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Abstract

This paper introduces shrinkage for general parametric models. We show how to shrink maxi-

mum likelihood estimators towards parameter subspaces defined by general nonlinear restrictions.

We derive the asymptotic distribution and risk of a shrinkage estimator using a local asymptotic

framework. We show that if the shrinkage dimension exceeds two, the asymptotic risk of the shrink-

age estimator is strictly less than that of the MLE. This reduction holds globally in the parameter

space. We show that the reduction in asymptotic risk is substantial, even for moderately large

values of the parameters.

The risk formula simplify in a very convenient way in the context of high dimensional models.

We derive a simple bound for the asymptotic risk.

We also provide a new large sample minimax efficiency bound. We use the concept of local

asymptotic minimax bounds, a generalization of the conventional asymptotic minimax bounds. The

difference is that we consider minimax regions that are defined locally to the parametric restriction,

and are thus tighter. We show that our shrinkage estimator asymptotically achieves this local

asymptotic minimax bound when the shrinkage dimension is high. This theory is a combination

and extension of standard asymptotic efficiency theory (Hájek, 1972) and local minimax efficiency

theory for Gaussian models (Pinsker, 1980).
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1 Introduction

In a conventional parametric setting, one where maximum likelihood estimation applies, it

is routinely asserted that the conventional MLE is efficient — no other estimator can achieve a

smaller mean-squared error. In this paper we show that this understanding is incomplete. We

show that a very simple shrinkage modification can achieve substantially smaller asymptotic risk

(weighted mean-squared error) and thus the conventional MLE is inefficient. The magnitude of the

improvement depends on the distance between the true parameters and a parametric restriction.

If the distance is small then the reduction in risk can be quite substantial. Even when the distance

is moderately large the reduction in risk can be significant.

Shrinkage was introduced by James and Stein (1961) in the context of exact normal sampling,

and spawned an enormous literature. Our goal is to extend their methods to encompass a broad

array of conventional parametric econometric models. In subsequent work we expect to extend

these results to semiparametric estimation settings.

To make these extensions we need to develop an asymptotic (large sample) distributional theory

for shrinkage estimators. This can be accomplished using the local asymptotic normality approach

(e.g., van der Vaart (1998)). We model the parameter vector as being in a n−1/2-neighborhood of the

specified restriction, so that the asymptotic distributions are continuous in the localizing parameter.

This approach has been used successfully for averaging estimators by Hjort and Claeskens (2003)

and Liu (2011), and for Stein-type estimators by Saleh (2006).

Given the localized asymptotic parameter structure, the asymptotic distribution of the shrinkage

estimator takes a James-Stein form. It follows that the asymptotic risk of the estimator can be

analyzed using techniques introduced by Stein (1981). Not surprisingly, the benefits of shrinkage

are maximized when the magnitude of the localizing parameter is small. What is surprising (or at

least it may be to some readers) is that the numerical magnitude of the reduction in asymptotic

risk (weighted mean-squared error) is quite substantial, even for relatively distant values of the

localizing parameter. We can be very precise about the nature of this improvement, as we provide

simple and interpretable expressions for the asymptotic risk.

We measure estimation efficiency by asymptotic risk — the large sample weighted mean-squared

error. The weighted MSE necessarily depends on a weight matrix, and the optimal shrinkage

estimator depends on its value. For a generic measure of fit the weight matrix can be set to the

inverse of the usual asymptotic covariance, but in other cases a user may wish to select a specific

weight matrix so we allow for this possibility. Weighted MSE is a standard criteria in the shrinkage

literature, including Bhattacharya (1966), Sclove (1968), and Berger (1976a, 1976b, 1982). What

is different about our approach relative to these papers is that our estimator does not require

the weight matrix to be positive definite. This may be particularly important in econometric

applications where nuisance parameters are commonplace.

