 1)Mt

units of money by a lump-sum transfer to each household (a lump-sum tax if  < 1).

Therefore, the stock of money Mt grows at the constant gross rate . In this paper we

make no attempt to explain the government�s choice of the monetary regime, but simply

explore the e¤ect of di¤erent regimes on equilibrium behavior.
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Let us comment brie�y on two of the assumptions made. First, the fact that in subperiod

3 consumers and producers trade in a centralized market and have linear utility is essential

for tractability, as it allows us to derive an equilibrium with a degenerate distribution

of money balances at the beginning of (t; 1), as in Lagos and Wright (2005).2 Second,

we assume that the household is split in a consumer and a producer who make separate

decisions in period 1, without observing the shock of the partner. This assumption allows us

to capture in a compact way the e¤ects of short-term income uncertainty on consumption

and production decisions.

2.1 First-best

The �rst-best allocation provides a useful benchmark for the rest of the analysis. Consider

a social planner with perfect information who can choose the consumption and labor e¤ort

of the households. Given that there is no capital, there is no real intertemporal link between

times t and t+ 1. Therefore, we can look at a three-period planner�s problem.

Each household is characterized by a pair (�; ~�), where the �rst element represents

the shock in the producer�s island and the second the one in the consumer�s island. An

allocation is given by consumption functions fcs(�; ~�; �)gs2f1;2;3g and an e¤ort function
n(�; ~�; �). The planner chooses an allocation that maximizes the ex ante utility of the

representative household

E[u(c1(�; ~�; �))� v(n(�; ~�; �)) + U(c2(�; ~�; �)) + c3(�; ~�; �)];

subject to the economy�s resource constraints. In period 1, given the aggregate shock �,

there is one resource constraint for each island �3

E[c1(~�; �; �)j�; �] � E[y1(�; ~�; �)j�; �];

where y1(�; ~�; �) = �n(�; ~�; �). In period s = 2; 3, the resource constraint is

E[cs(�; ~�; �)j�] � es:

The resource constraints for periods 1 and 2 re�ect the assumption that each island receives

a representative sample of consumers and producers.

2See Shi (1997) for a di¤erent approach to obtain a degenerate distribution of money holdings.
3From now on, �island ��is short for �an island with productivity shock �.�
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An optimal allocation is easy to characterize. Due to the separability of the utility

function, the optimal consumption and output levels in a given island are not a¤ected by

the fraction � of productive islands in the economy. Namely, c1(~�; �; �) = y1(�; ~�; �) = y�1 (�)

for all ~� and �, where y�1 (0) = 0 and y
�
1(�) satis�es

�u0(y�1(�)) = v
0(y�1(�)=�): (1)

Moreover, at the optimum, c2(�; ~�; �) = e2 for all �; ~� and �, that is, households are

fully insured against the shocks � and ~�. Finally, given linearity, the consumption levels

in period 3 are not pinned down, as consumers are ex ante indi¤erent among all pro�les

c3(�; ~�; �) such that E[c3(�; ~�; �)] = e3.

2.2 Equilibrium

Let us normalize all nominal variables (prices and money holdings) dividing them by the

aggregate money stock Mt. Then, we can focus on stationary monetary equilibria where

money is valued and where normalized prices only depend on the current aggregate shock

�t. Therefore, we drop the time index t.

We begin by characterizing optimal individual behavior. Let p1 (�; �) denote the nor-

malized price of goods in period 1 in island �, and p2 (�) and p3 (�) denote the normalized

prices in periods 2 and 3. Consider a household with an initial stock of money m (normal-

ized), at the beginning of period 1 after the realization of �. The consumer travels to island
~� and consumes c1(~�; �). Since money holdings are non-negative, the budget constraint and

the liquidity constraint in period 1 are

m1(~�; �) + p1(~�; �)c1(~�; �) � m; (2)

m1(~�; �) � 0;

where m1(~�; �) denotes the consumer�s normalized money holdings at the end of period 1.

In the meantime, the producer, located in island �, produces and sells y1 (�; �) = �n(�; �).

At the end of period 1, the consumer and the producer get together and pool their money

holdings. Therefore, in period 2 the budget and liquidity constraints are

m2(�; ~�; �) + p2 (�) c2(�; ~�; �) � m1(~�; �) + p1 (�; �) �n(�; �); (3)

m2(�; ~�; �) � 0;
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where consumption, c2(�; ~�; �), and end-of-period normalized money holdings, m2(�; ~�; �),

are now contingent on both shocks � and ~�. Finally, in period 3, the consumer and the

producer are located in the same island and the revenues p3 (�) e3 are immediately available.

Moreover, the household receives a lump-sum nominal transfer equal to �1, in normalized
terms. The constraints in period 3 are then

m3(�; ~�; �) + p3 (�) c3(�; ~�; �) � m2(�; ~�; �) + p2 (�) e2 + p3 (�) e3 +  � 1; (4)

m3(�; ~�; �) � 0:

A household with normalized money balances m3(�; ~�; �) at the end of subperiod 3, will

have normalized balances �1m3(�; ~�; �) at the beginning of the following subperiod 1, as

the rate of return on normalized money holdings between (t; 3) and (t+ 1; 1) is equal to

the inverse of the growth rate of the money stock, . Let V (m) denote the expected utility

of a household with money balances m at the beginning of period 1, before the realization

of the aggregate shock �. The household�s problem is then characterized by the Bellman

equation

V (m) = max
fcsg;fmsg;n

E[u(c1(~�; �))� v (n (�; �)) + U(c2(�; ~�; �)) + c3(�; ~�; �)

+�V (�1m3(�; ~�; �))]; (5)

subject to the budget and liquidity constraints speci�ed above.4 The solution to this

problem gives us the optimal household�s choices as functions of the shocks and of the

initial money balances m, which we denote by c1(�; �;m), c2(�; ~�; �;m), etc.

We are now in a position to de�ne an equilibrium.5

De�nition 1 A stationary monetary equilibrium is given by prices fp1 (�; �) ; p2 (�) ; p3 (�)g,
a distribution of money holdings with c.d.f. H (�) and support M, and an allocation

fn (�; �;m), c1(�; �;m), c2(�; ~�; �;m), c3(�; ~�; �;m), m1 (�; �;m), m2(�; ~�; �;m), m3(�; ~�; �;m)g
such that:

(i) the allocation solves problem (5) for each m 2M;

4Standard dynamic programming techniques can be applied. To take care of the unboundedness of the
per-period utility function, one can extend the argument in Lemma 7 of Lagos and Wright (2004).

5We focus on monetary equilibria, that is, equilibria where money has positive value. As usual in money
search environments, non-monetary equilibria also exist.
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(ii) goods markets clearZ
M
E[c1(�; �;m)j�; �]dH (m) = �

Z
M
E[n(�; �;m)j�; �]dH (m) for all �; �;

Z
M
E[cs(�; ~�; �;m)j�]dH (m) = es for s = 2; 3 and all �;

(iii) the distribution H (�) satis�es
R
MmdH (m) = 1 and

H (m) = Pr[(�; ~�; ~m) : �1m3(�; ~�; �; ~m) � mj�] for all m and �:

Condition (iii) ensures that the distribution H (�) is stationary. As we will see below, we
can focus on equilibria where the distribution of money balances is degenerate at m = 1.

Therefore, from now on, we drop the argument m from the equilibrium allocations.

In order to characterize the equilibrium, it is useful to derive the household�s �rst order

conditions. From problem (5) we obtain three Euler equations, with respective comple-

mentary slackness conditions,

u0(c1(~�; �)) � p1(~�; �)

p2 (�)
E[U 0(c2(�; ~�; �))j~�; �] (m1(~�; �) � 0) for all ~�; �; (6)

U 0(c2(�; ~�; �)) � p2 (�)

p3 (�)
(m2(�; ~�; �) � 0) for all �; ~�; �; (7)

1 � p3 (�) �
�1V 0(�1m3(�; ~�; �)) (m3(�; ~�; �) � 0) for all �; ~�; �; (8)

the optimality condition for labor supply

v0 (n (�; �)) = �
p1 (�; �)

p2 (�)
E[U 0(c2(�; ~�; �))j�; �] for all �; �; (9)

and the envelope condition

V 0 (m) = E

"
u0(c1(~�; �))

p1(~�; �)

#
: (10)

Our assumptions allow us to simplify the equilibrium characterization as follows. Since

� = 0 with probability � > 0, the Inada condition for U implies thatm1(~�; �) andm3(�; ~�; �)

are strictly positive for all �, ~�, and �. To insure against the risk of entering period 2 with

zero money balances, households always keep positive balances at the end of periods 1 and

3. This implies that (6) and (8) always hold as equalities.
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Condition (8), holding with equality, shows why we obtain equilibria with a degenerate

distribution of money balances, as in Lagos and Wright (2005). Given that the normalized

supply of money is equal to 1, a stationary equilibrium with a degenerate distribution H (�)
must satisfy

�1m3(�; ~�; �) = 1 for all �; ~�; �:

In equilibrium, all agents adjust their consumption in period 3, so as to reach the same

level of m3, irrespective of their current shocks. The assumptions that utility is linear in

period 3 and that e3 is large enough imply that the marginal utility of consumption in

period 3 is constant, ensuring that this behavior is optimal.6 Moreover, equation (8), as

an equality, implies that in all stationary equilibria p3 (�) is independent of the aggregate

shock � and equal to =(�V 0(1)). From now on, we just denote it as p3.

