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We develop a general approach to valid inference after model
selection. In a nutshell, our approach produces post-selection infer-
ences with the same frequency guarantees as those given by data
splitting but are more powerful. At the core of our framework is a
result that characterizes the distribution of a post-selection estima-
tor conditioned on the selection event. We specialize the approach to
model selection by the lasso to form valid confidence intervals for the
selected coefficients and test whether all relevant variables have been
included in the model.

1. Introduction. As a statistical technique, linear regression is both
simple and powerful. Not only does it provide estimates of the “effect” of
each variable, but it also quantifies the uncertainty in those estimates, al-
lowing for inference about the effects. However, in many exploratory inves-
tigations, a practitioner starts with a large pool of candidate variables, such
as genes or demographic features, and does not know a priori which are
relevant. This is especially a problem when there are more variables than
observations, since then the (full) linear model is unidentified.

We might wish to use the data to select a subset of variables. One approach
is to fit a linear model with all variables included (assuming this is possible),
observe which ones are significant at level α, and then refit the linear model
with only those variables included. The problem with this approach is that
the p-values can no longer be trusted, since the variables that are selected
will tend to be those that are significant. Intuitively, we are “overfitting” to
this realization of the data.

To formalize the problem, consider the standard linear regression setup,
where the response y ∈ Rn is generated

(1.1) y ∼ N(µ, σ2In)

and µ is modeled as a linear function of predictors x1, ...,xp ∈ Rn. We
choose a subset of the predictors M ⊂ [ p ] and ask for inferences about the
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2 LEE ET AL.

submodel coefficients, i.e. the linear combination of predictors in M that
minimizes the expected error:

(1.2) βM ≡ arg min
β

E||y −XMβ||2 = X+
Mµ,

where X+
M ≡ (XT

MXM )−1XT
M is the pseudo-inverse of XM . Notice that (1.2)

implies that the targets βMj and βM
′

j in different models M 6= M ′ are in
general different. This is simply a restatement of the well-known fact that
a regression coefficient describes the effect of a predictor, adjusting for the
other predictors in the (sub)model.

Alternatively, we may ask for inferences about a selected subset of the
full model coefficients:

β[ p ] ≡ arg min
β

E||y −Xβ||2 = X+µ;

i.e. we ask for valid selective inferences about the β[ p ]. For example, we
may ask for inferences about the k most “significant” coefficients, e.g. the
k coefficients with the largest absolute Z-score. In this setting, the targets

β
[ p ]
j remain consistent in different models.
Thus, “inference after selection” is ambiguous in linear regression because

the target of inference may change with the selected model (Berk et al.,
2013). In the next section, we discuss several ways to resolve this ambiguity.

2. Post-Selection Inference in Linear Regression. At first blush,
the fact that the target changes with the model is deeply disturbing, since it
seems to imply that the parameters are random. However, it is not so much
the target that is random as our selection of targets. This is evidently the
case when asking for selective inference about the full model coefficients.
When asking for inference about the submodel coefficients, note that there
are p2p−1 possible submodel coefficient, one for each coefficient in all 2p

possible models:
{βMj : M ⊂ [ p ], j ∈M}.

However, we only form inferences for a subset of these parameters—specifically,

the parameters βM̂j in the model M̂ we select. To avoid repetition, we con-
tinue the discussion focusing on inference for the submodel targets.

To be concrete, suppose we want a confidence interval CM̂j for a submodel

coefficient βM̂j . What frequency properties should CM̂j have? By analogy to
the classical setting, we might want

P(βM̂j ∈ CM̂j ) ≥ 1− α,
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EXACT POST-SELECTION INFERENCE 3

but this is ill-posed because βMj does not exist when j /∈ M . Berk et al.
(2013) suggest the following alternatives:

1. Conditional Coverage: Since we form an interval for βMj if and only if

we select model M , i.e., M̂ = M , it makes sense to condition on this
event. Hence, we might require that our confidence interval CMj satisfy

(2.1) P(βMj ∈ CMj | M̂ = M) ≥ 1− α.

The benefit of this approach is that we avoid ever having to compare
coefficients across two different models M 6= M ′.

2. Simultaneous Coverage: It also makes sense to talk about events that
are defined simultaneously over all j ∈ M̂ . Berk et al. (2013) propose
controlling the familywise error rate

(2.2) FWER ≡ P(βM̂j /∈ CM̂j for any j ∈ M̂),

but it may be too stringent when there are many predictors involved.
Instead of controlling the probability of making any error, we can
control the expected proportion of errors—although the “proportion
of errors” is ambiguous when we select no variables. We can simply
declare the error to be zero when |M̂ | = 0 (Benjamini and Yekutieli,
2005):

(2.3) FCR ≡ E


∣∣∣{j ∈ M̂ : βM̂j /∈ CM̂j }

∣∣∣
|M̂ |

; |M̂ | > 0

 ,
or condition on |M̂ | > 0 (Storey, 2003):

(2.4) pFCR ≡ E


∣∣∣{j ∈ M̂ : βM̂j /∈ CM̂j }

∣∣∣
|M̂ |

∣∣∣∣∣∣ |M̂ | > 0

 .
Since FCR = pFCR·P(|M̂ | > 0), pFCR control implies FCR control.

Remarkably, conditional coverage (2.1) implies pFCR (2.4) (and hence,
FCR) control.

Theorem 2.1. Consider a family of intervals {CM̂j }j∈M̂ that each have
conditional (1− α) coverage:

P(βM̂j /∈ CM̂j |M̂ = M) ≤ α, for all M and j ∈M.