We benefit from the recent theory of efficient high-dimensional Gaussian shrinkage, specifically

Pinkser’s Theorem (Pinsker, 1980), which gives a lower minimax bound for estimation of high

dimensional normal means. We combine Pinker’s Theorem with classic large-sample minimax
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efficiency theory (Hájek, 1972) to provide a new asymptotic local minimax efficiency bound. We

provide a minimax lower bound on the asymptotic risk, and show that the asymptotic risk of our

shrinkage estimator equals this lower bound when the shrinkage dimension diverges towards infinity.

This shows that the proposed shrinkage estimator is minimax efficient in high-dimensional models.

There are limitations to the theory presented in this paper. First, our efficiency theory is

confined to parametric models, while most econometric applications are semi-parametric. Second,

our efficiency theory for high-dimensional models employs a sequential asymptotic argument. A

deeper theory would employ a joint asymptotic limit. Third, our analysis is confined to weighted

quadratic loss functions. Fourth, we do not provide methods for confidence interval construction

or inference after shrinkage. These four limitations are important, yet pose difficult technical

challenges, and raise issues which hopefully can be addressed in future research.

The literature on shrinkage estimation is enormous, and we only mention a few of the most

relevant contributions. Stein (1956) first observed that an unconstrained Gaussian estimator is

inadmissible when the dimension exceeds two. James and Stein (1961) introduced the classic

shrinkage estimator. Baranchick (1964) showed that the positive part version has reduced risk.

Judge and Bock (1978) developed the method for econometric estimators. Stein (1981) provided

theory for the analysis of risk. Oman (1982a, 1982b) developed estimators which shrink Gaussian

estimators towards linear subspaces. An in-depth treatment of shrinkage theory can be found in

Chapter 5 of Lehmann and Casella (1998).

The theory of efficient high-dimensional Gaussian shrinkage is credited to Pinsker (1980), though

Beran (2010) points out that the idea has antecedents in Stein (1956). Reviews are provided

by Nussbaum (1999) and Wasserman (2006, chapter 7). Extensions to asymptotically Gaussian

regression have been made by Golubev (1991), Golubev and Nussbaum (1990), and Efromovich

(1996).

There also has been a recent explosion of interest in the Lasso (Tibshirani, 1996) and its variants,

which simultaneously selects variables and shrinks coefficients in linear regression. Lasso methods

are complementary to shrinkage but have important conceptual differences. The Lasso is known

to work well in sparse models (high-dimensional models with a true small-dimensional structure).

In contrast, shrinkage methods do not exploit sparsity, and can work well when there are many

non-zero but small parameters. Furthermore, Lasso has been previously developed exclusively for

regression models, while this paper focuses on likelihood models.

The organization of the paper is as follows. Section 2 presents the general framework and the

generalized shrinkage estimator. Section 3 presents the asymptotic distribution of the estimator.

Section 4 develops a bound for its asymptotic risk. Section 5 uses a high-dimensional approximation,

showing that the gains are substantial and broad in the parameters space. Section 6 presents a new

local minimax efficiency bound. Section 7 illustrates the performance in a simulation experience

using a probit model. Mathematical proofs are left to the appendix.
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2 Model

Suppose that we observe a random sample X1, ...,Xn from a density f(x,θ) indexed by a

parameter θ ∈ Θ ⊂ Rm. Furthermore, suppose we have a restricted parameter space Θ0 ⊂ Θ
defined by a differentiable parametric restriction

Θ0 = {θ ∈ Θ : r (θ) = 0} (1)

where r (θ) : Rm → Rp with p ≥ 3. Set R(θ) = ∂
∂θr (θ)

0 .

The restriction (1) is not believed to be true, but represents a plausible simplification, centering,

or “prior” about the likely value of θ. An important special case occurs when Θ0 = {θ0} is a
singleton (such as the zero vector) in which case p = m. We call this situation full shrinkage. We
call the case p < m partial shrinkage. Most commonly, we can think of the unrestricted model
Θ as the “kitchen-sink”, and the restricted model Θ0 as a tight parametric specification. Often

Θ0 will take the form of an exclusion restiction. For example, if we partition

θ =

Ã
θ1

θ2

!
m− p

p

then an exclusion restriction takes the form r (θ) = θ2. Θ0 may also be a linear subspace in which

case we can write

r (θ) = R0θ − a (2)

where R is m× p and a is p × 1. In other cases, Θ0 may be a nonlinear subspace, for example if
r (θ) = θ1θ2 − 1.