This leaves us with condition (7). In general, this condition can be either binding or

slack for di¤erent pairs (�; ~�), depending on the parameters of the model. However, we

are able to give a full characterization of the equilibrium by looking at speci�c monetary

regimes, namely, by making assumptions about . First, we look at equilibria where the

liquidity constraint m2(�; ~�; �) � 0 is never binding. We will show that this case arises if
and only if  = �, that is, in a monetary regime that follows the Friedman rule. Second,

we look at equilibria where the constraint m2(�; ~�; �) � 0 is binding for all pairs (�; ~�) and
for all �. We will show that this case arises if and only if the rate of money growth is

su¢ ciently high, that is, when  � ̂ for a given cuto¤ ̂ > �.
These two polar cases provide analytically tractable benchmarks which illustrate the

mechanism at the core of our model. The numerical example in Section 3.3 considers the

case of economies with  2 (�; ̂), where the liquidity constraint in period 2 is binding for
a subset of agents.

2.2.1 Unconstrained equilibrium

We begin by considering �unconstrained equilibria,�that is, stationary monetary equilibria

where the liquidity constraint in period 2 is never binding. In this case, condition (7) always

6When  > �, it can be shown that all stationary equilibria are characterized by a degenerate distribu-
tion of money holdings.
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holds as an equality. Combining conditions (6)-(8), all as equalities, and (10) gives

u0(c1(~�; �))

p1(~�; �)
= ��1E

"
u0(c1(~�

0
; � 0))

p1(~�
0
; � 0)

#
; (11)

where ~�
0
and � 0 represent variables in the next time period. Taking expectations with

respect to ~� and � on both sides shows that a necessary condition for an unconstrained

equilibrium is  = �. The following proposition shows that this condition is also su¢ cient.

Moreover, under this monetary regime, the equilibrium achieves an e¢ cient allocation.7

Proposition 1 An unconstrained stationary monetary equilibrium exists if and only if

 = � and achieves a �rst-best allocation.

For our purposes, it is especially interesting to understand how the level of activity

is determined in a productive island in period 1. Let p1(�) and y1 (�) denote p1(�; �)

and y1(�; �). Substituting (7) into (6) (both as equalities), we can rewrite the consumer�s

optimality condition in period 1 as

u0(y1 (�)) =
p1(�)

p3
: (12)

Similarly, the producer�s optimality condition (9) can be rewritten as

v0(y1 (�) =�) = �
p1(�)

p3
: (13)

These two equations describe, respectively, the demand and the supply of consumption

goods in island �, as a function of the price p1(�). Jointly, they determine the equilibrium

values of p1 (�) and y1 (�) for each �. These equations highlight that, in an unconstrained

equilibrium, consumers and producers do not need to forecast the income/spending of their

partners when making their optimal choices, given that their marginal value of money is

constant and equal to 1=p3. This implies that trading decisions in a given island are in-

dependent of trading decisions in all other islands. We will see that this is no longer true

when we move to a constrained equilibrium. Conditions (12) and (13) can be easily manip-

ulated to obtain the planner�s �rst order condition (1), showing that in an unconstrained

equilibrium y1(�) is independent of � and equal to the �rst best.

7This result is closely related to the analysis in Section 4 of Rocheteau and Wright (2005).
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2.2.2 Fully constrained equilibrium

We now turn to stationary monetary equilibria where the liquidity constraint is always

binding in period 2, that is, m2(�; ~�; �) = 0 for all �; ~� and �. We refer to them as �fully

constrained equilibria.�We will show that such equilibria arise when the money growth

rate  is su¢ ciently high.

Again, our main objective is to characterize how output is determined in period 1. First,

however, we need to derive the equilibrium value of p2(�). At the beginning of each period

the entire money supply is in the hands of the consumers. Since in a fully constrained

equilibrium consumers spend all their money in period 2 and normalized money balances

are equal to 1, market clearing gives us

p2(�)e2 = 1; (14)

which pins down p2(�). To simplify notation, we normalize e2 = 1, so as to have p2(�) = 1.

Consider now a consumer and a producer in a productive island in period 1. Given

that the consumer will be liquidity constrained in period 2, his consumption in that period

will be fully determined by his money balances. In period 1, the consumer is spending

p1(�)y1(�) and expects his partner�s income to be p1(�)y1(�) with probability �, and zero

otherwise. Therefore, he expects total money balances at the beginning of period 2 to be

1 in the �rst case and 1 � p1(�)y1(�) in the second. Using p2(�) = 1, we can then rewrite
the Euler equation (6) as

u0(y1(�)) = p1(�) [�U
0 (1) + (1� �)U 0 (1� p1(�)y1(�))] : (15)

A symmetric argument on the producer�s side shows that the optimality condition (9) can

be written as

v0
�
y1(�)=�

�
= �p1(�) [�U

0 (1) + (1� �)U 0 (1 + p1(�)y1(�))] : (16)

These two equations correspond to (12) and (13) in the unconstrained case and jointly

determine p1(�) and y1(�) for each �. The crucial di¤erence with the unconstrained case is

that now �, the fraction of productive islands in the economy, enters the optimal decisions

of consumers and producers in a given productive island, since it a¤ects their expected

income and consumption in the following period. We will see in a moment how this a¤ects

aggregate volatility and comovement.
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Notice that (15) and (16) implicitly de�ne a �demand curve� and a �supply curve,�

yD(p1; �) and y
S(p1; �).

8 It is easy to show that, for any �, there exists a price where the

two curves intersect. For comparative statics, it is useful to make the additional assumption

�(1� �H)cU 00 (c) =U 0 (c) � 1 for all c; (A1)

which ensures that the income e¤ect on labor supply is not too strong and that the supply

curve is positively sloped.

Lemma 1 The function yD(p1; �) is decreasing in p1. Under assumption A1, the function

yS(p1; �) is increasing in p1 and, for given �, there is a unique pair (p1 (�) ; y1 (�)) which

solves (15)-(16).

To complete the equilibrium characterization, it remains to �nd p3 and check that con-

sumers are indeed constrained in period 2, that is, that (7) holds. In the next proposition,

we show that this condition is satis�ed as long as  is above some cuto¤ ̂.

Proposition 2 There is a ̂ > � such that a fully constrained stationary monetary equi-

librium exists if and only if  � ̂.9

It is useful to clarify the role of the rate of return on money �1 in determining whether

we are in a constrained or unconstrained equilibrium. Notice that in an unconstrained

equilibrium the household�s normalized money balances at the beginning of period 1, which

are equal to 1, must be su¢ cient to purchase both p1(�)y1(�) and p2(�)e2, in case the

consumer is assigned to a productive island and the producer to an unproductive one.

Therefore in an unconstrained equilibrium the following inequality holds for all �

1

p2(�)
� e2 +

p1(�)

p2(�)
y1(�):

On the other hand, (14) shows that 1=p2(�) is constant and equal to e2 in a fully constrained

equilibrium. That is, the real value of money balances in terms of period 2 consumption

8These are not standard partial-equilibrium demand and supply functions, as they represent the rela-
tion between the price p1 and the demand/supply of goods in a symmetric equilibrium where prices and
quantities are identical in all productive islands.

9Under assumption A1, if  � ̂ there is a unique fully constrained equilibrium. However, we cannot
rule out, in general, the existence of other partially constrained equilibria.
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is uniformly lower in a fully constrained equilibrium. This is due to the fact that the rate

of return on money is low. This reduces the agents�willingness to hold money, reducing

the equilibrium real value of money balances. Through this channel high money growth

reduces the households�ability to self-insure.

2.3 Coordination, ampli�cation and comovement

We now turn to the e¤ects of the aggregate shock � on the equilibrium allocation in the

various regimes considered. Aggregate output in period 1 is given by

Y1 (�) = �y1(�): (17)

Consider the proportional e¤ect of a small change in � on aggregate output,

d log Y1 (�)

d�
=
1

�
+
d ln y1(�)

d�
: (18)

When � decreases, there is a smaller fraction of productive islands, so aggregate output

mechanically decreases in proportion to �. This �composition e¤ect� corresponds to the

�rst term in (18). The open question is whether a change in � also a¤ects the endogenous

level of activity in a productive island. This e¤ect is captured by the second term in (18)

and will be called �coordination e¤ect.�

In an unconstrained equilibrium, we know that y1(�) is independent of �. Therefore, if

money growth follows the Friedman rule and the rate of return of money is equal to ��1,

the coordination e¤ect is absent. What happens in a fully constrained equilibrium, that

is, when the rate of return on money is su¢ ciently low? Consider the demand and supply

curves in a productive island, yD(p1; �) and y
S(p1; �), derived above. Applying the implicit

function theorem to (15) and (16) yields

@yD(p1(�); �)

@�
= p1

U 0 (1)� U 0(1� p1(�)y1(�))
u00(y1(�)) + (p1(�))

2 (1� �)U 00(1� p1(�)y1(�))
> 0;

and

@yS(p1(�); �)

@�
= p1

U 0 (1)� U 0(1 + p1(�)y1(�))
v00(y1(�)=�)=� � �(p1(�))2 (1� �)U 00(1 + p1(�)y1(�))

> 0:

Both inequalities follow from the strict concavity of U . On the demand side, the intuition

is the following. In period 1, a consumer in a productive island is concerned about receiving
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a bad income shock. Given that he is liquidity constrained, this shock will directly lower

his consumption from 1 to 1 � p1(�)y1(�). An increase in � lowers the probability of a
bad shock, decreasing the expected marginal value of money and increasing the consumer�s

willingness to spend, for any given price. On the supply side, as � increases, a producer in

a productive island expects his partner to spend p1(�)y1(�) with higher probability. This

generates a negative income e¤ect which induces him to produce more, for any given price.

