Big Data BUS 41201

Week 6: Networks

Veronika Ročková
University of Chicago Booth School of Business

http://faculty.chicagobooth.edu/veronika.rockova/
Networks

✓ Network data examples

✓ Graph representations

✓ Summarization: nodes and edges, direction

✓ Measuring connectivity and betweenness

✓ Community detection

✓ Market basket analysis

✓ Page Rank for relevance ordering
The network has nodes (vertices), such as a website or worker, and edges are the (directed or undirected) links between nodes.
Internet — 50 billion Webpages
Facebook — 1.2 Billion Users
Citation Network — 250 Million Articles
Media networks

Connections between political blogs (Adamic, Glance, 2005)
Organizational networks

9/11 terrorist network (Krebs, 2002)
Many more examples

- who follows whom?
- who calls whom?
- who buys what?
Network Analysis

A rich set of tools to help us understand complex relationships, learn about behaviors, preferences and trends.

We’ll begin by summarizing important properties.

In particular, we’ll focus on measures of network connectivity.

Each node has connectivity statistics

Degree: How many other nodes are you connected to?

Betweenness: How many node-to-node paths go through you?

You can also make a lot of cool illustrations for graphs. However, how to effectively visualize large networks is an open problem.
Applications

Reputation management
- consumer brand analytics
- marketing communication
- product reviews

Data driven policy making
- who supports which political candidate
- law enforcement: gang members boast on social media about their activities
- citizen unrest: protests being organized through twitter

Social media marketing
- viral marketing and personalized recommendation
- online users are brand advocates

Human behavior analysis
- identify members of different social groups
- identify topics of group conversations
Basics: How to represent a network?

We will use graphs, which consist of vertices and edges.

Visually

Adjacency matrix

\[
A = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Adjacency list

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Edge list

\{(1, 2), (1, 5), (2, 3), (2, 4), (3, 5), (3, 6)\}
More exotic networks

Visually

Adjacency matrix

<table>
<thead>
<tr>
<th>Target node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency list

<table>
<thead>
<tr>
<th>1</th>
<th>2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Edge list

1, 2, 1
1, 3, 3
2, 4, 2
3, 2, 1
Network Graphs in R

`igraph` is a toolbox for visualizing and summarizing graphs. It has front-ends for R and Python. Others: Gephi, Pajek, etc.

Unlike most R packages, `igraph` is well documented. Type `help(igraph)` to get started.

For most applications, you’ll read graphs from an edgelist:

```
1 2
1 3
2 1
3 2
```

```
edgemat <- as.matrix(read.table("edgelist.txt"))
graph <- graph.edgelist(my_edgelist)
```
Descriptive statistics of networks

Degree of a node

Number of edges connected to a node $d_i = \sum_j A_{ij}$

$$A = \begin{pmatrix}
 0 & 1 & 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1 & 1 & 1 \\
 0 & 1 & 1 & 0 & 0 & 0 \\
 1 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Degree distribution

<table>
<thead>
<tr>
<th>k</th>
<th>$Pr(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>3/6</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
</tr>
</tbody>
</table>
Descriptive statistics of networks

Betweenness: How important is a node?
Normalize degree of each node with the maximum degree in the network.

Does this capture what we consider important?
Marriage and Power

Early Renaissance Florence was ruled by an oligarchy of powerful families. Padget and Ansell: “Robust Action and the Rise of Medici”

By the 15th century, the Medicis emerged supreme, & Medici Bank became the largest in Europe.

Political ties were established via marriage. How did Medici win?
Network links can be used to measure “social capital”.

A node’s degree is its number of edges.

> sort(degree(marriage))
Ginori ... Strozzi Medici
 1 4 6

Medicis are connected!
The Medici family very centralized (a star shaped network)

\[\Rightarrow\textit{Medici relatives were connected almost solely through Medici’s themselves.}\]

The rival Strozzi’s network is far denser (competing claims for network leadership).
Deeper network structure with **betweenness**

A node is important if it lies on many shortest-paths so it is essential in passing information through the network.

An alternative to degree, **betweenness** measure the proportion of **shortest paths** containing a given node.

Shortest path: fewest steps from i to j (direction matters).

\[
\text{betweenness}(k) = \sum_{i,j: i \neq j, k \notin \{i, j\}} \frac{s_{ij}(k)}{s_{jk}}
\]

$\Rightarrow s_{ij}(k)$ number of shortest paths from i to j that go through k

$\Rightarrow s_{ij}$ number of shortest paths from i to j

Measures how much influence a node has over connections between others, i.e. how often a node serves as the “bridge”.

Betweenness vs Degree

Medicis have the highest degree, but only by a factor of 3/2 over the Strozzis.

But their betweenness is 5 times higher!