Then, FCR ≤ pFCR ≤ α.
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Proof. Condition on M̂ and iterate expectations.

pFCR = E

E

∣∣∣{j ∈ M̂ : βM̂j /∈ CM̂j }

∣∣∣
|M̂ |

∣∣∣∣∣∣ M̂
 ∣∣∣∣∣∣ |M̂ | > 0


= E

∑j∈M̂ P
(
βM̂j /∈ CM̂j

∣∣M̂)
|M̂ |

∣∣∣∣∣∣ |M̂ | > 0


≤ E

[
α|M̂ |
|M̂ |

∣∣∣∣∣ |M̂ | > 0

]
= α.

3. Outline of Our Approach. We have argued that post-selection
intervals for regression coefficients should have 1 − α coverage conditional
on the model:

P(βMj ∈ CMj | M̂ = M) ≥ 1− α,
both because this criterion is interesting in its own right and because it
implies FCR control. To obtain an interval with this property, we study the
conditional distribution

(3.1) ηTMy | {M̂ = M},

which will allow, more generally, conditional inference for parameters of the
form ηTMµ. In particular, βMj = eTj X

+
Mµ can be written in this form, as can

many other linear contrasts.
Our paper focuses on the specific case where the lasso is used to select the

model M̂ . We begin in Section 4 by characterizing the event {M̂ = M} for
the lasso. As it turns out, this event is a union of polytopes. More precisely,
the event {M̂ = M, ŝM = sM}, that specifies the model and the signs of the
selected variables, is a polytope of the form

{y ∈ Rn : A(M, sM )y ≤ b(M, sM )}.

Therefore, if we condition on both the model and the signs, then we only
need to study

(3.2) ηTy | {Ay ≤ b}.

We do this in Section 5. It turns out that this conditional distribution is
essentially a (univariate) truncated Gaussian. We use this to derive a statistic
F z(ηTy) whose distribution given {Ay ≤ b} is Unif(0, 1).
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EXACT POST-SELECTION INFERENCE 5

3.1. Related Work. The resulting post-selection test has a similar struc-
ture to the pathwise significance tests of Lockhart et al. (2014) and Taylor
et al. (2014), which also are conditional tests. However, the intended ap-
plication of our test is different. Whereas they test the specific hypothesis
of whether a newly added coefficient along the LARS path is non-zero, our
framework allows more general questions about the model the lasso selects:
we can test the model at any value of λ or form confidence intervals for an
individual coefficient in the model.

There is also a parallel literature on confidence intervals for coefficients in
high-dimensional linear models based on the lasso estimator (Javanmard and
Montanari, 2013; van de Geer et al., 2013; Zhang and Zhang, 2014). The
difference between their work and ours is that they do not address post-
selection inference; their target is β0, the coefficients in the true model,

rather than βM̂ , the coefficients in the selected model. The two will not
be the same unless M̂ happens to contain all non-zero coefficients of β0.
Although inference for β0 is appealing, it requires assumptions about cor-
rectness of the linear model and sparsity of β0. Our approach instead regards
the selected model as a linear approximation to the truth, a view shared by
Berk et al. (2013).

4. The Lasso and Its Selection Event. In this paper, we apply our
post-selection inference procedure to the model selected by the lasso (Tib-
shirani, 1996). The lasso estimate is the solution to the usual least squares
problem with an additional `1 penalty on the coefficients:

(4.1) β̂ ∈ arg min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

The `1 penalty shrinks many of the coefficients to exactly zero, and the
tradeoff between sparsity and fit to the data is controlled by the penalty
parameter λ ≥ 0.

Because the lasso produces sparse solutions, we can define model “se-
lected” by the lasso to be simply the set of predictors with non-zero coeffi-
cients:

M̂ = {j : β̂j 6= 0}.

Then, post-selection inference seeks to make inferences about βM , given
{M̂ = M}, as defined in (1.2).

The rest of this section focuses on characterizing this event {M̂ = M}.
We begin by noting that in order for a vector of coefficients β̂ and a vector
of signs ŝ to be solutions to the lasso problem (4.1), it is necessary and
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6 LEE ET AL.

sufficient that they satisfy the Karush-Kuhn-Tucker (KKT) conditions:

XT (Xβ̂ − y) + λŝ = 0,(4.2)

ŝi = sign(β̂j) if β̂j 6= 0

ŝi ∈ [−1, 1] if β̂j = 0(4.3)

Following Tibshirani (2013), we consider the equicorrelation set

(4.4) M̂ ≡ {i ∈ {1, . . . , p} : |ŝi| = 1} .

Notice that we have implicitly defined the model M̂ to be equicorrelation
set. Since |ŝi| = 1 for any β̂i 6= 0, the equicorrelation set does in fact contain
all predictors with non-zero coefficients, although it may also include some
predictors with zero coefficients. However, for almost every λ, the equicor-
relation set is precisely the set of predictors with non-zero coefficients.

It turns out that it is easier to first characterize {(M̂, ŝ) = (M, s)} and
obtain {M̂ = M} as a corollary by taking a union over the possible signs.
The next result is an important first step.

Lemma 4.1. Assume the columns of X are in general position (Tibshi-
rani, 2013). Let M ⊂ {1, . . . , p} and s ∈ {−1, 1}|M | be a candidate set of
variables and their signs, respectively. Define the random variables

w(M, s) := (XT
MXM )−1(XT

My − λs)(4.5)

u(M, s) := XT
−M (XT

M )+s+
1

λ
XT
−M (I − PM )y.(4.6)

where PM ≡ XM (XT
MXM )−1XM is projection onto the column span of XM .