These two e¤ects shift both demand and supply to the right and, under assumption A1,

lead to an increase in equilibrium output.10 This proves the following result.

Proposition 3 (Coordination) Under assumption A1, in a fully constrained equilibrium,

the output in the productive islands, y1 (�), is increasing in �.

This is the central result of our paper and shows that when liquidity constraints are

binding there is a positive coordination e¤ect, as consumers and producers try to keep

their spending and income decisions aligned. Consumers spend more when they expect

their partners to earn more, and producers work more when they expect their partners to

spend more. This has two main consequences. First, the impact of an aggregate shock on

the aggregate level of activity is magni�ed, leading to increased volatility. Second, there

is a stronger degree of comovement across islands. Let us analyze these two implications

formally.

Since y1 (�) is independent of � in an unconstrained equilibrium and increasing in � in

a fully constrained one, equation (18) implies immediately that @ log Y1 (�) =@� is larger in

a fully constrained equilibrium than in an unconstrained equilibrium. This leads to the

following result.

Proposition 4 (Ampli�cation) Under assumption A1, V ar [log Y1 (�)] is larger in a fully

constrained equilibrium than in an unconstrained equilibrium.

10If is useful to mention what would happen in an environment where the producer and consumer from
the same household can communicate (but not exchange money) in period 1. In that case, in a productive
island there will be two types of consumers and producers, distinguished by the local shock of their partners.
Consumers (producers) paired with a low productivity partner, will have lower demand (supply). So also in
that case an increase in � would lead to an increase in activity in the productive island. However, that case
is less tractable, due to the four types of agents involved, and it fails to capture the e¤ect of uncertainty
on the agents�decisions.
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To measure comovement we look at the coe¢ cient of correlation between local output

in any given island and aggregate output. In an unconstrained equilibrium, there is some

degree of correlation between the two, simply because an increase in � increases both

aggregate output and the probability of a high productivity shock in any given island.

However, in a fully constrained equilibrium the correlation tends to be stronger. Now, even

conditionally on the island receiving the high productivity shock, an increase in � tends to

increase both local and aggregate output, due to the coordination e¤ect. This leads to the

following result.11

Proposition 5 (Comovement) Under assumption A1, Corr[y1 (�; �) ; Y1 (�)] is larger in a

fully constrained equilibrium than in an unconstrained equilibrium.

3 The Extended Model

In the baseline model, the rate of return on money is the only determinant of the households�

access to liquidity. In this section, we allow a fraction of households to have access to credit

each period. This introduces an additional dimension of liquidity, which makes the model

better suited to interpret the e¤ects of �nancial innovation and of �nancial crises, which can

be described as changes in the fraction of households with credit access. We also generalize

the distribution of local and aggregate shocks. Using this extended model, we �rst focus

on the polar cases of unconstrained and fully constrained equilibria, to generalize the main

result of the previous section, Proposition 3. Next, we use a numerical example to analyze

the model�s implications for ampli�cation and comovement, both in the polar cases above

and in intermediate cases.

The setup is as in Section 2 except for two di¤erences. First, we allow for general

distributions of aggregate and local shocks. The aggregate shock �t has c.d.f. G(�) and
support [�; �]. Conditional on �t, the local productivity shock �

k
t has c.d.f. F (�j�t) with

support [0; �]. We assume that F (�j�) has an atom at 0, is continuous in � on (0; �], and is
continuous and decreasing in �, for each �. The latter property implies that a larger � leads

to a distribution of � that �rst-order stochastically dominates a distribution associated

11An alternative measure of comovement is the correlation between the level of activity in any given pair
of islands, that is, Corr[y1 (�; �) ; y1(~�; �)]. In a setup with i.i.d. idiosyncratic shocks the two measures are
interchangeable as it is possible to prove that Corr[y (�; �) ; y(~�; �)] = (Corr[y(�; �); Y (�)])2.
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with a lower �. As before, a law of large numbers applies, so F (�j�) also represents the
distribution of productivity shocks across islands.

Second, we assume that at the beginning of each period t, a fraction � of households is

randomly selected and their identity can be fully veri�ed during that period, so that they

have full credit access. Each island is visited by a representative sample of households: a

fraction � of households with credit access, or credit households, and a fraction 1 � � of
anonymous households who need money to trade goods, or money households.

We study stationary equilibria, de�ned along the lines of De�nition 1 and focus on

equilibria where the distribution of beginning-of-period money balances is degenerate at

m = 1. In subperiod 3, households do not know if they will have access or not to credit in the

next period and hence all choose the same money holdings. Without loss of generality, we

can assume that all loans are repaid in subperiod 3. Moreover, we assume that IOUs issued

by credit household can circulate and so are a perfect substitute for money. Therefore, we

can represent the problem of credit households using the same budget constraints (2)-(4),

simply omitting the non-negativity constraints for m1(~�; �) and m2(�; ~�; �).

In a stationary equilibrium, the behavior of money households is characterized by the

optimality conditions (6)-(9), as in Section 2.2. The assumption that F (�j�) has an atom
at 0, together with the Inada condition for U , ensures that (6) and (8) always hold as

equalities, as in the binary case, while (7) can hold with equality or not depending on the

shocks � and ~� and on the monetary regime. The behavior of credit households is described

by the same optimality conditions, except for one di¤erence: since they can hold negative

nominal balances in subperiod 2, equation (7) always hold as an equality.

3.1 Unconstrained and fully constrained equilibria

First, let us look at unconstrained equilibria, which arise when either monetary policy

follows the Friedman rule or when all households have access to credit, that is, when either

 = � or � = 1.

Proposition 6 In the extended model, an unconstrained stationary monetary equilibrium

exists if and only if  = � and it achieves a �rst-best allocation. Output in period 1 is

y1 (�; �) = y
�
1 (�) where y

�
1 (�) satis�es �u

0 (y�1 (�)) = v
0(y�1 (�) =�) for all � > 0, is increasing

in �, and is independent of �.
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If � = 1 it is easy to show that there exists an unconstrained stationary equilibrium

that also achieves a �rst-best allocation. The only di¤erence is that since all agents have

access to credit, money is not valued in equilibrium except if  = �.

In an unconstrained equilibrium the real allocation is the same for all households, re-

gardless of their access to credit. In particular, they consume and produce the �rst-best

level of output in all islands. As in the binary model, the separability of the utility function

implies that equilibrium output in island � depends only on the local productivity and is

not a¤ected by the distribution of productivities in other islands.

Second, consider fully constrained equilibria where money households are always con-

strained in period 2 and there are no credit households, that is, when  � ̂ and � = 0.

Following similar steps to Section 2.2, we can show that p2 (�) is constant and equal to 1

(under the normalization e2 = 1). Consider a consumer and a producer in island �. The

consumer�s Euler equation and the producer�s optimality condition can be rewritten as

u0(y1(�; �)) = p1 (�; �)

Z �

0

U 0(c2(~�; �; �))dF (~�j�); (19)

v0 (y1 (�; �) =�) = �p1 (�; �)

Z �

0

U 0(c2(�; ~�; �))dF (~�j�); (20)

where, from the consumer�s budget constraints in periods 1 and 2,

c2(�; ~�; �) = 1� p1(~�; �)y1(~�; �) + p1 (�; �) y1 (�; �) : (21)

Equations (19) and (20) are analogous to (15) and (16) and represent the demand and

supply in island �, taking as given prices and quantities in other islands. They de�ne

two functional equations in p1 (�; �) and y1 (�; �). In the Appendix, we show that this

pair of functional equations has a unique solution. To do so, we de�ne nominal income

x(�; �) � p1(�; �)y1(�; �) and solve a �xed point problem for the function x (�; �).
To solve our �xed point problem, we use a contraction mapping argument, making the

following assumption:

�cu
00 (c)

u0 (c)
2 [�; 1) for all c; (A2)

for some � > 0. The upper bound on �cu00 (c) =u0 (c) is needed to ensure that the demand
elasticity in a given island � is high enough. This guarantees that in islands where pro-

ductivity is higher prices do not fall too much, so that nominal income is increasing in �.
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That is, producers in more productive islands receive higher earnings. This property is

both economically appealing and useful on technical grounds, as it allows us to prove the

monotonicity of the mapping used in our �xed point argument.12 The lower bound � is

used to prove the discounting property of the same mapping.13

As in the binary model, we can then characterize a fully constrained equilibrium and

�nd a cuto¤ ̂ such that such an equilibrium exists whenever  � ̂.

Proposition 7 In the extended model, under assumption A2, there is a cuto¤ ̂ > �

such that a fully constrained stationary monetary equilibrium exists if and only if � = 0

and  � ̂. In equilibrium, both output y1(�; �) and nominal income p1(�; �)y1(�; �) are

monotone increasing in �.

We could prove existence under weaker conditions, using a di¤erent �xed point argu-

ment. However, the contraction mapping approach helps us derive the coordination result

in Proposition 8 below.