Betweenness measures *deep graph connectivity*, rather than just counting neighbors.

```r
> sort(betweenness(marriage))
Ginori  ...  Strozzi  Medici
 0.0     9.3   47.5
```
A structural hole is a *low-degree* node in an organization chart with *high betweenness*.

Social Capital exists where people have an advantage because of their location in a social structure (brokerage opportunities).

Holes can act like bottlenecks in companies, and lead to unexpected employees having excess power and influence. But if you’re the employee, it’s a fast track to promotion.

“People who stand near the holes in a social structure are at higher risk of having good ideas.”

igraph has constraint for finding structural holes.
Community Detection

Networks are often organized into communities: groups of nodes that are densely connected inside but only loosely connected across.

The goal is to identify meaningful communities in an automated way.
Karate Club Example

Zachary’s karate club network (H: Instructor, A: Club president)

http://networkkarate.tumblr.com/
Karate club: Adjacency matrix

Adjacency matrix: Karate Club
Karate club: Reordered adjacency matrix

Permuted Adjacency matrix: Karate Club
Edge Betweenness and Community Detection

The *edge betweenness* is a measure of traffic flow through an edge rather than a node.

It is the number of shortest paths between pairs of nodes that run through *the edge*, summed over all possible node pairs.

If a network contains communities that are only loosely connected, then all shortest paths between different communities must go along only a few edges.

Community detection can be achieved by removing *high-betweenness edges* in a graph \rightsquigarrow *Girvan-Newman algorithm*

1. *Calculate betweenness of all edges in a graph.*
2. *Remove the edge with the highest betweenness.*
3. *Repeat (1) until no edges remain.*
Community Detection: Edge Betweenness

Successively remove edges of highest betweenness, breaking up the network into separate components

(a) Step 1

(b) Step 2
Collaborative Filtering

A common question in data mining: what do one person’s choices say about another? As Amazon says: “people who buy this book also bought...”

These types of tasks are referred to as ‘collaborative filtering’: using shared choices to predict preferences.

It’s a big field, with many tools

▶ logistic regression of each product on to all other choices.
▶ principal components analysis: underlying taste factors.

Many of the tools from this class apply (projects?).

But as an easy start, there are good fast algorithms for discovering low dimensional association rules.
Association Rules

Frequent itemset mining is a popular tool for discovering purchasing patterns from large commercial databases.

Consider $\mathbf{X} = \{X_1, \ldots, X_p\}$ a set of binary attributes called items.

Let $\mathbf{T} = \{T_1, \ldots, T_n\}$ be a database of transactions, where each transaction T_i is associated with an item set S_i (subset of variables in \mathbf{X} for which $X_j = 1$).

For two item sets S_i and S_j, we define an implication

$$S_i \Rightarrow S_j$$

as an association rule when S_j occurs more frequently when S_i occurs.

The LHS item S_i is the antecedent and the RHS item S_j is the consequent.
Association Rules: Toy Example

The goal is to find interesting item co-ocurrences and build association rules.

Assume $X = \{\text{milk, bread, butter, beer}\}$.

Database of transactions

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>milk, bread</td>
</tr>
<tr>
<td>2</td>
<td>bread, butter</td>
</tr>
<tr>
<td>3</td>
<td>beer</td>
</tr>
<tr>
<td>4</td>
<td>milk, bread, butter</td>
</tr>
<tr>
<td>5</td>
<td>bread, butter</td>
</tr>
</tbody>
</table>

An example of rule can be

\[
\{\text{milk, bread}\} \Rightarrow \text{butter}.
\]
Association Rules

There are various measures of informativeness among item sets and association rules.

Support of item set S \(\text{supp}(S) \) is the proportion of transactions that contain S

\[
\text{supp} \left(\{ \text{milk, bread} \} \right) = \frac{2}{5}
\]

It is an estimate of the probability of purchasing \{milk, bread\}

Confidence of a rule $S_i \Rightarrow S_j$ is the proportion of S_i transactions that include also S_j:

\[
\text{conf} \left(S_i \Rightarrow S_j \right) = \frac{\text{supp}(S_i \text{ and } S_j)}{\text{supp}(S_i)}
\]

\[
\text{conf} \left(\{ \text{milk, bread} \} \Rightarrow \{ \text{butter} \} \right) = \frac{\text{supp}(\{ \text{milk, bread, butter} \})}{\text{supp}(\{ \text{milk, bread} \})} = \frac{1}{2}
\]

It is an estimate of the *conditional* probability of purchasing butter *given* \{milk, bread\}
Association Rules

Association rules (AR’s) should have enough of support and confidence. To narrow down focus to even fewer and even more interesting AR’s, one can use lift.

