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In this article we develop a method to estimate both individual social network size (i.e., degree) and the distribution of network sizes in a
population by asking respondents how many people they know in specific subpopulations (e.g., people named Michael). Building on the
scale-up method of Killworth et al. (1998b) and other previous attempts to estimate individual network size, we propose a latent non-random
mixing model which resolves three known problems with previous approaches. As a byproduct, our method also provides estimates of the
rate of social mixing between population groups. We demonstrate the model using a sample of 1,370 adults originally collected by McCarty
et al. (2001). Based on insights developed during the statistical modeling, we conclude by offering practical guidelines for the design of
future surveys to estimate social network size. Most importantly, we show that if the first names asked about are chosen properly, the
estimates from the simple scale-up model enjoy the same bias-reduction as the estimates from our more complex latent nonrandom mixing
model.
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1. INTRODUCTION

Social networks have become an increasingly common
framework for understanding and explaining social phenom-
ena. But despite an abundance of sophisticated models, social
network research has yet to realize its full potential, in part be-
cause of the difficulty of collecting social network data. In this
article we add to the toolkit of researchers interested in net-
work phenomena by developing methodology to address two
fundamental challenges posed in the seminal work of Pool and
Kochen (1978). First, for an individual, we would like to know
how many other people she knows (i.e., her degree, di); and sec-
ond, for a population, we would like to know the distribution of
acquaintance volume (i.e., the degree distribution, pd).

Recently, the second question, of degree distribution, has re-
ceived the most attention because of interest in so-called “scale-
free” networks (Barabási 2003). This interest was sparked by
the empirical finding that some networks, particularly techno-
logical networks, appear to have power law degree distributions
[i.e., p(d) ∼ d−α for some constant α], as well as by mathe-
matical and computational studies demonstrating that this ex-
tremely skewed degree distribution may affect the dynamics of
processes occurring on the network, such as the spread of dis-
eases and the evolution of group behavior (Pastor-Satorras and
Vespignani 2001; Santos, Pacheco, and Lenaerts 2006). The de-
gree distribution of the acquaintanceship network is not known,
however, and this has become so central to some researchers
that Killworth et al. (2006) declared that estimating the degree
distribution is “one of the grails of social network theory.”
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Although estimating the degree distribution is certainly im-
portant, we suspect that the ability to quickly estimate the per-
sonal network size of an individual may be of greater impor-
tance to social science. Currently, the dominant framework for
empirical social science is the sample survey, which has been
astutely described by Barton (1968) as a “meat grinder” that
completely removes people from their social contexts. Having a
survey instrument that allows for the collection of social content
would allow researchers to address a wide range of questions.
For example, to understand differences in status attainment be-
tween siblings, Conley (2004) wanted to know whether siblings
who knew more people tended to be more successful. Because
of difficulty in measuring personal network size, his analysis
was ultimately inconclusive.

In this article we report a method developed to estimate both
individual network size and degree distribution in a popula-
tion using a battery of questions that can be easily embedded
into existing surveys. We begin with a review of previous at-
tempts to measure personal network size, focusing on the scale-
up method of Killworth et al. (1998b), which is promising but
is known to suffer from three shortcomings: transmission er-
rors, barrier effects, and recall error. In Section 3 we propose a
latent nonrandom mixing model that resolves these problems,
and as a byproduct allows for the estimation of social mixing
patterns in the acquaintanceship network. We then fit the model
to 1,370 survey responses from McCarty et al. (2001), a nation-
ally representative telephone sample of Americans. In Section 5
we draw on insights developed during the statistical modeling
to offer practical guidelines for the design of future surveys.

2. PREVIOUS RESEARCH

The most straightforward method for estimating the personal
network size of respondents would be to simply ask them how
many people they “know.” We suspect that this would work
poorly, however, because of the well-documented problems
with self-reported social network data (Killworth and Bernard
1976; Bernard et al. 1984; Brewer 2000; Butts 2003). Other,
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more clever attempts have been made to measure personal net-
work size, including the reverse small-world method (Killworth
and Bernard 1978; Killworth, Bernard, and McCarty 1984;
Bernard et al. 1990), the summation method (McCarty et al.
2001), the diary method (Gurevich 1961; Pool and Kochen
1978; Fu 2007; Mossong et al. 2008), the phonebook method
(Pool and Kochen 1978; Freeman and Thompson 1989; Kill-
worth et al. 1990), and the scale-up method (Killworth et al.
1998b).

We believe that the scale-up method has the greatest poten-
tial for providing accurate estimates quickly with reasonable
measures of uncertainty. But the scale-up method is known to
suffer from three distinct problems: barrier effects, transmis-
sion effects, and recall error (Killworth et al. 2003, 2006). In
Section 2.1 we describe the scale-up method and these three
issues in detail, and in Section 2.2 we present an earlier model
by Zheng, Salganik, and Gelman (2006) that partially addresses
some of these issues.

2.1 The Scale-Up Method and Three Problems

Consider a population of size N. We can store the informa-
tion about the social network connecting the population in an
adjacency matrix, � = [δij]N×N , such that δij = 1 if person i
knows person j. Although our method does not depend on the
definition of “know,” throughout we assume McCarty et al.
(2001)’s definition: “that you know them and they know you
by sight or by name, that you could contact them, that they live
within the United States, and that there has been some contact
(either in person, by telephone or mail) in the past 2 years.” The
personal network size or degree of person i is then di = ∑

j δij.
One straightforward way to estimate the degree of person i

would be to ask if she knows each of n randomly chosen mem-
bers of the population. Inference then could be based on the fact
that the responses would follow a binomial distribution with n
trials and probability di/N. This method is extremely inefficient
in large populations, however, because the probability of a rela-
tionship between any two people is very low. For example, as-
suming an average personal network size of 750 (as estimated
by Zheng, Salganik, and Gelman 2006), the probability of two
randomly chosen Americans knowing each other is only about
0.0000025, meaning that a respondent would need to be asked
about millions of people to produce a decent estimate.