3.2 Aggregate implications

We now turn to the analysis of the impact of the aggregate shock � on the equilibrium

allocation. Aggregate output in period 1 is given by

Y1 (�) �
Z �

0

y1 (�; �) dF (�j�) ; (22)

where y1 (�; �) � �yC1 (�; �)+(1� �) yM1 (�; �), given that in each island � there is a fraction
� of credit households (C) and a fraction 1�� of money households (M). The proportional
response of output to a small change in �, can be decomposed as in the binary case,

d lnY1
d�

=
1

Y1

Z �

0

y1 (�; �)
@f (�j�)
@�

d� +
1

Y1

Z �

0

@y1 (�; �)

@�
dF (�j�) : (23)

12It is useful to mention alternative speci�cations which can deliver the same result (nominal income
increasing in �) without imposing restrictions on risk aversion in period 1. One possibility is to introduce
local shocks as preference shocks. For example, we could assume that the production function is the same
in all islands while the utility function takes the form �u (c1) where � is the local shock. In this case, it is
straightforward to show that both p1(�; �) and y1(�; �) are increasing in �, irrespective of the curvature of u.
This immediately implies that nominal income is increasing in �. Another possibility is to use more general
preferences, which allow to distinguish risk aversion from the elasticity of intertemporal substitution. For
example, using a version of Epstein and Zin (1989) preferences, it is possible to show that our results only
depends on the elasticity of substitution between c1 and c2 and not on risk aversion.
13This assumption is minimally restrictive, as � is only required to be non-zero.

19



The �rst term is the mechanical composition e¤ect of having a larger fraction of more pro-

ductive islands. This e¤ect is positive both in an unconstrained and in a fully constrained

equilibrium. This follows from the fact that an increase in � leads to a �rst-order stochastic

shift in the distribution of � and that y1 (�; �) is increasing in � in both regimes, as shown

in Propositions 6 and 7.

The second term in (23) is our coordination e¤ect. As in the binary case, this e¤ect

is zero in an unconstrained equilibrium, since, by Proposition 6, output in any island

� is independent of the economy-wide distribution of productivity. Turning to a fully

constrained equilibrium, we can generalize Proposition 3 and show that y1 (�; �) is increasing

in �, for any realization of the local productivity shock �. For this result, we make a

stronger assumption than the one used in the binary model, that is, we assume that U has

a coe¢ cient of relative risk aversion smaller than one

�cU
00 (c)

U 0 (c)
� 1 for all c: (A1�)

This condition is su¢ cient to prove that the labor supply in each island is positively sloped.

Assumption A1�is stronger than needed, as numerical examples show that the labor supply

is positively sloped also for parametrizations with a coe¢ cient of relative risk aversion

greater than 1. In fact, the coordination e¤ect can be more powerful when agents are more

risk averse.

Proposition 8 (Coordination) Consider the extended model. Under assumptions A1�and

A2, in a fully constrained equilibrium, for each � > 0, the output y1 (�; �) is increasing in

�.

To understand the mechanism behind this result, consider the following partial equilib-

rium exercise. Focus on island �, taking as given p1(~�; �) and y1(~�; �) for all ~� 6= �. Consider
the demand and supply equations (19) and (20). Since, from Proposition 7, p1(~�; �)y1(~�; �)

is increasing in ~�, it follows that U 0(c2(~�; �; �)) is decreasing in ~� and U 0(c2(�; ~�; �)) is in-

creasing in ~�. Hence, when � increases the integral on the right-hand side of (19) decreases,

while the integral on the right-hand side of (20) increases.14 The intuition is similar to the

one for the binary model. When a liquidity constrained consumer expects higher income,

14This follows immediately from the fact that an increase in � leads to a shift of the distribution of � in
the sense of �rst-order stochastic dominance.
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his marginal value of money decreases and he increases consumption for any p1(�; �). When

a producer expects higher spending by his partner, he faces a negative income e¤ect and

produces more for any p1(�; �). The �rst e¤ect shifts the demand curve to the right, the

second shifts the supply curve also to the right. Therefore, equilibrium output increases in

island �.

On top of this partial equilibrium mechanism, there is a general equilibrium feed-back

due to the endogenous response of prices and quantities in islands ~� 6= �. This magni�es
the initial e¤ect. As nominal output in all other islands increases, there is a further increase

in the marginal value of money for the consumers and a further decrease for the producers,

leading to an additional increase in output.

Summing up, the coordination e¤ect identi�ed in Proposition 8 is driven by the agents�

expectations regarding nominal income in other islands. This e¤ect tends to magnify the

output response to aggregate shocks in a fully constrained economy and to generate more

comovement across islands.

Going back to equation (23), we have established that the coordination e¤ect is zero

in the unconstrained case and positive in the fully constrained one. However, this is not

su¢ cient to establish that output volatility is greater in the constrained economy, since we

have not compared the relative magnitude of the compositional e¤ect, which is positive in

both cases. In the binary model, the comparison was unambiguous, given that this e¤ect

was identical in the two regimes. However, with general shock distributions, it is di¢ cult

to compare the relative size of this e¤ect in the two regimes and obtain the analogues of

Propositions 4 and 5. Therefore, to gauge the implications of our coordination e¤ect for

volatility and comovement, we turn to a numerical example.

3.3 Numerical example

We use a numerical example both to analyze the aggregate implications of our coordination

e¤ect in the two polar cases analyzed above and to study intermediate cases in which the

fraction of households with credit access � is in (0; 1) and the rate of return on money  is

in the intermediate range (�; ̂).

We choose isoelastic instantaneous utility functions: u (c) = c1��1= (1� �1), U (c) =
c1��2= (1� �2), and v (n) = n1+�= (1 + �). There are two aggregate states, �L and �H , with
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Figure 1: Volatility and comovement

probabilities � and 1� �. Conditional on the aggregate state, the shock � is log-normally
distributed with mean �H in state �H , �L in state �L, and variance �

2.15 We interpret each

sequence of three subperiods as a year and set the discount factor � to 0:97. We normalize

e2 = 1 and set �1 = 0:5, �2 = 1, � = 0:3, e3 = 3.
16 For the shock distribution we choose

� = 0:2, �L = 0:5, �H = 0:56, �2 = 0:19.17 The aggregate shock �H � �L is chosen to
deliver a standard deviation of log Y1 equal to 0:05 in the �rst-best allocation.

In Figure 1 we look at the e¤ects of di¤erent liquidity regimes on volatility and comove-

ment, plotting the standard deviation of log Y1 (top panel) and the correlation coe¢ cient

of y1 and Y1 (bottom panel), as functions of  for di¤erent levels of �. With � = 1, all

consumers have perfect access to credit and the equilibrium achieves the �rst-best alloca-

15Even though this distribution does not have an atom at 0, in our example consumers never exhaust
their money balances in period 1.
16The parameters �1, �, and e3 are chosen to roughly match the empirical relation between money

velocity and the nominal interest rate in the post-war US data (following Lucas, 2000, Lagos and Wright,
2005, and Craig and Rocheteau, 2007).
17The variance of the idiosyncratic shock �2 yields a standard deviation of income volatility at the

household level equal to 0:2, consistent with estimates in Hubbard, Skinner and Zeldes (1994).
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tion, so both volatility and comovement are independent of . With � = 0, volatility and

comovement increase with  until the economy reaches the fully constrained equilibrium

for  � ̂. In the intermediate case with � = 0:5, volatility and comovement are both

increasing in , and, for each  > �, achieve intermediate levels relative to the two extreme

cases.

The �gure shows that as the rate of return on money increases or the fraction of house-

holds with access to credit decreases, both volatility and comovement increase. In par-

ticular, a fully constrained economy is signi�cantly more volatile than the unconstrained

one, but the relation between  and volatility is concave and relatively large e¤ects al-

ready appear when  is not far from the Friedman rule, e.g. at  = 1. Experimenting

with the parameters, shows that increasing the elasticity of labor supply, by lowering �,

tends to lead to larger e¤ects. Increasing the second period risk aversion �2 can increase or

decrease volatility, depending on the initial parameters. A higher �2 increases the precau-

tionary motive, making households more responsive to a negative shock. However, there is

a countervailing force, as a higher �2 also increases the equilibrium value of real balances.

4 News Shocks

Consider now the general model of Section 3, with the only di¤erence that the aggregate

shock � is not observed by the households in period 1. Instead, they all observe a public

signal � 2 [�; �], which is drawn at the beginning of each period, together with the aggregate
shock �, from a continuous distribution with joint density function g (�; �).

Take an agent located in an island with productivity �, his posterior density regarding

� can be derived using Bayes�rule:

g (�j�; �) = f (�j�) g (�; �)R �
�
f(�j~�)g(~�; �)d~�

:

The distribution g (�j�; �) is then used to derive the agent�s posterior beliefs regarding ~� in
the island where his partner is located

F (~�j�; �) =
Z �

�

F (~�j�)g (�j�; �) d�:

We will make the assumption that F (~�j�; �) is non-increasing in �, for any pair (�; ~�). This
means, that conditional on �, the signal � is �good news� for ~�, in the sense of Milgrom
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(1981). We also make the natural assumption that F (~�j�; �) is non-increasing in �. In
period 2, the actual shock � is publicly revealed.

In this environment, we study a stationary equilibrium, along the lines of the one

described in Section 3. Prices and allocations now depend on the local shocks and on the

aggregate shocks � and �. In particular, prices and quantities in period 1 depend only on �

and �, given that � is not in the information set of the households in that period. Aggregate

output in period 1 becomes

Y1 (�; �) �
Z �

0

y1 (�; �) dF (�j�) : (24)

We can now look separately at the output response to the productivity shock � and to

the news shock �. In particular, next proposition shows that the output response to � is

positive both in an unconstrained and in a fully constrained equilibrium, while the output

response to the signal � is positive only in the fully constrained case.

Proposition 9 Consider an economy with imperfect information regarding the aggregate

shock. Under assumptions A1�and A2, in an unconstrained equilibrium @Y1(�; �)=@� > 0

and @Y1(�; �)=@� = 0. In a fully constrained equilibrium @Y1(�; �)=@� > 0 and @Y1(�; �)=@� >

0.