The log likelihood for the sample is

Ln(θ) =
nX
i=1

log f(Xi,θ). (3)

We consider two standard estimators of θ. The unrestricted maximum likelihood estimator (MLE)

maximizes (3) over θ ∈ Θ bθn = argmax
θ∈Θ

Ln(θ).

The restricted MLE maximizes (3) over θ ∈ Θ0

eθn = argmax
θ∈Θ0

Ln(θ).

The information matrix is Iθ = Eθ (s(Xi,θ)s(Xi,θ)
0) where s(x,θ) =

∂

∂θ
ln f(x,θ). Set Vθ =

I−1θ and its estimate

bV =

Ã
− 1
n

nX
i=1

∂2

∂θ∂θ0
ln f(Xi, bθn)!−1 .
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Our goal is to improve upon the MLE bθn by shrinking it towards the restricted estimator eθn.
We will measure estimation efficiency by weighted quadratic loss. For some positive semi-definite

weight matrixW ≥ 0 define the weighted quadratic

c(u) =
u0Wu

tr(VW)
(4)

and define the loss of an estimator Tn for the parameter θ as

c (Tn − θ) =
(Tn − θ)0W (Tn − θ)

tr(VW)
.

We have scaled the quadratic function by tr(VW) as a normalization so that the asymptotic risk of

the MLE is unity. The weight matrixW need not be positive definite, and indeed this is appropriate

when a subset of θ are nuisance parameters.

In many cases we want a generic measure of fit and so do not have a motivation for selection

of the weight matrixW. In this case, we recommendW = V−1 as this renders the loss invariant

to rotations of the parameter space. We call this the canonical case. Notice as well that in this

case (4) simplifies to c(u) =
u0V−1u

p
and we have the natural estimator cW = bV−1 for W. The

canonical case is convenient for practical applications as many formula simplify.

In other cases the economic or statistical problem will suggest a particular choice for the weight

matrix W. This includes the situation where a subset of the parameter vector θ is of particular

interest. We call this situation targeted shrinkage.
Our proposed shrinkage estimator of θ is the weighted average of the MLE and restricted MLE

bθ∗n = ŵbθn + (1− ŵ)eθn (5)

where

ŵ =

µ
1− τ

Dn

¶
+

(6)

with (x)+ = x1 (x ≥ 0) is the “positive-part” function, and

Dn = n
³bθn − eθn´0W³bθn − eθn´ , (7)

a distance-type statistic for the restriction (1) in Θ. The scalar τ ≥ 0 controls the degree of shrink-
age. In practice, if W and/or τ are replaced with consistent estimates cW and τ̂ our asymptotic

theory is unaffected.

In the canonical case (W = V−1) we recommend τ = p or τ = p − 2. The choice τ = p − 2
originates with James and Stein (1961), but the distinction is small when p is large.

In the targeted shrinkage case we recommend

τ = tr(A) (8)
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where

A =
¡
R0VR

¢−1
R0VWVR. (9)

A consistent estimate is τ̂ = tr(bA) where bA =
³bR0 bVbR´−1 bR0 bVW bVbR and bR = R(bθn). Notice

that in the canonical case that A = Ip and τ = p, and thus (9) includes the canonical case

recommendation as a special case. These recommendations will be justified in Section 4.

Several simplifications occur in the canonical case (W = V−1). The full shrinkage estimator is

the classic James-Stein estimator and the partial shrinkage estimator with linear r (θ) is Oman’s

(1982ab) shrinkage estimator. The latter is also a special case of Hansen’s (2007) Mallows Model

Averaging (MMA) estimator with two models.