A more efficient method would be to ask the respondent
about an entire set of people at once, for example, asking
“how many women do you know who gave birth in the last
12 months?” instead of asking if she knows 3.6 million distinct
people. The scale-up method uses responses to questions of this
form (“How many X’s do you know?”) to estimate personal
network size. For example, if a respondent reports knowing 3
women who gave birth, this represents about 1-millionth of all
women who gave birth within the last year. This information
then could be used to estimate that the respondent knows about
1-millionth of all Americans,

3

3.6 million
· (300 million) ≈ 250 people. (1)

The precision of this estimate can be increased by averaging re-
sponses of many groups, yielding the scale-up estimator (Kill-
worth et al. 1998b)

d̂i =
∑K

k=1 yik∑K
k=1 Nk

· N, (2)

where yik is the number of people that person i knows in sub-
population k, Nk is the size of subpopulation k, and N is the
size of the population. One important complication to note with
this estimator is that asking “how many women do you know
who gave birth in the last 12 months?” is equivalent not to ask-
ing about 3.6 million random people, but rather to asking about
women roughly age 18–45. This creates statistical challenges
that we address in detail in later sections.

To estimate the standard error of the simple estimate, we fol-
low the practice of Killworth et al. (1998a) by assuming

K∑
k=1

yik ∼ Binomial

(
K∑

k=1

Nk,
di

N

)
. (3)

The estimate of the probability of success, p = di/N, is

p̂ =
∑k

i=1 yik∑K
k=1 Nk

= d̂i

N
, (4)

with standard error (including finite population correction)
(Lohr 1999)

SE(p̂) =
√√√√ 1∑K

k=1 Nk
p̂(1 − p̂)

N − ∑K
k=1 Nk

N − 1
.

The scale-up estimate d̂i then has standard error

SE(d̂i) = N · SE(p̂)

= N

√√√√ 1∑K
k=1 Nk

p̂(1 − p̂)
N − ∑K

k=1 Nk

N − 1

≈
√√√√N − ∑K

k=1 Nk∑K
k=1 Nk

d̂i =
√

d̂i ·
√√√√1 − ∑K

k=1 Nk/N∑K
k=1 Nk/N

. (5)

For example, when asking respondents about the number of
women they know who gave birth in the past year, the approxi-
mate standard error of the degree estimate is calculated as

SE(d̂i) ≈
√

d̂i ·
√√√√1 − ∑K

k=1 Nk/N∑K
k=1 Nk/N

≈ √
750 ·

√
1 − 3.6 million/300 million

3.6 million/300 million
≈ 250,

assuming a degree of 750 as estimated by Zheng, Salganik, and
Gelman (2006).

If we also had asked respondents about the number of peo-
ple they know who have a twin sibling, the number of people
they know who are diabetics, and the number of people they
know who are named Michael, we would have increased our
aggregate subpopulation size,

∑K
k=1 Nk, from 3.6 million to ap-

proximately 18.6 million, and in doing so decreased our esti-

mated standard error to about 100. Figure 1 plots SE(d̂i)/

√
d̂i

against
∑k

k=1 Nk/N. The most drastic reduction in estimated
error comes in increasing the survey fractional subpopulation
size to about 20% (or approximately 60 million in a popu-
lation of 300 million). Although the foregoing standard error
depends only on the sum of the subpopulation sizes, there are
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Figure 1. Standard error of the scale-up degree estimate (scaled by
the square root of the true degree) plotted against the sum of the frac-
tional subpopulation sizes. As the fraction of population represented
by survey subpopulations increases, the precision of the estimate im-
proves. Improvements diminish after about 20%.

other sources of bias that make the choice of the individual sub-
populations important, as we show later.

The scale-up estimator using “how many X do you know?”
data is known to suffer from three distinct problems: transmis-
sion errors, barrier effects, and recall problems (Killworth et al.
2003, 2006). Transmission errors occur when the respondent
knows someone in a specific subpopulation but is not aware
that the person is actually in that subpopulation; for example,
a respondent might know a woman who recently gave birth but
might not know that the woman had recently given birth. These
transmission errors likely vary from subpopulation to subpop-
ulation depending on the sensitivity and visibility of the infor-
mation. These errors are extremely difficult to quantify, because
very little is known about how much information respondents
have about the people they know (Laumann 1969; Killworth
et al. 2006; Shelley et al. 2006).

Barrier effects occur whenever some individuals systemati-
cally know more (or fewer) members of a specific subpopula-
tion than would be expected under random mixing, and thus
also can be called nonrandom mixing. For example, because
people tend to know others of similar age and gender (McPher-
son, Smith-Lovin, and Cook 2001), a 30-year old woman prob-
ably knows more women who have recently given birth than
would be predicted based solely on her personal network size
and the number of women who have recently given birth. Sim-
ilarly, an 80-year-old man probably knows fewer such women
than would be expected under random mixing. Consequently,
estimating personal network size by asking only “how many
women do you know who have recently given birth?”—the es-
timator presented eq. (1)—will tend to overestimate the degree
of women in their 30s and underestimate the degree of men in
their 80s. Because these barrier effects can introduce a bias of
unknown size, they have prevented previous researchers from
using the scale-up method to estimate the degree of any partic-
ular individual.