This result is not surprising, in light of the analysis in the previous sections. Compare

the expression for aggregate output under imperfect information (24) with the correspon-

dent expression in the case of full information (22). By de�nition, the productivity shock �

a¤ects the distribution of local shocks F (�j�) in both cases. However, the trading decisions
of anonymous households in island � are a¤ected only by the agents�expectations about

that distribution, which, in the case of imperfect information, are driven by the signal �. It

follows that the e¤ect of � is analogous to the mechanical composition e¤ect in the model

with full information on �, while the e¤ect of � is analogous to the coordination e¤ect.

The advantage of an environment with imperfect information, is that these two e¤ects can

be disentangled. In an unconstrained economy, as we know from Proposition 6, output in

island � is independent of the economy-wide distribution of productivity and thus does not

respond to �. The result that the output response to � is positive in a fully constrained

economy is a natural extension of Proposition 8. In island �, trading is lower the more

24



pessimistic agents are about trading in all other islands. The only di¤erence is how expec-

tations are formed. The perceived distribution of productivities for an agent in island �

depends now on the signal �, instead that on the actual �. A negative signal � makes both

consumers and producers in island � more pessimistic about trading in other islands, even

if the underlying � is unchanged. This highlights that expectations are at the core of our

ampli�cation result.

5 Concluding Remarks

In this paper, we have analyzed how di¤erent liquidity regimes a¤ect the response of an

economy to aggregate shocks. A liquidity regime depends both on the households�access to

credit and on the value of their money holdings. We show that in regimes where liquidity

constraints are binding more often, there is a coordination motive in the agents�trading

decisions. This generates both an ampli�ed response to aggregate shocks and a larger

degree of comovement.

Our mechanism is driven by the combination of risk aversion, idiosyncratic uncertainty,

and decentralized trade. All three ingredients are necessary for the mechanism to operate.

Risk aversion and idiosyncratic risk give rise to an insurance problem. Decentralized trade

implies that agents with no access to credit can only self-insure using their money holdings.18

A nice feature of our setup is that simply by changing the credit and monetary regimes, we

move from an environment in which idiosyncratic risk is perfectly insurable (unconstrained

equilibrium) to an environment in which idiosyncratic risk is completely uninsurable (fully

constrained equilibrium). In this sense, the mechanism identi�ed in this paper speaks more

broadly about the e¤ect of uninsurable idiosyncratic risk on aggregate behavior.

For analytical tractability, we have developed our argument in a periodic framework

à la Lagos and Wright (2005). This framework is clearly special in many respects, and,

in particular, displays no endogenous source of persistence. It would be interesting to

investigate, numerically, the quantitative implications of our mechanism in a version of the

model that allows for richer dynamics of individual asset positions.19 A similar extension

would also help to clarify the relation between our results and the literature on the aggregate

18Reed and Waller (2006) also point out the risk sharing implications of di¤erent monetary regimes in a
model à la Lagos and Wright (2005).
19See, for example, the computational approach in Molico (2006).
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implications of imperfect risk sharing, such as Krusell and Smith (1989).20

The current crisis in the U.S. is a good example of how anticipated changes in access

to liquidity can have a substantial impact on aggregate activity. Our model provides a

possible interpretation of these e¤ects: a reduction in credit access induces consumers

to be more cautious in their spending decisions and more concerned about their income

prospects in the near future, making the recession worse. Our model can also be applied

to interpret the e¤ects of more gradual regime changes: for example, many have argued

that a gradual increase in credit access for households and �rms have contributed to a

reduction in aggregate volatility in the U.S. after the mid 80�s. The model�s predictions

are qualitatively consistent with this story and also emphasizes that the high in�ation of

the 70�s, by reducing the value of the real balances in the hands of consumers, may have

further increased volatility in the pre-1982 period.

Appendix

Proof of Proposition 1

In the main text we show that  = � is a necessary condition for an unconstrained equi-

librium and that an unconstrained equilibrium achieves �rst-best e¢ ciency in period 1.

In period 2, if the liquidity constraint is slack, all households�consume the same amount,

as U 0(c2(�; ~�; �)) = p2(�)=p3 for all � and ~�. By market clearing c2(�; ~�; �) must then be

equal to e2. Since any stationary allocation c3(�; ~�; �) is consistent with �rst-best e¢ ciency,

this completes the proof of e¢ ciency. It remains to prove that  = � is su¢ cient for an

unconstrained equilibrium to exist. To do so, we construct such an equilibrium. Let the

prices be

p1(�) = p3u
0(y�1(�)) for all �;

p2 = p3U
0(e2);

and let p3 take any value in (0; p̂3], where p̂3 � [u0(y�1(�))y
�
1(�) + U

0 (e2) e2]
�1. From the

argument above, the consumption levels in periods 1 and 2 must be at their �rst-best level.

20In Krusell and Smith (1989) the entire capital stock of the economy is a liquid asset and the presence
of uninsurable idiosyncratic risk has minor e¤ects on aggregate dynamics. To explore our mechanism, it
would be interesting to assume that capital is at least partially illiquid.
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Substituting in the budget constraints the prices above and the �rst-best consumption

levels in periods 1 and 2, we obtain

c3(�; ~�; �) = e3 � u0(y�1(~�))y�1(~�) + u0(y�1(�))y�1(�):

The assumption that e3 is large ensures that c3(�; ~�) > 0 for all � and ~�. Moreover, it is

easy to show that money holdings are non-negative, thanks to the assumption p3 � p̂3. It is
also easy to check that the allocation is individually optimal and satis�es market clearing,

completing the proof.

Proof of Lemma 1

Applying the implicit function theorem, to (15) and (16) we obtain

@yD(p1; �)

@p1
=

�U 0 (e2) + (1� �)U 0(e2 � p1y1)� p1y1 (1� �)U 00(e2 � p1y1)
u00(y1) + p

2
1 (1� �)U 00(e2 � p1y1)

; (25)

@yS(p1; �)

@p1
= �

�U 0 (e2) + (1� �)U 0(e2 + p1y1) + p1y1 (1� �)U 00(e2 + p1y1)
v00
�
y1=�

�
=� � p21 (1� �)U 00(e2 + p1y1)

: (26)

The concavity of u and U imply that the numerator of (25) is positive and the numerator

is negative, proving that @yD(p1; �)=@p1 < 0. The concavity of U and the convexity of v

show that the denominator of (26) is positive. It remains to show that the numerator is

also positive. The following chain of inequalities is su¢ cient for that:

�U 0 (e2) + (1� �)U 0(e2 + p1y1) + (1� �) p1y1U 00(e2 + p1y1) >

U 0(e2 + p1y1) + (1� �) (e2 + p1y1)U 00(e2 + p1y1) � 0:

The �rst inequality follows because the concavity of U implies U 0 (e2) > U 0(e2 + p1y1) and

e2U
00(e2 + p1y1) < 0. The second follows from assumption A1, completing the proof that

@yS(p1; �)=@p1 > 0. Existence can be shown using similar arguments as in the proof of

Lemma 2 below. Uniqueness follows immediately.

Proof of Proposition 2

First, we complete the characterization of a fully constrained equilibrium, presenting the

steps omitted in the text. Then, we will de�ne ̂ and prove that such an equilibrium exists

i¤  � ̂. Suppose for the moment that (15) and (16) have a unique solution, p1(�; �) and
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y1(�; �). In unproductive islands, output and nominal output are zero, y1 (0; �) = 0 and

p1 (0; �) y1 (0; �) = 0. From the consumer�s budget constraint in period 2, we obtain

c2(�; ~�; �) = e2 � p1(~�; �)y1(~�; �) + p1 (�; �) y1 (�; �) :

The price level in unproductive islands is obtained from the Euler equation (6),

p1(0; �) = u
0(0)

�
E[U 0(c2(0; ~�; �))j~�; �]

��1
:

From the consumer�s budget constraint in period 3 we obtain c3 = e3. Combining the Euler

equations (6) and (8) and the envelope condition (10), p3 is uniquely pinned down by

1

p3
= ��1E[U 0(c2(�; ~�; �))]: (27)

The only optimality condition that remains to be checked is the Euler equation in period 2,

(7). Notice that given our construction of c2(�; ~�; �) and the concavity of U , U 0(c2(�; ~�; �)) �
min~� U

0(c2(�; �; ~�)) for all �; ~�; �. It follows that a necessary and su¢ cient condition for (7)

to hold for all �; ~�; � is

min
�
U 0(c2(�; �; �)) �

1

p3
: (28)

We now de�ne the cuto¤

̂ � � E[U 0(c2(�; ~�; �))]
min� U 0(c2(�; �; �))

and prove the statement of the proposition. Using (27) to substitute for p3, condition (28) is

equivalent to  � ̂. Therefore, if an unconstrained equilibrium exists, (28) implies  � ̂,
proving necessity. If  � ̂, the previous steps show how to construct a fully constrained
equilibrium, proving su¢ ciency. In the case where (15) and (16) have multiple solutions,

one can follow the steps above and �nd a value of ̂ for each solution. The smallest of

these values gives us the desired cuto¤. Under assumption A1, Lemma 1 ensures that (15)

and (16) have a unique solution and, from the characterization above, the fully constrained

equilibrium is unique.