In general, the degree of shrinkage depends on the ratio τ/Dn. When Dn < τ then ŵ = 0

and bθ∗n = bθn equals the restricted estimator. When Dn > τ then bθ∗n is a weighted average of the
unrestricted and restricted estimators, with more weight on the unrestricted estimator when Dn/τ

is large.

3 Asymptotic Distribution

To obtain a useful approximation we derive the asymptotic distribution along parameter se-

quences θn approaching the restricted set Θ0. In particular we consider sequences of the form

θn = θ0 + n−1/2h (10)

where θ0 ∈ Θ0 and h ∈ Rm. In this framework the true value of the parameter is θn and n−1/2h is

the magnitude of the distance between the parameter and the restricted set. For any fixed h this

distance shrinks as the sample size increases, but as we do not restrict the magnitude of h this does

not meaningfully limit the application of our theory. We will use the symbol “−−−→
θn

” to denote

convergence in distribution along the parameter sequences θn as defined in (10).

Assumption 1

1. Xi are iid.

2. The model f(x,θ) satisfies the conditions of Theorem 3.3 of Newey and McFadden (1994).

3. R(θ) is continuous in a neighborhood of θ0.

4. rank (R) = p where R = R(θ0).

Let V = Vθ0 = I
−1
θ0
be the asymptotic variance of the MLE under the sequences (10).
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Theorem 1 Under Assumption 1, along the sequences (10)

√
n
³bθn − θn´ −−−→

θn
Z ∼ N(0,V) , (11)

√
n
³eθn − θn´ −−−→

θn
Z−VR

¡
R0VR

¢−1
R0 (Z + h) , (12)

Dn −−−→
θn

ξ = (Z + h)0B (Z + h) , (13)

ŵ −−−→
θn

w =

µ
1− τ

ξ

¶
+

, (14)

and
√
n
³bθ∗n − θn´ −−−→

θn
wZ + (1− w)

³
Z−VR

¡
R0VR

¢−1
R0 (Z + h)

´
, (15)

where

B = R
¡
R0VR

¢−1 ¡
R0VWVR

¢ ¡
R0VR

¢−1
R0. (16)

Theorem 1 gives expressions for the joint asymptotic distribution of the MLE, restricted MLE,

and shrinkage estimators as a transformation of the normal random vector Z and the non-centrality

parameter h. The asymptotic distribution of bθ∗n is written as a random weighted average of the

asymptotic distributions of bθn and eθn. Since the distribution of bθ∗n depends on h, the estimator bθ∗n
is non-regular.

The asymptotic distribution is obtained for parameter sequences θn tending towards the re-

stricted parameter space Θ0. The conventional case of fixed θ can be obtained by letting h diverge

towards infinity, in which case ξ →p ∞, w→p 1, and the distribution on the right-hand-side of (15)

tends towards Z ∼ N(0,V) .
It is important to understand that Theorem 1 does not require that the true value of θn satisfy

the restriction to Θ0, only that it is in a n−1/2-neighborhood of Θ0. The distinction is important,

as the size of this neighborhood is determined by h which we allow to be arbitrarily large.

Equation (13) also provides the asymptotic distribution ξ of the distance-type statistic Dn.

The limit distribution ξ controls the weight w and thus the degree of shrinkage, so it is worth

investigating further. Notice that its expected value is

Eξ = h0Bh+ E tr
¡
BZZ0

¢
= h0Bh+ tr (A) (17)

where B is from (16) and A was defined in (9) The matrices A and B play important roles in our

theory. Notice that in the full shrinkage case we have the simplifications B =W and A =WV.

In the canonical caseW = V−1 we find that (17) simplifies to

Eξ = h0Bh+ p (18)

Furthremore, in the canonical case, ξ ∼ χ2p(h
0Bh), a non-central chi-square random variable with

non-centrality parameter h0Bh and degrees of freedom p.
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In general, the scalar h0Bh captures how the divergence of θn from the restricted region Θ0
affects the distribution of ξ.