Then the selection procedure can be rewritten in terms of w and u as:{
(M̂, ŝ) = (M, s)

}
=
{

sign(w(M, s)) = s, ||u(M, s)||∞ < 1
}

(4.7)

Proof. First, we rewrite the KKT conditions (4.2) by partitioning them
according to the equicorrelation set M̂ , adopting the convention that −M̂
means “variables not in M̂ .”

XT
M̂

(XM̂ β̂M̂ − y) + λŝM̂ = 0

XT
−M̂ (XM̂ β̂M̂ − y) + λŝ−M̂ = 0

sign(β̂M̂ ) = ŝ

||ŝ−M̂ ||∞ < 1.
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EXACT POST-SELECTION INFERENCE 7

Since the KKT conditions are necessary and sufficient for a solution, we
obtain that {(M̂, ŝ) = (M, s)} if and only if there exist w and u satisfying:

XT
M (XMw − y) + λs = 0

XT
−M (XMw − y) + λu = 0

sign(w) = s

||u||∞ < 1.

We can solve the first two equations for w and u to obtain the equivalent
set of conditions

w = (XT
MXM )−1(XT

My − λs)

u = XT
−M (XT

M )+s+
1

λ
XT
−M (I − PM )y

sign(w) = s

||u||∞ < 1,

where the first two are the definitions of w and u given in (4.5) and (4.6),
and the last two are the conditions on w and u given in (4.7).

Lemma 4.1 is remarkable because it says that the event {(M̂, ŝ) = (M, s)}
can be rewritten as affine constraints on y. This is because w and u are
already affine functions of y, and the constraints sign(·) = s and || · ||∞ < 1
can also be rewritten in terms of affine constraints. The following proposition
makes this explicit.

Proposition 4.2. Let w and u be defined as in (4.5) and (4.6). Then:

{sign(w) = s, ‖u‖∞ < 1} =

{(
A0(M, s)
A1(M, s)

)
y <

(
b0(M, s)
b1(M, s)

)}
(4.8)

where A0, b0 encode the “inactive” constraints {‖u‖∞ < 1}, and A1, b1 en-
code the “active” constraints {sign(w) = s}. These matrices have the explicit
forms:

A0(M, s) =
1

λ

(
XT
−M (I − PM )

−XT
−M (I − PM )

)
b0(M, s) =

(
1−XT

−M (XT
M )+s

1 +XT
−M (XT

M )+s

)
A1(M, s) = −diag(s)(XT

MXM )−1XT
M b1(M, s) = −λ diag(s)(XT

MXM )−1s
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8 LEE ET AL.

Proof. First, substituting expression (4.5) forw, we rewrite the “active”
constraints as

{sign(w) = s} = {diag(s)w > 0}
= {diag(s)(XT

MXM )−1(XT
My − λs) > 0}

= {A1(M, s)y < b1(M, s)}.

Next, substituting expression (4.6) for u, we rewrite the “inactive” con-
straints as

{||u||∞ < 1} =

{
−1 < XT

−M (XT
M )+s+

1

λ
XT
−M (I − PM )y < 1

}
= {A0(M, s)y < b0(M, s)}

Combining Lemma 4.1 with Proposition 4.2, we obtain the following.

Theorem 4.3. Let A(M, s) =

(
A0(M, s)
A1(M, s)

)
and b(M, s) =

(
b0(M, s)
b1(M, s)

)
,

where Ai and bi are defined in Proposition 4.2. Then:

{M̂ = M, ŝ = s} = {A(M, s)y ≤ b(M, s)}.

As a corollary, {M̂ = M} is simply the union of the above events over all
possible sign patterns.

Corollary 4.4. {M̂ = M} =
⋃

s∈{−1,1}|M|
{A(M, s)y ≤ b(M, s)}.

Figure 1 illustrates Theorem 4.3 and Corollary 4.4. The lasso partitions
of Rn into polytopes according to the model it selects and the signs of the
coefficients. The shaded area corresponds to the event {M̂ = {1, 3}}, which
is a union of two polytopes. Notice that the sign patterns {+,−} and {−,+}
are not possible for the model {1, 3}.

5. Conditioning on Polytopes. In order to obtain inference condi-
tional on the model, we need to understand the distribution of

ηTMy | {M̂ = M}.
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x1

x3

x2

M̂ = {1, 3}
ŝ = {+,+}

M̂ = {1, 3}
ŝ = {−,−}

Fig 1: A geometric picture illustrating Theorem 4.3 for n = 2 and p = 3.
The lasso partitions Rn into polytopes according to the selected model and
signs.

However, as we saw in the previous section, {M̂ = M} is a union of poly-
topes, so it is easier to condition on both the model and the signs,

ηTMy | {M̂ = M, ŝ = s},

where the conditioning event is a single polytope {A(M, s)y ≤ b(M, s)}.
Notice that inferences that are valid conditional on this finer event will also
be valid conditional on {M̂ = M}. For example, if a confidence interval CMj
for βMj has (1− α) coverage conditional on the model and signs

P(βMj ∈ CMj | M̂ = M, ŝ = s) ≥ 1− α,

then it will also have (1− α) coverage conditional only on the model:

P(βMj ∈ CMj | M̂ = M) =
∑
s

P(βMj ∈ CMj | M̂ = M, ŝ = s)P(ŝ = s | M̂ = M)

≥
∑
s

(1− α)P(ŝ = s | M̂ = M)

= 1− α.
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10 LEE ET AL.