Proof of Proposition 4

The argument in the text shows that d log Y1 (�) =d� is larger in a fully constrained equilib-

rium, for all � 2 [�L; �H ], which implies that log Y1 (�H)� log Y1 (�L) is larger as well. This
proves our statement, since V ar [log Y1 (�)] = � (1� �) [log Y1 (�H)� log Y1 (�L)]

2.
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Proof of Proposition 5

Let �y = E [y1(�; �)]. Since Y1 (�) = E [y1(�; �)j�], we have

Cov[y1 (�; �) ; Y1(�)] = E[E[
�
y1 (�; �)� �y

�
(Y1(�)� �y)j�]] = V ar[Y1 (�)];

and hence Corr[y1 (�; �) ; Y1(�)] = (V ar[Y1 (�)]=V ar[y1(�; �)])1=2. Using the decomposition

V ar[y1(�; �)] = V ar[Y1 (�)] + E[V ar[y1(�; �)j�]], rewrite this correlation as

Corr[y1 (�; �) ; Y1(�)] =

�
1 +

E[V ar[y1(�; �)j�]]
V ar[Y1 (�)]

��1=2
=

=

 
1 +

(1� �) �L (1� �L) (y1(�L))
2 + ��H (1� �H) (y1(�H))

2

� (1� �) (�Hy1(�H)� �Ly1(�L))
2

!�1=2
:

Therefore, the correlation is lower in the unconstrained economy if and only if f
�
�U
�
<

f
�
�C
�
, where �U and �C denote, respectively, the ratio y1(�H)=y1(�L) in the unconstrained

and in the fully constrained regimes and the function f (�) is de�ned as

f (�) � � (1� �) (�H� � �L)
2

(1� �) �L (1� �L) + ��H (1� �H) �2
:

Notice that f (�) is continuous and di¤erentiable, �U = 1, from Proposition 1, and �C > 1,

from Proposition 3. Therefore, to prove our statement it is su¢ cient to show that f 0 (�) > 0

for � � 1. Di¤erentiating f (�) shows that f 0 (�) has the same sign as

�H (�H� � �L)
�
(1� �) �L (1� �L) + ��H (1� �H) �2

�
� ��H (1� �H) (�H� � �L)

2 �:

Since �H > �L, if � � 1 then �H� � �L > 0. Some algebra shows that the expression above
has the same sign as (1� �) (1� �L) +� (1� �H) � and is always positive, completing the
proof.

Proof of Proposition 6

It is easy to generalize the �rst-best allocation described in Section 2.1 for the binary model.

Solving the planner problem for the extended model, the optimal output level in period 1,

in island �, is equal to the y�1 (�) that satis�es

�u0 (y�1 (�)) = v
0(y�1 (�) =�): (29)
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Optimal consumption in period 2 is cC2 (�; ~�; �) = c
M
2 (�;

~�; �) = e2 for all �; ~� and �, where

C and M denote, respectively, credit and money households.

Next, we prove that any unconstrained equilibrium achieves a �rst-best allocation. Since

(7) holds as an equality for all �, ~� and �, both for credit and money households, it follows

that ci2(�; ~�; �) is equal to a constant c2 for all �, ~�, �, and i = C;M . Then, market clearing

requires c2 = e2. Substituting in (6) (for a consumer in island �) and (9) (for a producer

in island �), and given that (6) holds as an equality, we obtain cC1 (�; �) = c
M
1 (�; �) = c1 (�)

and nC(�; �) = nM(�; �) = n (�) for all � and �, where

u0(c1(�)) =
p1(�)

p2
U 0(e2) and v0 (n (�)) = �

p1 (�)

p2
U 0(e2):

These two conditions, and market clearing in island �, imply that yC1 (�; �) = yM1 (�; �) =

y�1 (�) as de�ned by the planner optimality condition (29). Therefore, consumption levels

in periods 1 and 2 achieve the �rst best. Since any consumption allocation in period 3 is

consistent with �rst-best e¢ ciency, this completes the argument.

The proof that  = � is necessary for an unconstrained equilibrium to exist is the same

as in the binary model. To prove su¢ ciency, when  = � we can construct an unconstrained

equilibrium with prices

p1(�) = p3u
0(y�1(�)) for all �;

p2 = p3U
0(e2);

for some p3 2 (0; p̂3], where p̂3 � [u0(y�1(�))y�1(�) + U 0 (e2) e2]�1. From the argument above,

consumption levels in periods 1 and 2 are at their �rst-best level. Substituting in the budget

constraints the prices above and the �rst-best consumption levels in periods 1 and 2, we

obtain

cC3 (�;
~�; �) = cM3 (�;

~�; �) = e3 � u0(y�1(~�))y�1(~�) + u0(y�1(�))y�1(�):

Moreover, choosing any p3 � p̂3 ensures that money holdings are non-negative. It is

straightforward to check that this allocation satis�es market clearing and that it is individ-

ually optimal, completing the proof.

Finally, it is easy to show that y�1 (�) is increasing, by applying the implicit function

theorem to the planner�s optimality condition (29).
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Preliminary results for Proposition 7

In order to prove Proposition 7, it is useful to prove some preliminary lemmas, which will

be used to show that the system of functional equations (19)-(20) has a unique solution

(p1 (�; �) ; y1 (�; �)), for a given �. These results will also be useful to prove Proposition 8.
Let us de�ne a �xed point problem for the function x(�; �). Recall from the text that

x(�; �) � p1(�; �)y1(�; �). To save on notation, in the lemmas we �x � and refer to p1 (�; �),
y1 (�; �), x(�; �), and F (�; �), as p(�), y(�), x(�), and F (�). Notice that, in an island where
� = 0, x(0) = 0. Moreover, non-negativity of consumption in period 2 requires that

x (�) � 1 for all �. Therefore, we restrict attention to the set of measurable, bounded

functions x : [0; �]! [0; 1] that satisfy x (0) = 0. We use X to denote this set.

Lemma 2 Given � > 0 and a function x 2 X, there exists a unique pair (p; y) which solves
the system of equations

u0 (y)� p
Z �

0

U 0
�
1� py + x(~�)

�
dF (~�) = 0; (30)

v0 (y=�)� �p
Z �

0

U 0
�
1� x(~�) + py

�
dF (~�) = 0: (31)

The pair (p; y) satis�es py 2 [0; 1].

Proof. We proceed in two steps, �rst we prove existence, then uniqueness.

Step 1. Existence. For a given p 2 (0;1), it is easy to show that there is a unique y
which solves (30) and a unique y which solves (31), which we denote, respectively, by yD(p)

and yS (p). Finding a solution to (30)-(31), is equivalent to �nding a p that solves

yD (p)� yS (p) = 0: (32)

It is straightforward to prove that yD (p) and yS (p) are continuous on (0;1). We now
prove that they satisfy four properties: (a) pyD(p) < 1 for all p 2 (0;1), (b) yS (p) < ��n
for all p 2 (0;1), (c) lim supp!0 yD (p) = 1, and (d) lim supp!1 pyS (p) = 1. Notice
that x (0) = 0 with positive probability, so the Inada condition for U can be used to prove

property (a). Similarly, to prove property (b), we can use the assumption limn!�n v
0 (n) =

1. To prove (c) notice that (a) implies lim supp!0 pyD (p) � 1. If lim supp!0 pyD (p) = 1,
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then, we immediately have lim supp!0 y
D (p) =1. If, instead, lim supp!0 pyD (p) < 1, then

there exists a K 2 (0; 1) and an � > 0 such that pyD (p) < K for all p 2 (0; �). Since U 0 is
decreasing, this implies that U 0(1 � pyD (p) + x(~�)) is bounded above by U 0 (1�K) < 1
for all p 2 (0; �), which implies

lim
p!0

p

Z �

0

U 0(1� pyD (p) + x(~�))dF (~�) = 0:

Using (30), this requires limp!0 u
0 �yD (p)� = 0 and, hence, limp!0 y

D (p) = 1. To prove
property (d), suppose, by contradiction, that there exist a K > 0 and a P > 0, such that

pyS(p) � K for all p � P . Then U 0(1�x(~�)+pyS (p)) is bounded below by U 0 (1 +K) > 0
for all p 2 (P;1), which implies

lim
p!1

p

Z �

0

U 0(1� x(~�) + pyS (p))dF (~�) =1: (33)

Moreover, since 0 � pyS (p) � K for all p � P , it follows that limp!1 y
S (p) = 0 and thus

lim
p!1

v0
�
yS (p) =�

�
<1: (34)

Using equation (31), conditions (33) and (34) lead to a contradiction, completing the proof

of (d). Properties (a) and (d) immediately imply lim supp!1
�
pyS (p)� pyD (p)

�
= 1,

while (b) and (c) imply lim supp!0
�
yD (p)� yS (p)

�
= 1. It follows that there exists a

pair (p0; p00), with p0 < p00, such that yD (p0)� yS (p0) > 0 and yD (p00)� yS (p00) < 0. By the
intermediate value theorem there exists a p which solves (32). Property (a) immediately

implies that py 2 [0; 1], where y = yD(p) = yS(p).

Step 2. Uniqueness. Let p̂ be a zero of (32), and ŷ = yD(p̂) = yS(p̂). To show

uniqueness, it is su¢ cient to show that dyD (p) =dp � dyS (p) =dp < 0 at p = p̂. Applying
the implicit function theorem gives�

dyD (p)

dp

�
p=p̂

=

R �
0
U 0
�
~cD2
�
dF (~�)� p̂ŷ

R �
0
U 00
�
~cD2
�
dF (~�)

u00(ŷ) + p̂2
R �
0
U 00 (~cD2 ) dF (

~�)
;

where ~cD2 = 1� p̂ŷ + x(~�) and�
dyS (p)

dp

�
p=p̂

=

R �
0
U 0
�
~cS2
�
dF (~�) + p̂ŷ

R �
0
U 00
�
~cS2
�
dF (~�)

v00 (ŷ=�) =�2 � p̂2
R �
0
U 00 (~cS2 ) dF (

~�)
:
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where ~cS2 = 1�x(~�)+ p̂ŷ. Using (30)-(31), the required inequality can then be rewritten as

v00 (ŷ=�)

�2

 
u0 (ŷ)

p̂
� p̂ŷ

Z �

0

U 00
�
~cD2
�
dF (~�)

!
� v

0 (ŷ=�)

�p̂

 
u00(ŷ) + p̂2

Z �

0

U 00
�
~cD2
�
dF (~�)

!