4 Asymptotic Risk

The risk of an estimator Tn is its expected loss Ec(Tn − θ). In general this expectation is

difficult to evaluate, and may not even be finite unless Tn has a finite second moments. To obtain

a useful approximation and ensure existence we use a trimmed loss and take limits as the sample

size n→∞.
Define

cζ(u) = min{c(u), ζ}, (19)

which is the quadratic function (4) trimmed at ζ. Let T = {Tn : n = 1, 2, ...} denote a sequence of
estimators, and let θ = {θn : n = 1, 2, ...} denote the sequence of parameter values (10). We define
the asymptotic (trimmed) risk of the estimator sequence T for the parameter sequence θ as

ρ(T,θ) = lim
ζ→∞

lim inf
n→∞

Encζ/n(Tn − θn). (20)

This is the expected loss, using the trimmed loss function, but in large samples (n→∞) and with
arbitrarily negligible trimming (ζ →∞).

The definition (20) is convenient when Tn has an asymptotic distribution. Specifically, suppose

that
√
n (Tn − θn) −−−→

θn
ξ (21)

for some distribution ξ. Observe that since c(u) is quadratic,

ncζ/n(Tn − θn) = cζ(
√
n (Tn − θn)). (22)

As cζ(u) is bounded, (21) and the portmanteau lemma imply that

lim
n→∞

E cζ(
√
n (Tn − θn)) = E cζ(ξ). (23)

Equations (22) and (23) plus definition (4) combine to show that

ρ(T,θ) = lim
ζ→∞

E cζ(ξ)

= E c(ξ)

=
E (ξ0Wξ)

tr (WV)
. (24)

Thus the asymptotic trimmed risk of any estimator T satisfying (21) can be calculated using (24).
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Recalling the matrix A = (R0VR)−1RVWVR from (9) we define the scalar

λp =
tr (A)

λmax (A)
(25)

which satisfies λp ≤ p. In the canonical case W = V−1 we find λp = p. In general, λp can be

thought of as the effective shrinkage dimension.

Theorem 2 Under Assumption 1, λp > 2, and

0 < τ ≤ 2 (tr(A)− 2λmax(A)) , (26)

then

ρ(bθ∗,θ) < ρ(bθ,θ) (27)

for all h. Furthermore, if we define the ball

H(c) =
©
h : h0Bh ≤ tr (A) c

ª
(28)

then

sup
h∈H(c)

ρ(bθ∗,θ) ≤ 1− τ

tr (WV)

2 (tr (A)− 2λmax (A))− τ

tr (A) (c+ 1)
. (29)

Equation (27) shows that the asymptotic risk of the shrinkage estimator is strictly less than that

of the MLE for all parameter values, so long as the shrinkage parameter τ satisfies the condition

(26). As (27) holds for even extremely large values of h, this shows that in a very real sense the

shrinkage estimator strictly dominates the usual estimator.

The assumption λp > 2 is the critical condition needed to ensure that the shrinkage estimator

has globally smaller asymptotic risk than the usual estimator. In the canonical case W = V−1,

λp > 2 is equivalent to p > 2, which is Stein’s (1956) classic conditions for shrinkage. As shown by

Stein (1956) p > 2 is necessary in order for shrinkage to achieve global reductions in risk relative

to unrestricted estimation. λp > 2 generalizes p > 2 to allow for general weight matrices.

The condition (26) simplifies to 0 < τ ≤ 2(p − 2) in the canonical case, which is a standard
restriction on the shrinkage parameter. Notice that in the canonical case, τ = p satisfies (26)

if p ≥ 4, while τ = p − 2 satisfies (26) for p ≥ 3. In the general case, if we set τ = tr (A) (as

recommended in (8)) then (26) is satisfied if λp ≥ 4, which generalizes the condition p ≥ 4 from
the canonical case. Equivalently, Theorem 2 shows that when τ = tr (A) , then λp ≥ 4 is sufficient
for the generalized shrinkage estimator to strictly dominate the MLE.