This section is divided into two subsections. First, we study how to condi-
tion on a single polytope; this will allow us to condition on {M̂ = M, ŝ = s}.
Then, we look at how to extend the framework to condition on a union of
polytopes, which will allow us to condition only on the model {M̂ = M}.
The inferences obtained by conditioning on the model will in general be
more efficient (i.e., narrower intervals, more powerful tests), at the price of
more computation.

5.1. Conditioning on a Single Polytope. Suppose we observe y ∼ N(µ,Σ),
and η ∈ Rn is some direction of interest. To understand the distribution of

(5.1) ηTy | {Ay ≤ b},

we rewrite {Ay ≤ b} in terms of ηTy and a component z which is indepen-
dent of ηTy. That component is

(5.2) z ≡ (In − cηT )y,

where

(5.3) c ≡ Ση(ηTΣη)−1.

It is easy to verify that z is uncorrelated with, and hence independent of,
ηTy. Although definition (5.2) may seem unmotivated, in the case where
Σ = σ2In, z is simply the residual (In − Pη)y from projecting y onto η.

We can now rewrite {Ay ≤ b} in terms of ηTy and z.

Lemma 5.1. Let z be defined as in (5.2) and c as in (5.3). Then, the
conditioning set can be rewritten as follows:

{Ay ≤ b} = {V−(z) ≤ ηTy ≤ V+(z),V0(z) ≥ 0}

where

V−(z) ≡ max
j:(Ac)j<0

bj − (Az)j
(Ac)j

(5.4)

V+(z) ≡ min
j:(Ac)j>0

bj − (Az)j
(Ac)j

(5.5)

V0(z) ≡ min
j:(Ac)j=0

bj − (Az)j .(5.6)

Note that V−, V+, and V0 refer to functions. Since they are functions of z
only, (5.4)–(5.6) are independent of ηTy.
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{Ay ≤ b}

y

η ηTy

z

V −(z) V +(z)

Fig 2: A geometric interpretation of why the event {Ay ≤ b} can be charac-
terized as {V−(z) ≤ ηT y ≤ V+(z)}. Assuming Σ = I and ||η||2 = 1, V−(z)
and V+(z) are functions of z only, which is independent of ηTy.

Proof. We can decompose y = c(ηTy) + z and rewrite the polytope as

{Ay ≤ b} = {A(c(ηTy) + z) ≤ b}
= {Ac(ηTy) ≤ b−Az}
=
{

(Ac)j(η
Ty) ≤ bj − (Az)j for all j

}
=


ηTy ≤ bj−(Az)j

(Ac)j
for j : (Ac)j > 0

ηTy ≥ bj−(Az)j
(Ac)j

for j : (Ac)j < 0

0 ≤ bj − (Az)j for j : (Ac)j = 0

 ,

where in the last step, we have divided the components into three categories
depending on whether (Ac)j R 0, since this affects the direction of the

inequality (or whether we can divide at all). Since ηTy is the same quantity
for all j, it must be at least the maximum of the lower bounds and no more
than the minimum of the upper bounds, which is precisely the definition of
V−(z) and V+(z). Finally, bj − (Az)j ≥ 0 for all j : (Ac)j = 0 is encoded
by V0(z) ≥ 0.

Lemma 5.1 tells us that

(5.7)
[
ηTy | {Ay ≤ b}

] d
=
[
ηTy | {V−(z) ≤ ηTy ≤ V+(z),V0(z) ≥ 0}

]
Since V+(z),V−(z),V0(z) are independent of ηTy, they behave as “fixed”
quantities. Thus, ηTy is conditionally like a normal random variable, trun-
cated to be between V−(z) and V+(z). We would like to be able to say

“ ηTy | {Ay ≤ b} ∼ TN(ηTµ, σ2ηTΣη,V−(z),V+(z)), ”
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12 LEE ET AL.

but this is technically incorrect, since the distribution on the right-hand side
changes with z. By conditioning on the value of z, ηTy | {Ay ≤ b, z = z0}
is a truncated normal. We then use the probability integral transform to
obtain a statistic F z(ηTy) that has a Unif(0, 1) distribution for any value
of z. Hence, F z(ηTy) will also have a Unif(0, 1) distribution marginally over
z. We make this precise in the next theorem.

Theorem 5.2. Let F
[a,b]
µ,σ2 denote the CDF of a N(µ, σ2) random variable

truncated to the interval [a, b], i.e.:

(5.8) F
[a,b]
µ,σ2(x) =

Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ)

where Φ is the CDF of a N(0, 1) random variable. Then:

(5.9) F
[V−(z),V+(z)]

ηTµ, ηT Ση
(ηTy)

∣∣ {Ay ≤ b} ∼ Unif(0, 1)

where V− and V+ are defined in (5.4) and (5.5). Furthermore,[
ηTy

∣∣Ay ≤ b, z = z0

]
∼ TN(ηTµ, σ2||η||2,V−(z0),V+(z0)).