Lift of a rule $S_i \Rightarrow S_j$ measures the increase in support of S_j when S_i occurs

\[
\text{lift}(S_i \Rightarrow S_j) = \frac{\text{supp}(S_i \text{ and } S_j)}{\text{supp}(S_i) \text{supp}(S_j)}
\]

It can be regarded as a ratio of a **conditional** probability of purchasing butter, **given** \{milk, bread\}, and an **unconditional** probability of purchasing butter.

\[
\text{lift}([milk, bread] \Rightarrow \{butter\}) = \frac{1}{2} \times \frac{5}{3}
\]

Greater lift values indicate stronger associations.
Support, Association, and Lift

Ex: when you buy chips, you need beer to wash them down.

Suppose that beer is purchased 10% of the time in general, but 50% of the time when the consumer grabs chips.

- The support for ‘beer’ is 10%
- The confidence of this rule is 50%.
- It’s lift is 5: 50% is 5 times higher than 10%.

Given this information, you could put some chips by the beer.

Generally, association rules with high lift are most useful.

Low support does not preclude high confidence or high lift.

Chips ⇒ Beer is high support, but low lift if everybody always buys beer.

Caviar ⇒ Vodka is low support, but high lift if people only buy vodka for their caviar parties.
Finding Association Rules with R

There’s no deep theory around ARules. We just scan the high-lift or high-confidence rules to find interesting rules.

To find confidence and lift, just count the number of times RHS and LHS happen, and how often they happen together.

\[
\text{supp(event)} = \frac{\text{number of times event occurs}}{\text{number of observations}}
\]

However, counting all possible combinations can take forever. **Apriori**: algorithm for finding rules over a support threshold.

The **apriori** function is available in the **arules** package. You need to get the data in a certain format, but after this it is straightforward to use.
Binary Incidence Matrix

Convenient representation of transactions with binary incidence matrix.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>X_1 (milk)</th>
<th>X_2 (bread)</th>
<th>X_3 (butter)</th>
<th>X_4 (beer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T_5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The number of purchase opportunities as well as products can be huge. Coding as a sparse matrix is extremely helpful.
Last.fm Artist Plays

Online radio keeps track of everything you play, for recommending music & focused marketing.

This ‘network’ shows artists sized by play count, with lines (edges) for shared users.

metal, rock, pop, jazz, electronica, hip-hop, reggae/ska, classical, folk/country/world.
Association rules for Music Taste

<table>
<thead>
<tr>
<th>lhs</th>
<th>rhs</th>
<th>support</th>
<th>confidence</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>t.i. => kanye west</td>
<td></td>
<td>0.0104</td>
<td>0.5672</td>
<td>8.8544</td>
</tr>
<tr>
<td>pink floyd, the doors => led zeppelin</td>
<td></td>
<td>0.0106</td>
<td>0.5387</td>
<td>6.8020</td>
</tr>
<tr>
<td>beyonce => rihanna</td>
<td></td>
<td>0.0139</td>
<td>0.4686</td>
<td>10.8810</td>
</tr>
<tr>
<td>morrissey => the smiths</td>
<td></td>
<td>0.0112</td>
<td>0.4655</td>
<td>8.8961</td>
</tr>
<tr>
<td>megadeth => iron maiden</td>
<td></td>
<td>0.0132</td>
<td>0.4307</td>
<td>7.2677</td>
</tr>
<tr>
<td>jimi hendrix => the doors</td>
<td></td>
<td>0.0120</td>
<td>0.3062</td>
<td>5.3170</td>
</tr>
<tr>
<td>nelly furtado => madonna</td>
<td></td>
<td>0.0100</td>
<td>0.2750</td>
<td>5.0374</td>
</tr>
<tr>
<td>bright eyes => the shins</td>
<td></td>
<td>0.0102</td>
<td>0.2698</td>
<td>5.4623</td>
</tr>
<tr>
<td>elliott smith => modest mouse</td>
<td></td>
<td>0.0109</td>
<td>0.2679</td>
<td>5.1732</td>
</tr>
<tr>
<td>britney spears => lady gaga</td>
<td></td>
<td>0.0120</td>
<td>0.2612</td>
<td>7.7292</td>
</tr>
<tr>
<td>ramones => the clash</td>
<td></td>
<td>0.0104</td>
<td>0.2586</td>
<td>5.9052</td>
</tr>
<tr>
<td>franz ferdinand => kaiser chiefs</td>
<td></td>
<td>0.0132</td>
<td>0.2224</td>
<td>7.1153</td>
</tr>
</tbody>
</table>

Example: Given a new user that listens to a lot of Morrissey, we’re 46% positive that they’ll also like the Smiths; This is 9 times higher than if we didn’t know about Morrissey.
From association to networks

Graphs can be a useful way to summarize all sorts of data. We can define networks using any measure of connectivity.

For example, an association network:

Say there's an edge between \(\text{lhs} \) and \(\text{rhs} \) if \(\text{support} \) and \(\text{confidence} \) are greater than some thresholds.