Equation (29) provides a uniform bound for the asymptotic risk in the ball h ∈H(c). If λp ≥ 4
and we set τ = tr (A) as recommended, then (29) becomes

sup
h∈H(c)

ρ(bθ∗,θ) ≤ 1− tr (A)

tr (WV)

µ
1− 4/λp
c+ 1

¶
. (30)
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Figure 1: Asymptotic Risk of Shrinkage Estimators

In the canonical case this specializes to

sup
h∈H(c)

ρ(bθ∗,θ) ≤ 1− m

p

µ
1− 4/p
c+ 1

¶
. (31)

To illustrate these results numerically, we plot in Figure 1 the asymptotic risk of the shrinkage

estimator bθ∗n in the full shrinkage (m = p) canonical case. The asymptotic risk is only a function

of p and c, and we plot the risk as a function of c for p = 5, 8, 12, and 20. The asymptotic risk is

plotted with the solid line. We also plot the upper bound (31) using the short dashes. Recall that

the loss function has been normalized so that the asymptotic risk of the unrestricted MLE is 1, so

values less than 1 indicate risk reduction relative to the unrestricted MLE. (Figure 1 also plots a

“Large p bound” which will be discussed in the following section.)

From Figure 1 we can see that the asymptotic risk of the shrinkage estimator is monotonically

decreasing as c→ 0, indicating (as expected) that the greatest risk reductions occur for parameter

values near the restricted parameter space. We also can see that the asymptotic risk function

decreases as p increases. Furthermore, we can observe that the upper bound (31) is not particularly

tight for small p, but improves as p increases. This means that risk improvements implied by

Theorem 2 are underestimates of the actual improvements in asymptotic risk due to shrinkage.
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5 High Dimensional Models

In the previous section we showed numerically that accuracy of the risk bound (30) improves

as the shrinkage dimension p increases. Indeed the bound (30) leads to a simple approximation for

the asymptotic risk when the shrinkage dimension p is large.

Theorem 3 Under Assumption 1, if as p→∞, λp →∞, τ/ tr (A)→ 1, and

tr (A)

tr (WV)
−→ a, (32)

then

lim sup
p→∞

sup
h∈H(c)

ρ(bθ∗,θ) ≤ 1− a

c+ 1
. (33)

Equation (33) is a simplified version of (30). This is an asymptotic (large n) generalization of the

results obtained by Casella and Hwang (1982). (See also Theorem 7.42 of Wasserman (2006).) These

authors only considered the canonical, non-asymptotic, full shrinkage case. Theorem 3 generalizes

these results to asymptotic distributions, arbitrary weight matrices, and partial shrinkage.

The asymptotic risk of the MLE is 1. The ideal risk of the restricted estimator (when c = 0) is

1−a. The risk in (33) varies between 1−a and 1, depending on c. Thus we can see that 1/(1+ c) is

the percentage decrease in risk relative to the usual estimator obtained by shrinkage when shrunk

towards the restricted estimator.

Equation (33) quantifies the reduction in risk obtained by the shrinkage estimator as the ratio

a/(1+ c). The gain from shrinkage is greatest when the ratio a/(1+ c) is large, meaning that there

are many mild restrictions.

a is a measure of the effective number of restrictions relative to the total number of parameters.

Note that 0 ≤ a ≤ 1, with a = 1 in the full shrinkage case and a = 0 when there is no shrinkage.

In the canonical case, a = limp
p

m
, the ratio of the number of restrictions to the total number of

parameters. In the full shrinkage case, (33) simplifies to

lim sup
p→∞

sup
h∈H(c)

ρ(bθ∗,θ) ≤ c

c+ 1
. (34)

c is a measure of the strength of the restrictions. To gain insight, consider the canonical case

W = V−1, and write the distance statistic (7) as Dn = pFn, where Fn is an F-type statistic for

(1). Using (18), this has the approximate expectation

EFn −→
Eξ
p
= 1 +

h0Bh

p
≤ 1 + c

where the inequality is for h ∈ H(c). This means that we can interpret c in terms of the expectation
of the F-statistic for (1). We can view the empirically-observed Fn = Dn/p as an estimate of 1 + c

and thereby assess the expected reduction in risk relative to the usual estimator. For example, if
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Fn ≈ 2 (a moderate value) then c ≈ 1, suggesting that the percentage reduction in asymptotic risk
due to shrinkage is 50%, a very large decrease. Even if the F statistic is very large, say Fn ≈ 10,
then c ≈ 9, suggesting the percentage reduction in asymptotic risk due to shrinkage is 10%, which
is quite substantial. Equation (33) indicates that substantial efficiency gains can be achieved by

shrinkage for a large region of the parameter space.