Proof. First, apply Lemma 5.1:[
ηTy

∣∣Ay ≤ b, z = z0

] d
=
[
ηTy

∣∣V−(z) ≤ ηTy ≤ V+(z),V0(z) ≥ 0, z = z0

]
d
=
[
ηTy

∣∣V−(z0) ≤ ηTy ≤ V+(z0),V0(z0) ≥ 0, z = z0

]
The only random quantities left are ηTy and z. Now we can eliminate z = z0

from the condition using independence:[
ηTy

∣∣Ay ≤ b, z = z0

] d
=
[
ηTy

∣∣V−(z0) ≤ ηTy ≤ V+(z0)
]

∼ TN(ηTµ, σ2||η||2,V−(z0),V+(z0))

Letting F z(ηTy) ≡ F
[V−(z),V+(z)]

ηTµ, ηT Ση
(ηTy), we can apply the probability

integral transform to the above result to obtain[
F z(ηTy)

∣∣Ay ≤ b, z = z0

] d
=
[
F z0(ηTy)

∣∣Ay ≤ b, z = z0

]
∼ Unif(0, 1)

If we let pX denote the density of a random variable X given {Ay ≤ b},
what we have just shown is that

pFz(ηTy)|z(t|z0) ≡
pFz(ηTy),z(t, z0)

pz(z0)
= 1[0,1](f)
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y

V
− {+
,+
}

(z
)

V
+ {−
,−
}

(z
)

η

η
T
y

z

Fig 3: When we take the union over signs, the conditional distribution of
ηTy is truncated to a union of disjoint intervals. In this case, the Gaussian
is truncated to the set (−∞,V+

{−,−}(z)] ∪ [V−{+,+}(z),∞).

for any z0. The desired result now follows by integrating over z0:

pFz(ηTy)(t) =

∫
pFz(ηTy)|z(t|z0) pz(z0) dz0

=

∫
1[0,1](t) pz(z0) dz0

= 1[0,1](t).

5.2. Conditioning on a Union of Polytopes. We have just characterized
the distribution of ηTy, conditional on y falling into a single polytope {Ay ≤
b}. We obtain such a polytope if we condition on both the model and the
signs {M̂ = M, ŝ = s}. If we want to only condition on the model {M̂ = M},
then we will have to understand the distribution of ηTy, conditional on y
falling into a union of such polytopes, i.e.,

(5.10) ηTy

∣∣∣∣∣ ⋃
s

{Asy ≤ bs}.
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As Figure 3 makes clear, the argument proceeds exactly as before, except
that ηTy is now truncated to a union of intervals, instead of a single interval.
There is a V− and a V+ for each possible sign pattern s, so we index the
intervals by the signs. This leads immediately to the next theorem, whose
proof is essentially the same as that of Theorem 5.2.

Theorem 5.3. Let FSµ,σ2 denote the CDF of a N(µ, σ2) random variable
truncated to the set S. Then:

(5.11) F
⋃

s[V−s (z),V+
s (z)]

ηTµ, ηT Ση
(ηTy)

∣∣∣∣∣ ⋃
s

{Asy ≤ bs}. ∼ Unif(0, 1),

where V−s (z) and V+
s (z) are defined in (5.4) and (5.5) and A = As and

b = bs.

6. Post-Selection Intervals for Regression Coefficients. In this
section, we combine the characterization of the lasso selection event in Sec-
tion 4 with the results about the distribution of a Gaussian truncated to a
(union of) polytope(s) in Section 5 to form post-selection intervals for lasso-
selected regression coefficients. The key link is that the lasso selection event
can be expressed as a union of polytopes:

{M̂ = M} =
⋃

s∈{−1,1}|M|
{M̂ = M, ŝ = s}

=
⋃

s∈{−1,1}|M|
{A(M, s)y ≤ b(M, s)},

where A(M, s) and b(M, s) are defined in Theorem 4.3. Therefore, condi-
tioning on selection is the same as conditioning on a union of polytopes, so
the framework of Section 5 applies.

Recall that our goal is to form confidence intervals for βMj = eTj X
+
Mµ,

with (1 − α)-coverage conditional on {M̂ = M}. Taking η = (X+
M )Tej , we

can use Theorem 5.3 to obtain

F
⋃

s[V−s (z),V+
s (z)]

βM
j ,σ2||η||2 (ηTy)

∣∣ {M̂ = M} ∼ Unif(0, 1).

This gives us a test statistic for testing any hypothesized value of βMj . We
can invert this test to obtain a confidence set

(6.1) CMj ≡
{
βMj :

α

2
≤ F

⋃
s[V−s (z),V+

s (z)]

βM
j ,σ2||η||2 (ηTy) ≤ 1− α

2

}
.

In fact, the set CMj is an interval, as formalized in the next result.
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Theorem 6.1. Let η = (X+
M )Tej. Let L and U be the (unique) values

satisfying

F
⋃

s[V−s (z),V+
s (z)]

L, σ2||η||2 (ηTy) = 1− α

2
F

⋃
s[V−s (z),V+

s (z)]

U, σ2||η||2 (ηTy) =
α

2

Then [L,U ] is a (1 − α) confidence interval for βMj , conditional on {M̂ =
M}, i.e.,

(6.2) P
(
βMj ∈ [L,U ]

∣∣ M̂ = M
)

= 1− α.

Proof. By construction, PβM
j

(βMj ∈ CMj |M̂ = M) = 1−α, where CMj is

defined in (6.1). The claim is that the set CMj is in fact the interval [L,U ].

To see this, we need to show that the test statistic F
⋃

s[V−s (z),V+
s (z)]

L, σ2||η||2 (ηTy)

is monotone decreasing in βMj so that it crosses 1 − α
2 and α

2 at unique
values. This follows from the fact that the truncated Gaussian distribution
has monotone likelihood ratio in the mean parameter. See Appendix A for
details.

Alternatively, we could have conditioned on the signs, in addition to the
model, so that we would only have to worry about conditioning on a single
polytope. We also showed in Section 5 that

F
[V−s (z),V+

s (z)]

βM
j ,σ2||η||2 (ηTy) | {M̂ = M, ŝ = s} ∼ Unif(0, 1).