+p̂

Z �

0

U 00
�
~cS2
�
dF (~�) (u0 (ŷ) + ŷu00(ŷ)) > 0:

The �rst two terms on the left-hand side are positive. Assumption A2 implies that also the

last term is positive, completing the argument.

Lemma 3 Given a function x 2 X, for any � > 0 let (p (�) ; y (�)) be the unique pair

solving the system (30)-(31) and de�ne z (�) � p (�) y (�). The function z (�) is monotone
increasing.

Proof. De�ne the two functions

h1 (z; y; �) � u0(y)y � z
Z �

0

U 0(1� z + x(~�))dF (~�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�) + z)dF (~�);

which correspond to the left-hand sides of (30) and (31) multiplied, respectively, by y and

y=�. Lemma 2 ensures that for each � > 0 there is a unique positive pair (z (�) ; y (�))

which satis�es

h1 (z (�) ; y (�) ; �) = 0 and h2 (z (�) ; y (�) ; �) = 0:

Applying the implicit function theorem, gives

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (35)

To prove the lemma it is su¢ cient to show that z0 (�) > 0 for all � 2 (0; �]. Using z and y as
shorthand for z (�) and y (�), the numerator on the right-hand side of (35) can be written

as

� y
�2
[v0 (y=�) + v00 (y=�) y=�] [u0 (y) + u00(y)y] ;

and the denominator can be written, after some algebra, as

�
v0 (y=�) + v00 (y=�) y=�

� z
�

Z �

0
U 00
�
1� z + x(~�)

�
dF (~�) + (36)

+
�
u0 (y) + u00(y)y

�
z

Z �

0
U 00
�
1� x(~�) + z

�
dF (~�) +

y2

z�2
�
u00(y)v0 (y=�) � � u0 (y) v00 (y=�)

�
:
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Assumption A2 ensures that both numerator and denominator are negative, completing

the proof.

We can now de�ne a map T from the space X into itself.

De�nition 2 Given a function x 2 X, for any � > 0 let (p (�) ; y (�)) be the unique pair
solving the system (30)-(31). De�ne a map T : X ! X as follows. Set (Tx) (�) = p (�) y (�)

if � > 0 and (Tx) (�) = 0 if � = 0.

The following lemmas prove monotonicity and discounting for the map T . These prop-

erties will be used to �nd a �xed point of T . In turns, this �xed point will be used to

construct the equilibrium in Proposition 7.

Lemma 4 Take any x0; x1 2 X, with x1 (�) � x0 (�) for all �. Then (Tx1) (�) � (Tx0) (�)
for all �.

Proof. For each ~� 2 [0; �] and any scalar � 2 [0; 1], with a slight abuse of notation, we
de�ne x(~�; �) � x0(~�)+��(~�), where �(~�) � x1(~�)�x0(~�) � 0. Notice that x(~�; 0) = x0(~�)
and x(~�; 1) = x1(~�). Fix a value for � and de�ne the two functions

h1 (z; y;�) � yu0(y)� z
Z �

0

U 0(1� z + x(~�; �))dF (~�);

h2 (z; y;�) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�; �) + z)dF (~�):

Applying Lemma 2, for each � 2 [0; 1] we can �nd a unique positive pair (z (�) ; y (�)) that
satis�es

h1 (z (�) ; y (�) ;�) = 0 and h2 (z (�) ; y (�) ;�) = 0:

We are abusing notation in the de�nition of h1 (�; �;�) ; h2 (�; �;�) ; z (�) ; and y (�), given
that the same symbols were used above to de�ne functions of �. Here we keep � con-

stant throughout the proof, so no confusion should arise. Notice that, by construction,

(Tx0) (�) = z (0) and (Tx1) (�) = z (1). Therefore, to prove our statement it is su¢ cient to

show that z0 (�) � 0 for all � 2 [0; 1].
Applying the implicit function theorem yields

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (37)
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Using z and y as shorthand for z (�) and y (�), the numerator on the right-hand side of

(37) can be written as

[u0 (y) + u00(y)y] z

Z �

0

U 00(1� x(~�; �) + z)�(~�)dF (~�) +

+
z

�
[v0 (y=�) + v00 (y=�) y=�]

Z �

0

U 00(1� z + x(~�; �))�(~�)dF (~�):

The denominator takes a form analogous to (36). Again, assumption A2 ensures that both

the numerator and the denominator are negative, completing the argument.

Before proving the discounting property, it is convenient to restrict the space X to the

space ~X of functions bounded in [0; z] for an appropriate z < 1. The following lemma

shows that the map T maps ~X into itself, and that any �xed point of T in X must lie in
~X.

Lemma 5 There exists a z < 1, such that if x 2 X then (Tx) (�) � z for all �.

Proof. Set x (0) = 0 and x (�) = 1 for all � > 0. Setting x (:) = x (:) and � = �,

equations (30)-(31) take the form

u0(y) = p [F (0)U 0 (1� py) + (1� F (0))U 0 (2� py)] ;

v0(y=�) = �p [F (0)U 0 (1 + py) + (1� F (0))U 0 (py)] :

Let (p̂; ŷ) denote the pair solving these equations, and let z � p̂ŷ. Since F (0) > 0 and

U satis�es the Inada condition, limc!0 U
0 (c) = 1, inspecting the �rst equation shows

that z < 1. Now take any x 2 X. Since x (�) � x (�) for all �, Lemma 4 implies that

(Tx) (�) � (Tx) (�). Moreover, Lemma 3 implies that (Tx) (�) � (Tx) (�) = z. Combining
these inequalities we obtain (Tx) (�) � z.

Lemma 6 There exists a � 2 (0; 1) such that the map T satis�es the discounting property:
for any x0; x1 2 ~X such that x1(�) = x0(�) + a for some a > 0, the follow inequality holds���Tx1� (�)� �Tx0� (�)�� � �a for all � 2 �0; �� :
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Proof. Proceeding as in the proof of Lemma 4, de�ne x(~�; �) � x0(~�) + ��(~�), where
now �(~�) = a for all ~�. After some algebra, we obtain

z0 (�) =

�
1 + yu00(y)

u0(y)

�
A+

�
1 + nv00(n)

v0(n)

�
B�

1 + yu00(y)
u0(y)

�
A+

�
1 + nv00(n)

v0(n)

�
B + nv00(n)

v0(n) �
yu00(y)
u0(y)

a; (38)

where y and n are shorthand for y(�) and y (�) =� and

A = �
z (�)

R �
0
U 00
�
1� x(~�; �) + z (�)

�
dF (~�)R �

0
U 0
�
1� x(~�; �) + z (�)

�
dF (~�)

;

B = �
z (�)

R �
0
U 00
�
1� z (�) + x(~�; �)

�
dF (~�)R �

0
U 0
�
1� z (�) + x(~�; �)

�
dF (~�)

:

Now, given that z (�) and x(~�; �) are both in [0; z] and z < e2, and given that U has

continuous �rst and second derivatives on (0;1), it follows that both A and B are bounded
above. We can then �nd a uniform upper bound on both A and B, independent of � and

of the functions x0 and x1 chosen. Let C be this upper bound. Given that u00(y) � 0, then�
1 +

yu00(y)

u0(y)

�
A+

�
1 +

nv00 (n)

v0 (n)

�
B �

�
2 +

nv00 (n)

v0 (n)

�
C:

Therefore, (38) implies

z0 (�) �
�
1 +

nv00 (n) =v0 (n)� yu00(y)=u0(y)
(2 + nv00 (n) =v0 (n))C

��1
a:

Recall that � > 0 is a lower bound for �yu00(y)=u0(y). Then

nv00 (n) =v0 (n)� yu00(y)=u0(y)
(2 + nv00 (n) =v0 (n))C

� �yu00(y)=u0(y)
2C

�
�

2C
:

Setting � � 1=[1 + �= (2C)] < 1, it follows that z0 (�) � �a for all � 2 [0; 1]. Integrating
both sides of the last inequality over [0; 1], gives z (1) � z (0) � �a. By construction

(Tx1) (�) = z (1) and (Tx0) (�) = z (0), completing the proof.

Proof of Proposition 7

We �rst uniquely characterize prices and allocations in a fully constrained equilibrium.