We assess the high-dimensional bound numerically by including the bound (34) in the plots of

Figure 1 (the long dashes). We can see that the large-p bound (34) lies beneath the finite-p bound

(30) (the short dashes) and the actual asymptotic risk (the solid lines). The differences are quite

substantial for small p, but diminish as p increases. For p = 20 the three lines are quite close,

indicating that the large-p approximation (34) is reasonally accurate for p = 20. Thus the technical

approximation p→∞ seems to be a useful approximation even for moderate shrinkage dimensions.

Nevertheless, we have found that gains are most substantial in high dimensional models which

are reasonably close to a low dimensional model. This is quite appropriate for econometric appli-

cations. It is common to see applications where the unconstrained model is quite high dimensional

yet the unconstrained model is not substantially different from a low dimensional specification.

This is precisely the context where shrinkage will be most beneficial. The shrinkage estimator will

efficiently combine both model estimates, shrinking the high dimensional model towards the low

dimensional model.

A limitation of Theorem 3 is that the sequential limits (first taking the sample size n to infinity

and then taking the dimension p to infinity) is artificial. A deeper result would employ joint

limits (taking n and p to infinity jointly). While desirable, this extension does not appear to be

feasible given the present theoretical tools, and the sequential limit appears to be the best which

can be attained. Because of the use of sequential limits, Theorem 3 should not be interpreted as

nonparametric. Rather, it shows that in finite yet high-dimensional parametric models, the risk of

the shrinkage estimator takes the simple form (33).

It is quite likely that nonparametric versions of Theorem 3 could be developed. For exam-

ple, a nonparametric series regression estimator could be shrunk towards a simpler model, and we

would expect improvements in asymptotic risk similar to (33). There are also conceptual similar-

ities between shrinkage and penalization, for example Shen (1997). These connections are worth

exploring.

6 Minimax Risk

We have shown that the generalized shrinkage estimator has substantially lower asymptotic risk

than the MLE. Does our shrinkage estimator have the lowest possible risk, or can an alternative

shrinkage estimator attain even lower asymptotic risk? In this section we explore this question by

proposing a local minimax efficiency bound.

The efficiency theory of Hájek (1970, 1972) defines the asymptotic maximum risk of a sequence
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of estimators Tn for θn = θ0 + n−1/2h with arbitrary h as

sup
I⊂Rm

lim inf
n→∞

sup
h∈I

Enc (Tn − θn) (35)

where the first supremum is taken over all finite subsets I of Rm. The minimax theorem (e.g.

Theorem 8.11 of van der Vaart (1998)) demonstrates that under quite mild regularity conditions

the asymptotic uniform risk (35) is bounded below by 1. This demonstrates that no estimator has

smaller asymptotic uniform risk than the MLE over unbounded h.

A limitation with this theorem is that taking the maximum risk over all intervals is excessively

stringent. It does not allow for local improvements such as those demonstrated in Theorems 2

and 3. To remove this limitation we would ideally define the local asymptotic maximum risk of a

sequence of estimators Tn as

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

Enc (Tn − θn) (36)

which replaces the supremum over all subsets of Rm with the supremum over all finite subsets of

H(c). In the case of full shrinkage (p = m) then (36) is equivalent to

lim inf
n→∞

sup
h∈H(c)

Enc (Tn − θn) .