A final source of error is that responses to these questions
are prone to recall error. For example, people seem to under-
recall the number of people they know in large subpopulations

(e.g., people named Michael) and overrecall the number of peo-
ple they in small subpopulations (e.g., people who committed
suicide) (Killworth et al. 2003; Zheng, Salganik, and Gelman
2006).

2.2 The Zheng, Salganik, and Gelman (2006) Model
With Overdispersion

Before presenting our model for estimating personal network
size using “how many X’s do you know?” data, it is important
to review the multilevel overdispersed Poisson model of Zheng,
Salganik, and Gelman (2006), which, rather than treating non-
random mixing (i.e., barrier effects) as an impediment to net-
work size estimation, treats it as something important to esti-
mate for its own sake. Zheng, Salganik, and Gelman (2006) be-
gan by noting that under simple random mixing, the responses
to the “how many X’s do you know?” questions, yik’s, would
follow a Poisson distribution with rate parameter determined by
the degree of person i, di, and the network prevalence of group
k, bk. Here bk is the proportion of ties that involve individuals in
subpopulation k in the entire social network. If we can assume
that individuals in the group being asked about (e.g., people
named Michael) are as popular as the rest of the population on
average, then bk ≈ Nk/N.

The responses to many of the questions in the data of
McCarty et al. (2001) do not follow a Poisson distribution, how-
ever. In fact, most of the responses show overdispersion, that is,
excess variance given the mean. Consider, for example, the re-
sponses to the question: “How many males do you know incar-
cerated in state or federal prison?” The mean of the responses to
this question was 1.0, but the variance was 8.0, indicating that
some people are much more likely than others to know some-
one in prison. To model this increased variance, Zheng, Sal-
ganik, and Gelman (2006) allowed individuals to vary in their
propensity to form ties to different groups. If these propensities
follow a gamma distribution with a mean value of 1 and a shape
parameter of 1/(ωk − 1), then the yik’s can be modeled with a
negative binomial distribution,

yik ∼ Neg-Binom(mean = μik, overdispersion = ωk), (6)

where μik = dibk. Thus ωk estimates the variation in individual
propensities to form ties to people in different groups and rep-
resents one way of quantifying nonrandom mixing (i.e., barrier
effects).

Although it was developed to estimate ωk, the model of
Zheng et al. also produces personal network size estimates, di.
These estimates are problematic for two reasons, however. First,
the normalization procedure used to address recall problems
(see Zheng, Salganik, and Gelman 2006 for complete details)
only shifts the degree distribution back to the appropriate scale;
it does not ensure that the degree of individual respondents are
being estimated accurately. Second, the degree estimates from
the model remain susceptible to bias due to transmission error
and barrier effects.

3. A NEW STATISTICAL METHOD FOR
DEGREE ESTIMATION

We now describe a new statistical procedure to address the
three aforementioned problems with estimating individual de-
gree using “how many X’s do you know?” data. Transmission
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errors, while probably the most difficult to quantify, are also the
easiest to eliminate. We limit our analysis to the 12 subpopula-
tions defined by first names that were asked about by McCarty
et al. (2001). These 12 names (half male and half female) are
presented in Figure 2. Although McCarty et al.’s definition of
“knowing” someone does not explicitly require respondents to
know individuals by name, we believe that using first names
provides the minimum imaginable bias due to transmission er-
rors; that is, it is unlikely that a person knows someone but
does not know his or her first name. Even though using only
first names controls transmission errors, it does not address bias
from barrier effects or recall bias. In this section we propose a
latent nonrandom mixing model to address these two issues.

3.1 Latent Nonrandom Mixing Model

We begin by considering the impact of barrier effects, or non-
random mixing, on degree estimation. Imagine, for example, a
hypothetical 30-year-old male survey respondent. If we were to
ignore nonrandom mixing and ask this respondent how many
Michaels he knows, then we would overestimate his network
size using the scale-up method, because Michael tends to be a
more popular name among younger males (Figure 2). In con-
trast, if we were to ask how many Roses he knows, then we
would underestimate the size of his network, because Rose is
a name that is more common in older females. In both cases,
the properties of the estimates are affected by the demographic
profiles of the names used, something not accounted for in the
scale-up method.

We account for nonrandom mixing using a negative binomial
model that explicitly estimates the propensity for a respondent
in ego group e to know members of alter group a. Here we

are following standard network terminology (Wasserman and
Faust 1994), referring to the respondent as ego and the people
to whom he can form ties as alters. The model is then

yik ∼ Neg-Binom(μike,ω
′
k),

where μike = di

A∑
a=1

m(e,a)
Nak

Na
, (7)

where di is the degree of person i, e is the ego group to which
person i belongs, Nak/Na is the relative size of name k within
alter group a (e.g., 4% of males age 21–40 are named Michael),
and m(e,a) is the mixing coefficient between ego group e and
alter group a, that is,

m(e,a) = E

(
dia

di = ∑A
a=1 dia

∣∣∣i in ego group e

)
, (8)

where dia is the number of person i’s acquaintances in alter
group a. That is, m(e,a) represents the expected fraction of the
ties of someone in ego group e that go to people in alter group
a. For any group e,

∑A
a=1 m(e,a) = 1.

Thus the number of people that person i knows with name
k, given that person i is in ego group e, is based on person i’s
degree (di), the proportion of people in alter group a that have
name k (Nak/Na), and the mixing rate between people in group
e and people in group a [m(e,a)]. In addition, if we do not
observe nonrandom mixing, then m(e,a) = Na/N and μike in
(7) reduces to dibk in (6).