If we just look at any shared membership in a playlist, we get our monster graph from the beginning.

For example, in the \texttt{lastfm.R} code we use rules from

\begin{verbatim}
apriori(playtrans,
 parameter=list(support=.001, confidence=.1, maxlen=2))
\end{verbatim}

to define a network with 1k nodes and 36k edges.
0.1% support and 10% confidence lastfm network

The network has four very distinct cliques.

These look something like metal, hip-hop, alt, pop.

See code for plotting. There’s lots you can do.
Networks for Web Search Engines

Search for “California”

Search is one great example of network analysis;

Consider ranking sites for the query “California”.

⇝ Take 200 pages with heavy traffic and high term-frequency for “California”.

⇝ Follow links to build a neighborhood.

We’re left with about 10,000 sites, with links, to rank.

```r
caedges <- read.csv("CaliforniaEdges.csv")
casites <- scan("CaliforniaNodes.txt", "character")
edgemat <- cbind(casites[caedges$from], casites[caedges$to])
```
The query provides a very large directed network
Look at neighborhoods to get a workable plot.

\[\text{latimes} \leftarrow \text{graph.neighborhood(calink, order=1, ...)} \]

LA Times network

Neighborhood order is the number of included steps away from the node.

At order=1, we just have sites pointing to latimes.com.
LA Times Neighborhood
Expanded to order 2

Just going one extra step creates a much bigger network. Yellow points are the first-order connections from before.
Google’s PageRank Algorithm

Google has been pretty successful. Page Rank is a key ingredient.

Suppose we have N webpages and we want to rank them in terms of their likely relevance to the websurfer.

PageRank algorithm, famously invented by Larry Page and Sergei Brin (founders of Google), assigns a score to each webpage.

Paper: The Anatomy of a Large-Scale Hypertextual Web Search Engine
Page Rank labels a site more important *if many sites link to it*. However, we don’t want to treat all linking webpages equally.

Instead, we **weight** the links from different webpages

1. Webpages that link to i, and have *high PageRank* scores themselves, should be given **more weight**

2. Webpages that link to i, but *link to a lot of other webpages* in general, should be given **less weight**

The rank r_i of i^{th} page depends on all the other ranks r_j of pages that point to it \rightsquigarrow circular argument.
PageRank Algorithm

The circularity can be exploited in recursive calculations.

\[r_i = \sum_{j=1}^{N} \frac{e_{ij}}{c_j} r_j \]

\(r_i \) is the page rank,
\(e_{ij} \) is a binary edge indicator, and
\(c_j = \sum_{i=1}^{N} e_{ij} \) is the number of nodes pointed at by node j.

Start with an initial vector \(r^{(0)} \) and update \(r^{(k)} = Ar^{(k-1)} \) until convergence, where \(A \) is a sparse weighted adjacency matrix.

Very efficient and simple calculation.

The ranks \(r_i \) can be interpreted as the proportion of time a random websurfer spends on a webpage if we let him go forever.
PageRank Algorithm Continued

Improved algorithm obtained with slightly different recursive calculations.

\[r_i = \frac{1 - d}{N} + d \sum_{j=1}^{N} \frac{e_{ij}}{c_j} r_j \]

where \(0 < d < 1\) is a constant (apparently Google uses \(d = 0.85\))

Start with an initial vector \(r^{(0)}\) and update \(r^{(k)} = \tilde{A}r^{(k-1)}\) until convergence, where \(\tilde{A} = dA + (1 - d)B\).

Again this version of PageRank models user behavior where \(r_i\) can be interpreted as the proportion of time a random websurfer spends on a webpage. But now the surfer can either click on links or jump to unlinked random webpages.

But now, \(1 - d\) can be interpreted as a probability that the websurfer does not click on any link but jumps to a new webpage.
Page rank of “california” search response

We can run PageRank to organize our list of sites.

```r
> search <- page.rank(calink)$vector
> casites[order(search, decreasing=TRUE)]
```

I don’t think this alone would have made google famous!
Nodes need to be weighted by traffic and by successful clicks.
Homework Due Next Week: Connectivity in Hollywood

We’ll explore casts for ‘drama’ movies from 1980-1999. See actors example code and data.
I’ve limited the data to actors in more than ten productions over this time period (and to movies with more than ten actors).

[1] The actors network has an edge if the two actors were in the same movie. Plot the entire actors network.

[2] Plot the neighborhoods for “Bacon, Kevin” at orders 1-3. How does the size of the network change with order?

[3] Who were the most common actors? Who were most connected? Pick a pair of actors and describe the shortest path between them.

[4] Find pairwise actor-cast association rules with at least 0.01% support and 10% confidence. Describe what you find.

[+] What would be a regression based alternative to ARules? Execute it for a single RHS actor.