Inverting this statistic will produce intervals that have (1 − α) coverage
conditional on {M̂ = M, ŝ = s}, and hence, (1−α) coverage conditional on
{M̂ = M}. However, these intervals will be less efficient; they will in general
be wider. However, one may be willing to sacrifice statistical efficiency for
computational efficiency. Notice that the main cost in computing intervals
according to Theorem 6.1 is determining the intervals [V−s (z),V+

s (z)] for
each s ∈ {−1, 1}|M |. The number of such sign patterns is 2|M |. While this
might be feasible when |M | is, say, less than 15, it is not feasible when we
select hundreds of variables. Conditioning on the signs means that we only
have to compute the interval [V−s (z),V+

s (z)] for the sign pattern s that was
actually observed.

Figure 4 shows the tradeoff in statistical efficiency. When the signal is
strong, as in the left-hand plot, there is virtually no difference between the
intervals obtained by conditioning on just the model, or the model and signs.
On the other hand, in the right-hand plot, we see that we can obtain very
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Fig 4: Comparison of the confidence intervals by conditioning on the model
only (statistically more efficient, but computationally more expensive) and
conditioning on both the model and signs (statistically less efficient, but
computationally more feasible). Data were simulated for n = 25, p = 50,
and 5 true non-zero coefficients; only the first 20 coefficients are shown.
(Variables with no intervals are included to emphasize that inference is only
on the selected variables.) Conditioning on the signs in addition to the model
results in no loss of statistical efficiency when the signal is strong (left) but
is problematic when the signal is weak (right).

wide intervals when the signal is weak. The widest intervals are for actual
noise variables, as expected.

To understand why post-selection intervals are sometimes very wide, no-
tice that when a truncated Gaussian random variable Z is close to the end-
points of the truncation interval [a, b], there are many means µ that would
be consistent with that observation—hence, the wide intervals. Figure 5
shows confidence intervals for µ as a function of Z. When Z is far from the
endpoints of the truncation interval, we basically recover the nominal OLS
intervals (i.e., not adjusted for selection).

The implications are clear. When the signal is strong, ηTy will be far
from the endpoints of the truncation region, so we obtain the nominal OLS
intervals. On the other hand, when a variable just barely entered the model,
then ηTy will be close to the edge of the truncation region, and the interval
will be wide.

6.1. Optimality. We have derived a confidence interval CMj whose condi-

tional coverage, given {M̂ = M}, is 1−α. The fact that we have found such
an interval is not remarkable, since many such intervals have this property,
including the trivial interval (−∞,∞). However, given two intervals with the
same coverage, we generally prefer the shorter one. We now show that CMj
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Fig 5: Upper and lower bounds of 90% confidence intervals for µ based
on a single observation x/σ ∼ TN(0, 1,−3, 3). We see that as long as the
observation x is roughly 0.5σ away from either boundary, the size of the
intervals is comparable to the unadjusted OLS confidence interval.

is, with one small tweak, the interval with expected shortest length among
all unbiased intervals with 1− α coverage.

An unbiased interval C for a parameter θ is one which covers no other
parameter θ′ with probability more than 1− α, i.e.,

(6.3) Pθ(θ′ ∈ C) ≤ 1− α, for all θ, θ′ 6= θ.

Unbiasedness is a common restriction to ensure that there is an optimal
interval or test at all (Lehmann and Romano, 2005). The interval with ex-
pected shortest length for βMj , among all intervals with conditional 1 − α
coverage, is similar to the interval [L,U ] in Theorem 6.1. The only differ-
ence is that the critical values L and U were chosen symmetrically so that
the pivot has α/2 area in either tail. However, allocating the α probabil-
ity equally to either tail may not be optimal in general. The next theorem
provides the general recipe for constructing optimal intervals:

Theorem 6.2. Let η = (X+
M )Tej and define the set

(6.4) CMj,opt ≡
{
βMj : ηTy ∈ R(z)

}
,

where the rejection region R(z) is defined in (6.6) below and is a function
of z (5.2). Then CMj,opt is the interval with expected shortest length for βMj
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with 1− α coverage, conditional on {M̂ = M}, i.e.,

(6.5) P
(
βMj ∈ CMj,opt

∣∣ M̂ = M
)

= 1− α.

Proof. Without loss of generality, assume ||η||2 = 1 and σ = 1. Note
that the distribution of y, conditional on {M̂ = M}, is an exponential
family. That is, with respect to some base measure ν on {M̂ = M} and for
some log-normalizing function ψM , its density is

y ∼ exp
{
µTy − ψM (µ)

}
dν(y)

= exp
{
µT [Pηy + (I − Pη)y]− ψM (µ)

}
dν(y)

= exp
{

(ηTµ)(ηTy) + ((I − Pη)µ)Tz − ψM (µ)
}
dν(y).