Along with μike, the latent nonrandom mixing model also de-
pends on the overdispersion, ω′

k, which represents the variation

Figure 2. Age profiles for the 12 names used in the analysis (data source: SSA). The heights of the bars represent the percentage of American
newborns in a given decade with a particular name. The total subpopulation size is given across the top of each graph. These age profiles are
required to construct the matrix of Nak

Na
terms in eq. (7). The male names chosen by McCarty et al. are much more popular than the female names.
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in the relative propensity of respondents within an ego group
to form ties with individuals in a particular subpopulation k.
Using m(e,a), we model the variability in relative propensities
that can be explained by nonrandom mixing between the de-
fined alter and ego groups. Explicitly modeling this variation
should cause a reduction in overdispersion parameter ω′

k com-
pared with ωk in (6) and Zheng, Salganik, and Gelman (2006).
The term ω′

k is still in the latent nonrandom mixing model, how-
ever, because there remains residual overdispersion based on
additional ego and alter characteristics that could affect their
propensity to form ties.

Fitting the model requires choosing the number of ego
groups, E, and alter groups, A. In this case we classified egos
into six categories by crossing gender (2 categories) with three
age categories: youth (age 18–24 years), adult (age 25–64), and
senior (age 65+). We constructed eight alter groups by cross-
ing gender with four age categories: 0–20, 21–40, 41–60, and
61+. Thus to estimate the model, we needed to know the age
and gender of our respondents and, somewhat more problemat-
ically, the the relative popularity of the name-based subpopula-
tions in each alter group ( Nak

Na
). We approximated this popularity

using the decade-by-decade birth records made available by the
Social Security Administration (SSA). Because we are using
the SSA birth data as a proxy for the living population, we are
assuming that several social processes—immigration, emigra-
tion, and life expectancy—are uncorrelated with an individual’s
first name. We also are assuming that the SSA data are accu-
rate, even for births from the early twentieth century, when reg-
istration was less complete. We believe that these assumptions
are reasonable as a first approximation and probably did not
have a substantial effect on our results. Together these model-
ing choices resulted in a total of 48 mixing parameters, m(e,a),
to estimate (6 ego groups by 8 alter groups). We believe that
this represents a reasonable compromise between parsimony
and richness.

3.2 Correction for Recall Error

The model in eq. (7) is a model for the actual network of
the respondents assuming only random sampling error. Unfor-
tunately, however, the observed data rarely yield reliable in-
formation about this network, because of the systematic ten-
dency for respondents to underrecall the number of individuals
that they know in large subpopulations (Killworth et al. 2003;
Zheng, Salganik, and Gelman 2006). For example, assume that
a respondent recalls knowing five people named Michael; then
the estimated network size would be

5

4.8 million/300 million
≈ 300 people. (9)

But Michael is a common name, making it likely that there
are additional Michaels in the respondent’s actual network who
were not counted at the time of the survey (Killworth et al.
2003; Zheng, Salganik, and Gelman 2006). We could choose
to address this issue in two ways, which, although ultimately
equivalent, suggest two distinct modeling strategies.

First, we could assume that the respondent is inaccurately re-
calling the number of people named Michael that she knows
from her true network. Under this framework, any correction
that we propose should increase the numerator in eq. (9). This

requires that we propose a mechanism by which respondents
underreport their true number known on individual questions.
In our example, this would be equivalent to taking the five
Michaels reported and applying some function to produce a cor-
rected response (presumably some number greater than five),
which then would be used to fit the proposed model. It is diffi-
cult to speculate about the nature of this function in any detail,
however.

Another approach would be to assume that respondents are
recalling not from their actual network, but rather from a re-
called network that is a subset of the actual network. We spec-
ulate that the recalled network is created when respondents
change their definition of “know” based on the fraction of their
network made up of the population being queried such that they
use a more restrictive definition of “know” when answering
about common subpopulations (e.g., people named Michael)
than when answering about rare subpopulations (e.g., people
named Ulysses). This means that, in the context of Section 2.2,
we no longer have that bk ≈ Nk/N. We can, however, use
this information for calibration, because the true subpopulation
sizes, Nk/N, are known and can be used as a point of compari-
son to estimate and then correct for the amount of recall bias.

Previous empirical work (Killworth et al. 2003; Zheng, Sal-
ganik, and Gelman 2006; McCormick and Zheng 2007) sug-
gests that the calibration curve, f (·), should impose less cor-
rection for smaller subpopulations and progressively greater
correction as the popularity of the subpopulation increases.
Specifically, both Killworth et al. (2003) and Zheng, Salganik,
and Gelman (2006) suggested that the relationship between
βk = log(bk) and β ′

k = log(b′
k) begins along the y = x line, and

that the slope decreases to 1/2 (corresponding to a square root
relation on the original scale) with increasing fractional sub-
population size.