Next, we will use this characterization to prove our claim. The argument in the text and the
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preliminary results above show that if there exists an equilibrium withm2(�; ~�; �) = 0 for all

� and ~�, then p1(�; �) and y1(�; �)must solve the functional equations (19)-(20) for any given

�. To �nd the equilibrium pair (p1(�; �); y1(�; �)) we �rst �nd a �xed point of the map T

de�ned above (De�nition 2). Lemmas 4 and 6 show that T is a map from a space of bounded

functions into itself and satis�es the assumptions of Blackwell�s theorem. Therefore, a �xed

point exists and is unique. Let x denote the �xed point, then Lemma 2 shows that we can

�nd two functions p1(�; �) and y1(�; �) for a given � that satisfy (30)-(31). Since x (�; �) is a

�xed point of T we have x (�; �) = p1(�; �)y1(�; �), and substituting in (30)-(31) shows that

(19)-(20) are satis�ed. Therefore, in a fully constrained equilibrium p1(�; �) and y1(�; �)

are uniquely determined, and so is labor supply n(�; �) = y1(�; �)=�. Moreover, from the

budget constraint and the market clearing condition in period 2, consumption in period 2

is uniquely determined by (21). The price p2 is equal to 1, given the normalization in the

text. From the consumer�s budget constraint in period 3 we obtain c3 = e3. Combining the

Euler equations (6) and (8) and the envelope condition (10), p3 is uniquely pinned down

by
1

p3
= ��1E[U 0(c2(�; ~�; �))]: (39)

Moreover, equilibrium money holdings are m1(�; �) = 1 � p1(�; �)y1(�; �), m2(�; ~�; �) = 0,

and m3(�; ~�; �) = . De�ne the cuto¤

̂ � � E[U 0(c2(�; ~�; �))]
min�fU 0(c2(�; �; �))g

:

The only optimality condition that remains to be checked is the Euler equation in period

2, that is, equation (7). Given the de�nition of c2(�; ~�; �), Lemma 3 implies that it is an

increasing function of � and a decreasing function of ~�. It follows that a necessary and

su¢ cient condition for (7) to hold for all �, ~� and � is

min
�
fU 0(c2(�; �; �))g �

1

p3
: (40)

Substituting the expression (39) for 1=p3, this condition is equivalent to  � ̂. Therefore,
if a fully constrained equilibrium exists, c2(�; ~�; �) is uniquely determined and condition

(40) implies that  � ̂, proving necessity. Moreover, if  � ̂, the previous steps show

how to construct a fully constrained equilibrium, proving su¢ ciency.
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Finally, the proof that nominal income p1 (�; �) y1 (�; �) is monotone increasing in �,

for a given �, follows immediately from Lemma 3. To prove that also output y1 (�; �) is

monotone increasing in �, let us use the same functions h1 (z; y; �) and h2 (z; y; �) and the

same notation as in the proof of Lemma 3. For a given �, apply the implicit function

theorem to get

y0 (�) =
@h2
@z

@h1
@�
� @h1

@z
@h2
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (41)

Then it is su¢ cient to show that y0 (�) > 0 for all � 2 (0; �]. Using z and y as shorthand
for z (�) and y (�), the numerator on the right-hand side of (41) can be written as

y

�2
�
v0 (y=�) + v00 (y=�) y=�

� "
z

Z �

0
U 00(1� z + x(~�))dF (~�)�

Z �

0
U 0(1� z + x(~�))dF (~�)

#
;

and is negative. Finally, the denominator is equal to (36) and is negative thanks to as-

sumption A2, as we have argued in the proof of Lemma 3. This completes the argument.

Proof of Proposition 8

The proof proceeds in three steps. The �rst two steps prove that, for each �, the nominal

income in island �, x (�; �), is increasing with the aggregate shock �. Using this result,

the third step shows that y1 (�; �) is increasing in �. Consider two values �
I and �II , with

�II > �I . Denote, respectively, by TI and TII the maps de�ned in De�nition 2 under the

distributions F (�j�I) and F (�j�II). Let xI and xII be the �xed points of TI and TII , that
is, xI(�) � x(�; �I) and xII(�) � x(�; �II) for any �. Again, to save on notation, we drop
the period index for y1.

Step 1. Let the function x0 be de�ned as x0 = TIIxI . In this step, we want to prove

that x0 (�) > xI (�) for all � > 0. We will prove it pointwise for each �. Fix � > 0 and

de�ne the functions

h1 (z; y; �) � yu0(y)� z
Z �

0

U 0(1� z + xI(~�))dF (~�j�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� xI(~�) + z)dF (~�j�);

for � 2 [�I ; �II ]. Lemma 2 implies that we can �nd a unique pair (z (�) ; y (�)) that satis�es

h1 (z (�) ; y (�) ; �) = 0 and h2 (z (�) ; y (�) ; �) = 0:
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Once more, we are abusing notation in the de�nition of h1 (�; �; �) ; h2 (�; �; �) ; z (�) ; and y (�).
However, as � is kept constant, there is no room for confusion. Notice that z(�I) = xI (�),

since xI is a �xed point of TI , and z(�
II) = x0 (�), by construction. Therefore, to prove our

statement we need to show that z(�II) > z(�I). It is su¢ cient to show that z0 (�) > 0 for

all � 2 [�I ; �II ]. Applying the implicit function theorem gives

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (42)

Notice that xI(~�) is monotone increasing in ~�, by Lemma 3, and U is strictly concave.

Therefore, U 0(1� z + xI(~�)) is decreasing in ~� and U 0(1� xI(~�) + z) is increasing in ~�. By
the properties of �rst-order stochastic dominance,

R �
0
U 0(1�z+xI(~�))dF (~�j�) is decreasing

in � and
R �
0
U 0(1� xI(~�) + z)dF (~�j�) is increasing in �. This implies that @h1=@� > 0 and

@h2=@� < 0. Using y as shorthand for y (�), the numerator on the right-hand side of (42)

is, with the usual notation,

[u0 (y) + yu00(y)]
@h2
@�

� 1
�
[v0 (y=�) + v00 (y=�) y=�]

@h1
@�
:

The denominator is the analogue of (36). Once more, assumption A2 ensures that both

numerator and denominator are negative, completing the argument.

Step 2. De�ne the sequence of functions (x0; x1; :::) in X, using the recursion xj+1 =

TIIx
j. Since, by step 1, x0 � xI (where by x0 � xI we mean x0 (�) � xI (�) for all � > 0)

and, by Lemma 4, TII is a monotone operator, it follows that this sequence is monotone,

with xj+1 � xj. Moreover, TII is a contraction by Lemmas 4 and 6, so this sequence has
a limit point, which coincides with the �xed point xII . This implies that xII � x0 and,

together with the result in step 1, shows that xII > xI , as we wanted to prove.

Step 3. Fix � > 0 and, with the usual abuse of notation, de�ne the functions

h1 (z; y; �) � yu0(y)� z
Z �

0

U 0(1� z + x(~�; �))dF (~�j�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�; �) + z)dF (~�j�):

Notice the di¤erence with the de�nitions of h1 and h2 in step 1, now x(~�; �) replaces xI(~�).

The functions z (�) and y (�) are de�ned in the usual way. Applying the implicit function
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theorem, we get

y0 (�) =

@h2
@z

@h1
@�
� @h1

@z
@h2
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

:

To evaluate the numerator, notice that

@h1
@z

= �
Z �

0
U 0(1� z + x(~�; �))dF (~�j�) + z

Z �

0
U 00(1� z + x(~�; �))dF (~�j�) < 0;

@h2
@z

= �
Z �

0
U 0(1� x(~�; �) + z)dF (~�j�)� z

Z �

0
U 00(1� x(~�; �) + z)dF (~�j�) �

� �
Z �

0

h
U 0(1� x(~�; �) + z) + (1� x(~�; �) + z)U 00(1� x(~�; �) + z)

i
dF (~�j�) � 0;

where the last inequality follows from assumption A1�(this is the only place where this

assumption is used). Furthermore, notice that

@h1
@�

= �z
Z �

0

U 00(1� z + x(~�; �))@x(
~�; �)

@�
dF (~�j�)� z

Z �

0

U 0(1� z + x(~�; �))@f(
~�j�)
@�

d~� > 0

where the �rst element is positive from steps 1 and 2, and the second element is positive

because � leads to a �rst order stochastic increase in ~� and U 0(1� z+x(~�; �)) is decreasing
in ~�. A similar reasoning shows that

@h2
@�

= z

Z �

0

U 00(1� x(~�; �) + z)@x(
~�; �)

@�
dF (~�j�) + z

Z �

0

U 0(1� x(~�; �) + z)@f(
~�j�)
@�

d~� < 0:

Putting together the four inequalities just derived shows that the numerator is negative.

The denominator takes the usual form, analogous to (36), and is negative. This completes

the proof.

Proof of Proposition 9

From expression (24) it follows that

@Y1 (�; �)

@�
=

Z �

0

y1 (�; �)
@f (�j�)
@�

d�;

@Y1 (�; �)

@�
=

Z �

0

@y1 (�; �)

@�
dF (�j�) :

In the case of an unconstrained equilibrium, the analogue of Proposition 6 can be easily

derived, showing that @y1(�; �)=@� = 0 and @y1(�; �)=@� > 0. These properties imply that
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@Y1(�; �)=@� > 0 and @Y1(�; �)=@� = 0. Next, consider a fully constrained equilibrium,

where � = 0 and  � ̂. For each value of �, the functions p1(�; �) and y1(�; �) can be

derived solving the following system of functional equations, analogous to (19)-(20):

u0(y1(�; �)) = p1 (�; �)

Z �

0

U 0
�
c2(~�; �; �)

�
dF (~�j�; �);

v0 (y1 (�; �) =�) = �p1 (�; �)

Z �

0

U 0
�
c2(�; ~�; �)

�
dF (~�j�; �);

where c2(~�; �; �) = 1�p1 (�; �) y1 (�; �)+p1(~�; �)y1(~�; �). The only formal di¤erence between
these and (19)-(20) is that the distribution F (~�j�; �) depends also on �. However, this does
not a¤ect any of the steps of Proposition 7 (there is only a minor di¤erence in the proof

of the analogue of Lemma 3, the details are available on request). Therefore, this system

has a unique solution for each �. Next, following the steps of Propositions 7 and 8, we

can show that y1(�; �) is increasing in � and �. This implies that @Y1(�; �)=@� > 0 and

@Y1(�; �)=@� > 0.
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