This is an exponential family with one parameter of interest (ηTµ) and
(n−1) nuisance parameters, represented by (I−Pη)µ.1 Classical theory (cf.
Theorem 4.4.1 in Lehmann and Romano (2005)) says that the uniformly
most powerful unbiased (UMPU) test of H0 : ηTµ = βMj versus H1 : ηTµ 6=
βMj is obtained by conditioning on z and rejecting for values of ηTy that

are too large or too small. In other words, we reject for ηTy ∈ R(z), where

(6.6) R(z) ≡ (−∞, C1(z)] ∪ [C2(z),∞),

where C1(z) and C2(z) are chosen to ensure:

1. The test is level α. Letting ϕ(x) = e−x2

√
2π

and S(z) ≡
⋃
s[V−s (z),V+

s (z)],∫
R(z)∩S(z) ϕ(x− βMj ) dx∫

S(z) ϕ(x− βMj ) dx
= α

for almost every z.
2. Since the test is unbiased, its power function must be minimized under
H0, so its derivative at βMj must be 0, yielding the condition∫

R(z)∩S(z) xϕ(x− βMj ) dx∫
S(z) ϕ(x− βMj ) dx

= α

∫
S(z) xϕ(x− βMj ) dx∫
S(z) ϕ(x− βMj ) dx

.

This gives us the UMPU test of H0 : ηTy = βMj for every βMj . Finally,
the UMAU interval can be obtained by inverting the UMPU test, i.e.,

CMj,opt =
{
βMj : ηTy ∈ R(z)

}
.

The construction above is standard, and the details can be found in Chapter
4 of Lehmann and Romano (2005). By the Ghosh-Pratt theorem, this is the
unbiased interval with expected shortest length.

1Although this is technically a vector in Rn, it is only (n− 1)-dimensional.
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7. Data Example. We apply our post-selection intervals to the dia-
betes data set from Efron et al. (2004). After standardizing all variables, we
chose λ according to the strategy in Negahban et al. (2012), λ = 2 E(‖XT ε‖∞),
using an estimate of σ from the full model, resulting in λ ≈ 190. The lasso
selected four variables: BMI, BP, S3, and S5.

The post-selection intervals are shown in Figure 6, alongside the nominal
confidence intervals produced by fitting OLS to the four selected variables,
ignoring selection. The nominal intervals do not have (1−α) coverage condi-
tional on the model and are not valid post-selection intervals. Also depicted
are the confidence intervals obtained by data splitting ; that is, if one splits
the n observations into two halves, then uses one half for selection and the
other for inference. This is a competitor method that also produces valid
confidence intervals conditional on the model. The lasso selected the same
four variables on half of the data, and then nominal intervals for these four
variables using OLS on the other half of the data.

We can make two observations from Figure 6.

1. The adjusted intervals provided by our method essentially reproduces
the OLS intervals for the strong effects, whereas data splitting intervals
are wider by a factor of

√
2 (since only n/2 observations are used in the

inference). For this dataset, the POSI intervals are 1.36 times wider
than the OLS intervals. For all the variables, our method produces
the shortest intervals among the methods that control selective type 1
error.

2. One variable, S3, which would have been deemed significant using
the OLS intervals, is no longer significant after accounting for selec-
tion. Data splitting, our selection-adjusted intervals, and POSI inter-
vals conclude that S3 is not significant. This demonstrates that taking
model selection into account can have substantive impacts on the con-
clusions.

8. Testing the Lasso-Selected Model. Having observed that the
lasso selected the variables M̂ , another relevant question is whether it has
captured all of the signal in the model, i.e.,

(8.1) H0 : β0
−M̂ = 0.

We consider a slightly more general question, which does not assume the
correctness of the linear model µ = Xβ0 and also takes into account whether
the non-selected variables can improve the fit:

(8.2) H0 : XT
−M̂ (I − P−M̂ )µ = 0.
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Fig 6: Inference for the four variables selected by the lasso (λ = 190) on
the diabetes data set. The point estimate and adjusted confidence intervals
using the approach in Section 6 are shown in black. The OLS intervals,
which ignore selection, are shown in red. The green lines show the intervals
produced by splitting the data into two halves, forming the interval based
on only half of the data. The blue line corresponds to the POSI method of
Berk et al. (2013)

.

This quantity is the partial correlation of the non-selected variables with µ,
adjusting for the variables in M̂ . This is more general because if we assume
µ = Xβ0 for some β0 and X is full rank, then rejecting (8.2) implies that
there exists i ∈ supp(β0) not in M̂ , so we would also reject (8.1).

The natural approach is to compare the observed partial correlations
XT
−M (I −PM )y to 0. However, the framework of Section 5 only allows tests

of µ in a single direction η. To make use of that framework, we can choose η
such that it selects the maximum magnitude of XT

−M (I −PM )y. In particu-
lar, this direction provides the most evidence against the null hypothesis of
zero partial correlation, so if the null hypothesis cannot be rejected in this
direction, it would not be rejected in any direction.

Letting v̂ := argmaxv ∈B∞v
TXT
−M (I −PM )y, (B∞ is the `∞ ball) we set

(8.3) η = (I − PM )X−M v̂,

and test H0 : ηTµ = 0. To ensure η is measurable with respect to the
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selection event, we condition on not only on (M̂, ŝ), but also on v̂:

(8.4) {(M̂, ŝ, v̂) = (M, s,v)}.

A test that is level α conditional on (8.4) for all (M̂, ŝ, v̂) is also level α
conditional on (M̂, ŝ).

In order to use the results of Section 5, we must show that (8.4) can be
written in the form A(M, s,v)y ≤ b(M, s,v). This is indeed possible, and
the following proposition provides an explicit construction.

Proposition 8.1. Let A0, b0, A1, b1 be defined as in Proposition 4.2.
Then:

{(M̂, ŝ, v̂) = (M, s,v)} =


A0(M, s)
A1(M, s)
A2(M,v)

y <
b0(M, s)
b1(M, s)

0


where A2(M,v) is defined as

A2(M,v) = D(v)XT
−M (I − PM ),

where the rows of D(v) ∈ R(2|M |−1)×|M | are given by (w − v)T for all w ∈
ext(B∞).