Using these assumptions and some boundary conditions,
McCormick and Zheng (2007) derived a calibration curve that
gives the following relationship between bk and b′

k:

b′
k = bk

[
c1

bk
exp

(
1

c2

(
1 −

[
c1

bk

]c2
))]1/2

, (10)

where 0 < c1 < 1 and c2 > 0. By fitting the curve to the names
from the McCarty et al. (2001) survey, we chose c1 = e−7 and
c2 = 1. (For details on this derivation, see McCormick and
Zheng 2007.) We apply the curve to our model as follows:

yik ∼ Neg-Binom(μike,ω
′
k),

where μike = dif

(
A∑

a=1

m(e,a)
Nak

Na

)
. (11)

3.3 Model Fitting Algorithm

Here we use a multilevel model and Bayesian inference to
estimate di, m(e,a), and ω′

k in the latent nonrandom mixing
model described in Section 3.1. We assume that log(di) fol-
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lows a normal distribution with mean μd and standard devia-
tion σd . Zheng, Salganik, and Gelman (2006) postulated that
this prior should be reasonable based on previous work, specif-
ically McCarty et al. (2001), and found that the prior worked
well in their case. We estimate a value of m(e,a) for all E ego
groups and all A alter groups. For each ego group, e, and each
alter group, a, we assume that m(e,a) has a normal prior distrib-
ution with mean μm(e,a) and standard deviation σm(e,a). For ω′

k,
we use independent uniform(0,1) priors on the inverse scale,
p(1/ω′

k) ∝ 1. Because ω′
k is constrained to (1,∞), the inverse

falls on (0,1). The Jacobian for the transformation is ω′−2
k . Fi-

nally, we give noninformative uniform priors to the hyperpa-
rameters μd , μm(e,a), σd , and σm(e,a). Then the joint posterior
density can be expressed as

p
(
d,m(e,a),ω′,μd,μm(e,a), σd, σm(e,a)|y

)
∝

K∏
k=1

N∏
i=1

(
yik + ξik − 1

ξik − 1

)(
1

ω′
k

)ξik
(

ω′
k − 1

ω′
k

)yik

×
N∏

i=1

(
1

ω′
k

)2

N(log(di)|μd, σd)

×
E∏

e=1

N
(
m(e,a)|μm(e,a), σm(e,a)

)
, (12)

where ξik = dif (
∑A

a=1 m(e,a)
Nak
Na

)/(ω′
k − 1).

Adapting Zheng, Salganik, and Gelman (2006), we use a
Gibbs–Metropolis algorithm in each iteration v, as follows:

1. For each i, update di using a Metropolis step with jumping
distribution log(d∗

i ) ∼ N(d(v−1)
i , (jumping scale of di)

2).
2. For each e, update the vector m(e, ·) using a Metropo-

lis step. Define the proposed value using a random di-
rection and jumping rate. Each of the A elements of
m(e, ·) has a marginal jumping distribution m(e,a)∗ ∼
N(m(e,a)(v−1), (jumping scale of m(e, ·))2). Then rescale
so that the row sum is 1.

3. Update μd ∼ N(μ̂d, σ
2
d /n), where μ̂d = 1

n

∑n
i=1 di.

4. Update σ 2
d ∼ Inv-χ2(n−1, σ̂ 2

d ), where σ̂ 2
d = 1

n

∑n
i=1(di −

μd)
2.

5. Update μm(e,a) ∼ N(μ̂m(e,a), σ
2
m(e,a)/A) for each e where

μ̂m(e,a) = 1
A

∑A
a=1 m(e,a).

6. Update σ 2
m(e,a) ∼ Inv-χ2(A − 1, σ̂ 2

m(e,a)) for each e, where

σ̂ 2
m(e,a) = 1

A

∑A
a=1(m(e,a) − μm(e,a))

2.
7. For each k, update ω′

k using a Metropolis step with jump-

ing distribution ω′∗
k ∼ N(ω

′(v−1)
k , (jumping scale of ω′

k)2).

4. RESULTS

To fit the model, we used data from McCarty et al. (2001),
comprising survey responses from 1,370 adults living in the
United States who were contacted via random digit dialing in
two surveys: survey 1, with 796 respondents, conducted in Jan-
uary 1998, and survey 2, with 574 respondents, conducted in
January 1999. To correct for responses that were suspiciously
large (e.g., a person claiming to know more than 50 Michaels),
we truncated all responses at 30, a procedure that affected only
0.25% of the data. We also inspected the data using scatterplots,

which revealed a respondent who was coded as knowing seven
people in each subpopulation. We removed this case from the
data set.

We obtained approximate convergence of our algorithm
(R̂max < 1.1; see Gelman et al. 2003) using three parallel chains
with 2,000 iterations per chain. We used the first half of each
chain for burn-in and thinned the chain by using every tenth
iterate. All computations were performed using custom code
written for the software package R (R Development Core Team
2009), which is available on request.

4.1 Personal Network Size Estimates

We estimated a mean network size of 611 (median, 472). Fig-
ure 3 presents the distribution of network sizes. In the figure,
the solid line represents a log-normal distribution with para-
meters determined via maximum likelihood (μ̂mle = 6.2 and
σ̂mle = 0.68); the lognormal distribution fits the distribution
quite well. This result is not an artifact of our model, as has been
confirmed by additional simulation studies (data not shown).
Given the recent interest in power laws and networks, we also
explored the fit of the power law distribution (dashed line) with
parameters estimated via maximum likelihood (αmle = 1.28)

(Clauset, Shalizi, and Newman 2007). The fit is clearly poor, a
result consistent with previous work showing that another social
network—the sexual contact network—also is poorly approxi-
mated by the power law distribution (Hamilton, Handcock, and
Morris 2008).

Figure 4 compares the estimated degree from the latent
nonrandom mixing model with estimates obtained using the
method of Zheng, Salganik, and Gelman (2006). In general, the

Figure 3. Estimated degree distribution from the fitted model. The
median is about 470, and the mean is about 610. The shading repre-
sents random draws from the posterior distribution to indicate inferen-
tial uncertainty in the histograms. The solid line is a log-normal distri-
bution fit using maximum likelihood to the posterior median for each
respondent (μ̂mle = 6.2 and σ̂mle = 0.68). The dashed line is a power
law density with scaling parameter estimated by maximum likelihood
(α̂mle = 1.28).
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Figure 4. Comparison of the estimates from Zheng et al. and the latent nonrandom mixing model broken down by age and gender. Gray
points represent males; black points, females. The latent nonrandom mixing model accounts for the fact that the names from McCarty et al. are
predominately male and predominantly middle-aged, and thus produces lower degree estimates for respondents in these groups. Because our
model has six ego groups, there are six distinct patterns in the figure.

estimates from the latent nonrandom mixing model tend to be
slightly smaller, with an estimated median degree of 472 (mean,
611), compared with that of 610 (mean 750) obtained using the
method of Zheng, Salganik, and Gelman (2006). Figure 4 also
reveals that the differences between the estimates vary in ways
that are expected given that the names in the data of McCarty et
al. are predominantly male and predominantly middle-aged (see
Figure 2). The latent nonrandom mixing model accounts for this
fact, and thus produces lower estimates for male respondents
and adult respondents than the method of Zheng, Salganik, and
Gelman (2006).

4.2 Mixing Estimates

Although our proposed procedure was developed to obtain
good estimates of personal network size, it also provides in-
formation about the mixing rates in the population, which is
considered to affect the spread of information (Volz 2006) and
disease (Morris 1993; Mossong et al. 2008). Even though previ-
ous work has been done on estimating population mixing rates

(see, e.g., Morris 1991), we believe this is the first survey-based
approach for estimating such information indirectly.

As mentioned in the previous section, the mixing matrix,
m(e,a), represents the proportion of the network of a person in
ego group e that is composed of people in alter group a. The es-
timated mixing matrix presented in Figure 5 indicates plausible
relationships within subgroups, with the dominant pattern be-
ing that individuals tend to preferentially associate with others
of similar age and gender, a finding consistent with the large
sociological literature on homophily (the tendency for people
to form ties to those who are similar to themselves) (McPher-
son, Smith-Lovin, and Cook 2001). This trend is especially ap-
parent in adult males, who demonstrate a high proportion of
their ties to other males. With additional information on the
race/ethinicity of the different names, the latent nonrandom
mixing model could be used to estimate the extent of social
network–based segregation, an approach that could have many
advantages over traditional measures of residential segregation
(Echenique and Fryer 2007).

Figure 5. Barplot of the mixing matrix. Each of the six stacks of bars represents one ego group. Each stack describes the proportion of the
given ego group’s ties that are formed with all of the alter groups; thus the total proportion within each stack is 1. For each individual bar, a shift
to the left indicates an increased propensity to know female alters. Thick lines represent ±1 standard error (estimated from the posterior); thin
lines, ±2 standard errors.
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4.3 Overdispersion

Another way to assess the latent nonrandom mixing model is
to examine the overdispersion parameter ω′

k, which represents
the variation in propensity to know individuals in a particular
group. In the latent nonrandom mixing model, a portion of this
variability is modeled by the ego group–dependent mean, μike.
The remaining unexplained variability forms the overdisper-
sion parameter, ω′

k. In Section 3.1 we predicted that ω′
k would

be smaller than the overdispersion ωk reported by Zheng, Sal-
ganik, and Gelman (2006), because Zheng, Salganik, and Gel-
man (2006) did not model nonrandom mixing.

This prediction turned out to be correct. With the excep-
tion of Anthony, all of the estimated overdispersion estimates
from the latent nonrandom mixing model are lower than those
presented by Zheng, Salganik, and Gelman (2006). To judge
the magnitude of the difference, we created a standardized dif-

ference measure,
ω′

k−ωk
ωk−1 . Here the numerator, ω′

k − ωk, repre-
sents the reduction in overdispersion resulting from modeling
nonrandom mixing explicitly in the latent nonrandom mixing
model. In the denominator, an ωk value of 1 corresponds to
no overdispersion; thus the ratio for group k is the proportion
of overdispersion encountered in Zheng, Salganik, and Gelman
(2006) that is explicitly modeled in the latent nonrandom mix-
ing model. The standardized difference was on average 0.213
units lower for the latent nonrandom mixing model estimates,
indicating that roughly 21% of the overdispersion found in
Zheng, Salganik, and Gelman (2006) can be explained by non-
random mixing due to age and gender. If appropriate ethnicity
or other demographic information about the names were avail-
able, then we would expect this reduction to be even larger.

5. DESIGNING FUTURE SURVEYS

In the preceding sections we analyzed existing data in such
a way as to resolve the three known problems with estimat-
ing personal network size from “how many X’s do you know?”
data. In this section we offer survey design suggestions that can
allow researchers to capitalize on the simplicity of the scale-up
estimates while enjoying the same bias reduction as in the la-
tent nonrandom mixing model. Thus this section provides an
efficient and easily applied degree estimation method that is ac-
cessible to a wide range of researchers who may not wish to fit
the latent nonrandom mixing model.

In Section 5.1 we derive the requirement for selecting first
names such that the scale-up estimate is equivalent to the de-
gree estimate derived from fitting a latent nonrandom mixing
model using Markov chain Monte Carlo computation. The in-
tuition behind this result is that the names asked about should
be chosen so that the combined set of people asked about is a
“scaled-down” version of the overall population; for example,
if 20% of the general population is females under age 30, then
20% of the people with the names used also must be females
under age 30. Section 5.2 presents practical advice for choos-
ing such a set of names and presents a simulation study of the
performance of the suggested guidelines. Finally, Section 5.3
offers guidelines on the standard errors of the estimates.