Proof. The constraints {A0y < b0} and {A1y < b1} come from Propo-
sition (4.2) and encode the constraints {(M̂, ŝ) = (M, s)}. We show that
the last two sets of constraints encode {v̂ = v}.

Let r := XT
−M (I − PM )y denote the vector of partial correlations. Since

B∞ is a polytope, the maximum of argmaxv ∈B∞v
TXT
−M (I − PM )y is at-

tained at an extreme point. Thus {v̂ = v} = {D(v)r < 0}.

Because of Proposition 8.1, we can now obtain the following result as

a simple consequence of Theorem 5.2, which says that F
[V−,V+]
0,σ2||η||2(ηTy) ∼

Unif(0, 1), conditional on the set (8.4) andH0. We reject when F
[V−,V+]
0,σ2||η||2(ηTy)

is large because F
[V−,V+]
0, σ2||η||2(·) is monotone increasing in the argument and

ηTµ is likely to be positive under the alternative.

Corollary 8.2. Let H0 and η be defined as in (8.3). Then, the test
which rejects when {

F
[V−,V+]
0, σ2||η||2(ηTy) > 1− α

}
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is level α, conditional on {(M̂, ŝ, v̂) = (M, s,v)}. That is,

P0

(
F

[V−,V+]
0, σ2||η||2(ηTy) > 1− α

∣∣ {(M̂, ŝ, v̂) = (M, s,v)}
)

= α.

In particular, since this holds for every (M, s,v), this test also controls Type
I error conditional only on (M̂, ŝ), and unconditionally:

P0

(
F

[V−,V+]
0, σ2||η||2(ηTy) > 1− α

∣∣ {(M̂, ŝ) = (M, s)}
)

= α

P0

(
F

[V−,V+]
0, σ2||η||2(ηTy) > 1− α

)
= α.

9. Extension to the Elastic Net. One problem with the lasso is that
it tends to select one variable out of a set of correlated variables, resulting
in estimates that are unstable. One way to stabilize them is to add an `2
penalty to the lasso objective, resulting in the elastic net (Zou and Hastie,
2005):

β̃ = argmin
β

1

2
‖y −Xβ‖22 + λ ‖β‖1 +

γ

2
‖β‖22 .(9.1)

Using a nearly identical argument to Lemma 4.1, we see that {M̂ = M, ŝ =
s} if and only if there exist w̃ and ũ satisfying

(XT
MXM + γI)w̃ −XT

My + λs = 0

XT
−M (XMw̃ − y) + λũ = 0

sign(w̃) = s

||ũ||∞ < 1.

These four conditions differ from those of Lemma 4.1 in only one respect:
XT
MXM in the first expression is replaced by XT

MXM + γI. Continuing the
argument of Section 4, we see that the selection event can be rewritten

(9.2) {M̂ = M, ŝ = s} =

{(
Ã0(M, s)

Ã1(M, s)

)
y <

(
b̃0(M, s)

b̃1(M, s)

)}
where Ãk and b̃k are analogous to Ak and bk in Proposition 4.2, except with
(XT

MXM )−1 replaced by (XT
MXM+γI)−1. Notice that this quantity not only

appears explicitly in A1 and b1, but also appears implicitly in A0 and b0

through PM and (XT
M )+.

Now that we have rewritten the selection event in the form {Ay ≤ b},
we can once again apply the framework in Section 5 to obtain a test for the
elastic net conditional on this event.
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10. Conclusion. Model selection and inference have long been regarded
as conflicting goals in linear regression. Following the lead of Berk et al.
(2013), we have proposed a framework for post-selection inference that con-
ditions on which model was selected, i.e., the event {M̂ = M}. We char-
acterize this event for the lasso and derive optimal and exact confidence
intervals for linear contrasts ηTµ, conditional on {M̂ = M}. With this
general framework, we can form post-selection intervals for regression coef-
ficients, equipping practitioners with a way to obtain “valid” intervals even
after model selection.
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APPENDIX A: MONOTONICITY OF F

Lemma A.1. Let Fµ(x) := F
[a,b]
µ,σ2(x) denote the cumulative distribution

function of a truncated Gaussian random variable, as defined as in (5.8).
Then Fµ(x) is monotone decreasing in µ.

Proof. First, the truncated Gaussian distribution with CDF Fµ := F
[a,b]
µ,σ2

is a natural exponential family in µ, since it is just a Gaussian with a different
base measure. Therefore, it has monotone likelihood ratio in µ. That is, for
all µ1 > µ0 and x1 > x0:

fµ1(x1)

fµ0(x1)
>
fµ1(x0)

fµ0(x0)

where fµi := dFµi denotes the density. (Instead of appealing to properties
of exponential families, this property can also be directly verified.)

This implies

fµ1(x1)fµ0(x0) > fµ1(x0)fµ0(x1) x1 > x0.

Therefore, the inequality is preserved if we integrate both sides with respect
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to x0 on (−∞, x) for x < x1. This yields:∫ x

−∞
fµ1(x1)fµ0(x0) dx0 >

∫ x

−∞
fµ1(x0)fµ0(x1) dx0 x < x1

fµ1(x1)Fµ0(x) > fµ0(x1)Fµ1(x) x < x1

Now we integrate both sides with respect to x1 on (x,∞) to obtain:

(1− Fµ1(x))Fµ0(x) > (1− Fµ0(x))Fµ1(x)

which establishes Fµ0(x) > Fµ1(x) for all µ1 > µ0.
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