5.1 Selecting Names for the Scale-Up Estimator

Unlike the scale-up estimator (2), the latent nonrandom mix-
ing model accounts for barrier effects due to some demographic
factors by estimating degree differentially based on character-
istics of the respondent and of the potential alter population.
But if there were conditions under which the simple scale-up
estimator was expected to be equivalent to the latent nonran-
dom mixing model, then the simple estimator would enjoy the
same reduction of bias from barrier effects as the more com-
plex latent nonrandom mixing model estimator. In this section
we derive such conditions.

The latent nonrandom mixing model assumes an expected
number of acquaintances for an individual i in ego group e to
people in group k [as in (7)],

μike = E(yike) = di

A∑
a=1

m(e,a)
Nak

Na
.

In contrast, the scale-up estimator assumes that

E

(
K∑

k=1

yike

)
=

K∑
k=1

μike = di

A∑
a=1

m(e,a)

[
K∑

k=1

Nak

Na

]

≡ di

∑K
k=1

∑A
a=1 Nak

N
, ∀e. (13)

Equation (13) shows that the scale-up estimator of Killworth et
al. (2) is in expectation equivalent to that of the latent nonran-
dom mixing if either

m(e,a) = Na

N
, ∀a,∀e (14)

or ∑K
k=1 Nak∑K
k=1 Nk

= Na

N
, ∀a. (15)

In other words, the two estimators are equivalent if there is ran-
dom mixing (14) or if the combined set of names represents
a “scaled-down” version of the population (15). Because ran-
dom mixing is not a reasonable assumption for the acquain-
tances network in the United States, we need to focus on se-
lecting the names to satisfy the scaled-down condition; that is,
we should select the set of names such that if 15% of the pop-
ulation is males between age 21 and 40 ( Na

N ), then 15% of the
people asked about also must be males between age 21 and 40

(
∑K

k=1 Nak∑K
k=1 Nk

).

When actually choosing a set of names to satisfy the scaled-
down condition, we found it more convenient to work with a
rearranged form of (15),∑K

k=1 Nak

Na
=

∑K
k=1 Nk

N
, ∀a. (16)

To find a set of names that satisfy (16), it is helpful to cre-
ate Figure 6, which displays the relative popularity of many
names over time. From this figure, we tried to select a set of
names such that the popularity across alter categories ended up
balanced. Consider, for example, the names Walter, Bruce, and
Kyle. These names have similar popularity overall, but Walter
was popular in 1910–1940, whereas Bruce was popular during
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Figure 6. Heat maps of additional male and female names based on SSA data. Lighter color indicates higher popularity.

the middle of the twentieth century, and Kyle was popular near
the end of the century. Thus the popularity of the names dur-
ing any one time period will be balanced by the popularity of
other names in the other time periods, preserving the required
equality in the sum (16).

When choosing what names to use, besides satisfying
eq. (16), we recommend choosing names that compromise
0.1%–0.2% of the population, which will minimize recall errors
and yield average responses of 0.6–1.3. Finally, we recommend
choosing names not commonly associated with nicknames, to
minimize transmission errors.

5.2 Simulation Study

We now demonstrate the use of the foregoing guidelines in a
simulation study. Again we use the age and gender profiles of
the names as an example. If other information were available,
then the general approach presented here would still be applica-
ble.

Figure 6 shows the popularity profiles of several names with
the desired level of overall popularity (0.1%–0.2% of the popu-
lation). We used this figure to select two sets of names (Table 1).
We selected the first set—the good names—using the proce-
dure described in the previous section to satisfy the scaled-
down condition. We also selected a second set of names—the
bad names—that were popular with individuals born in the first
decades of the twentieth century and thus did not satisfy the
scaled-down condition. For comparison, we also use the set of
12 names from the data of McCarty et al.

Table 1. A set of names that approximately meet the scaled-down
condition (the good names) and a set of names that do not

(the bad names)

Good names Bad names

Male Female Male Female

Walter Rose Walter Alice
Bruce Tina Jack Marie
Kyle Emily Harold Rose
Ralph Martha Ralph Joyce
Alan Paula Roy Marilyn
Adam Rachel Carl Gloria

Figure 7 provides a visual check of the scaled-down con-
dition (14) for these three sets of names by plotting the com-
bined demographic profiles for each set compared with that of
the overall population. The figure reveals clear problems with
the McCarty et al. names and the bad names. For example, in
the bad names, older individuals represent a much larger frac-
tion of the subpopulation of alters compared with the overall
population (as expected given our method of selection). Thus
we would expect scale-up estimates based on the bad names to
overestimate the degree of older respondents.

We evaluated this prediction using a simulation study in
which we fit the latent nonrandom mixing model to the
McCarty et al. data and then used these estimated parameters
(i.e., degree, overdispersion, and mixing matrix) to generate a
negative binomial sample of size 1,370. We then fit the scale-up
estimate, the latent nonrandom mixing model, and the model of
Zheng et al. to these simulated data to see how these estimates
could recover the known data-generating parameters.

Figure 8 presents the results of the simulation study. In
each panel the difference between the estimated degree and the
known data-generating degree for individual i is plotted against
the respondent’s age. For the bad names (Table 1), individual
degree is systematically overestimated for older individuals and
underestimated for younger individuals in all three models, but
the latent nonrandom mixing model shows the least age bias in
estimates. This overestimation of the degree of older respon-
dents is as expected given the combined demographic profiles
of the set of bad names (Figure 7). For the names from the
McCarty et al. (2001) survey, the scale-up estimator and the
model of Zheng et al. overestimate the degree of the younger
members of the population, again as expected given the com-
bined demographic profiles of this set of names (Figure 7). But
the latent nonrandom mixing model produces estimates with no
age bias. Finally, for the good names—those selected according
to the scaled-down condition—all three procedures work well,
further supporting the design strategy proposed in Section 5.1.

Overall, our simulation study shows that the proposed latent
nonrandom mixing model performed better than existing meth-
ods when names were not chosen according to the scaled-down
condition, suggesting that it is the best approach to estimating
personal network size with most data. But when the names were



68 Journal of the American Statistical Association, March 2010

Figure 7. Combined demographic profiles for three sets of names (shaded bars) and population proportion of the corresponding category
(solid lines). Unlike the bad names and the names of McCarty et al., the good names approximately satisfy the scaled-down condition [eq. (15)].

Figure 8. A comparison of the performance of the latent nonrandom mixing model, the Zheng et al. overdispersion model, and the Killworth
et al. scale-up method. In each panel the difference between the estimated degree and the known data-generating degree is plotted against age.
Three different sets of names were used: a set of names that do not satisfy the scaled-down condition (bad names), the names used in the survey
of McCarty et al., and a set of names that satisfy the scaled-down condition (good names). With the bad names, all three procedures show some
age bias in estimates, but these biases are smallest with the latent nonrandom mixing model. With the names of McCarty et al., the scale-up
estimates and the Zheng et al. estimates show age bias, but the estimates from the latent nonrandom mixing model are excellent. With the good
names, all three procedures perform well.



McCormick, Salganik, and Zheng: Estimating Personal Network Size 69

chosen according the scaled-down condition, even the much
simpler scale-up estimator works well.

5.3 Selecting the Number of Names

For researchers planning to use the scale-up method, an im-
portant issue to consider besides which names to use is how
many names to use. Obviously, asking about more names will
produce a more precise estimate, but that precision comes at the
cost of increasing the length of the survey. To help researchers
understand this trade-off, we return to the approximate stan-
dard error under the binomial model presented in Section 2.1.
Simulation results using 6, 12, and 18 names chosen using the
foregoing suggested guidelines agree well with the results from
the binomial model in (5) (results not shown). This agreement
suggests that the simple standard error may be reasonable when
the names are chosen appropriately.

To put the results of (5) into a more concrete context, a re-
searcher who uses names whose overall popularity reaches
2 million would expect a standard error of around 11.6 ×√

500 = 259 for an estimated degree of 500, whereas with∑
Nk = 6 million, she would expect a standard error of 6.2 ×√

500 = 139 for the same respondent. Finally, for the good
names presented in Table 1,

∑
Nk = 4 million, so a researcher

could expect a standard error of 177 for a respondent with de-
gree 500.

6. DISCUSSION AND CONCLUSION

Using “how many X’s do you know?”–type data to produce
estimates of individual degree and degree distribution holds
great potential for applied researchers. Especially, these ques-
tions can be easily integrated into existing surveys. But this
method’s usefulness has been limited by three previously doc-
umented problems. In this article we have proposed two addi-
tional tools for researchers. First, the latent nonrandom mixing
model in Section 3 deals with the known problems when us-
ing “how many X’s do you know?” data, allowing for improved
personal network size estimation. In Section 5 we showed that
if future researchers choose the names used in their survey
wisely—that is, if the set of names satisfies the scaled-down
condition—then they can get improved network size estimates
without fitting the latent nonrandom mixing model. We also
provided guidelines for selection such a set of names.

Although the methods presented here have advantages, they
also have somewhat more strenuous data requirements com-
pared with previous methods. Fitting the latent nonrandom mix-
ing model or designing a survey to satisfy the scaled-down con-
dition requires information about the demographic profiles of
the first names used, which may not be available in some coun-
tries. If such information were not available, then other sub-
populations could be used (e.g., women who have given birth
in the last year, men who are in the armed forces); however,
then transmission error becomes a potential source of concern.
A further limitation to note is that even if the set of names used
satisfies the scaled-down condition with respect to age and gen-
der, the subsequent estimates could have a bias correlated with
something that is not included, such as race/ethnicity.

A potential area for future methodological work involves im-
proving the calibration curve used to adjust for recall bias. Cur-
rently, the curve is fit deterministically based on the 12 names

in the McCarty et al. (2001) data and the independent observa-
tions of Killworth et al. (2003). In the future, the curve could
be dynamically fit for a given set of data as part of the mod-
eling process. Another area for future methodological work is
formalizing the procedure used to select names that satisfy the
scaled-down condition. Our trial-and-error approached worked
well here because there were only eight alter categories, but in
cases with more categories, a more automated procedure would
be preferable.

A final area for future work involves integrating the pro-
cedures developed here with efforts to estimate the size of
“hidden” or “hard-to-count” populations. For example, there is
tremendous uncertainly about the sizes of populations at highest
risk for HIV/AIDS in most countries: injection drug users, men
who have sex with men, and sex workers. Unfortunately, this
uncertainty has complicated public health efforts to understand
and slow the spread of the disease (UNAIDS 2003). As was
shown by Bernard et al. (1991) and Killworth et al. (1998b),
estimates of personal network size can be combined with re-
sponses to questions such as “how many injection drug users
do you know?” to estimate the size of hidden populations. The
intuition behind this approach is that respondents’ networks,
should on average be representative of the population. There-
fore, if an American respondent were to report knowing 2 injec-
tion drug users and was estimated to know 300 people, then we
could estimate that there are about 2 million injection drug users
in the United States ( 300 million

300 · 2 = 2 million), and this esti-
mate could be improved by averaging over respondents (Kill-
worth et al. 1998b). Thus the improved degree estimates de-
scribed herein should lead to improved estimates of the sizes of
hidden populations, but future work might be needed to tailor
these methods to public health contexts.

[Received September 2008. Revised September 2009.]
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