The standard method to establish the efficiency bound (35) is to first establish the bound in

the non-asymptotic normal sampling model, and then extend to the asymptotic context via the

limit of experiments theory. Thus to establish (36) we need to start with a similar bound for the

normal sampling model. Unfortunately, we do not have a sharp bound for this case. An important

breakthrough is Pinsker’s Theorem (Pinsker, 1980) which provides a sharp bound for the normal

sampling model by taking p → ∞. The existing theory has established the bound for the full

shrinkage canonical model (e.g., p = m and W = V−1). Therefore our first goal is to extend

Pinsker’s Theorem to the partial shrinkage non-canonical model.

The following is a generalization of Theorem 7.28 of Wasserman (2006).

Theorem 4 Suppose Z ∼ Nm (h,V) and λp > 8, where λp is defined in (25). For any estimator

T = T (Z),

sup
h∈H(c)

E c(T − h) ≥ 1−
∙
1

1 + c
+

µ
2

1 + c
+ 4c

¶
λ−1/3p

¸
tr (A)

tr (WV)
. (37)

This is a finite sample lower bound on the quadratic risk for the normal sampling model.

Typically in this literature this bound is expressed for the high-dimensional (large λp) case. Indeed,

taking the limit as p→∞ as in Theorem 3, then the bound (37) simplifies to

lim inf
p→∞

sup
h∈H(c)

E c(T − h) ≥ 1− a

c+ 1
. (38)

We do not use (38) directly, but rather use (37) as an intermediate step towards establishing a

12



large n bound. It is worth noting that while Theorem 4 appears similar to existing results (e.g.

Theorem 7.28 of Wasserman (2006)), its proof is a significant extension due to the need to break

the parameter space into parts constrained by H(c) and those which are unconstrained.

Combined with the limits of experiments technique, Theorem 4 allows us to establish an as-

ymptotic (large n) local minimax efficiency bound for the estimation of θ in parametric models.

Theorem 5 Suppose that X1, ...,Xn is a random sample from a density f(x,θ) indexed by a pa-

rameter θ ∈Θ ⊂ Rm, and the density is differentiable in quadratic mean, that isZ ∙
f(x,θ + h)1/2 − f(x,θ)1/2 − 1

2
h0g(x,θ)f(x,θ)1/2

¸2
dμ = o

³
khk2

´
, h→ 0 (39)

where g(x,θ) =
∂

∂θ
log f(x,θ). Suppose that Iθ = Eg(Xi,θ)g(Xi,θ)

0 > 0 and set V = I−1θ . Finally,

suppose that λp > 8, where λp is defined in (25). Then for any sequence of estimators Tn, on the

sequence θn = θ0 + n−1/2h

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

Enc (Tn − θn) ≥ 1−
∙
1

1 + c
+

µ
2

1 + c
+ 4c

¶
λ−1/3p

¸
tr (A)

tr (WV)
. (40)

Furthermore, suppose that as p→∞, λp →∞ and (32) holds. Then

lim inf
p→∞

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

Enc (Tn − θn) ≥ 1−
a

c+ 1
. (41)

Theorem 5 provides a lower bound on the asymptotic local minimax risk for h in the ball H(c).

(40) is the case of finite p, and (41) shows that the bound takes a simple form when p is large.

Since this lower bound is equal to the upper bound (33) attained by out shrinkage estimator, (41)

is sharp. This proves that the shrinkage estimator is asymptotically minimax efficient over the local

sets H(c). To our knowledge, Theorem 5 is new. It is the first large sample local efficiency bound

for shrinkage estimation.

Differentiability in quadratic mean (39) is weaker than the requirements for asymptotic nor-

mality of the MLE.

Note that the equality of (33) and (41) holds for all values of c. This is a very strong efficiency

property.

In the case of full shrinkage (p = m) then (41) is equivalent to

lim inf
p→∞

lim inf
n→∞

sup
h∈H(c)

Enc (Tn − θn) ≥
c

c+ 1
.

In the case of partial shrinkage the more complicated double supremum in (41) is needed since the

set H(c) is unbounded.

Classic minimax theory (e.g. Theorem 8.11 of van der Vaart (1998)) applies to all bowl-shaped

loss functions c(u), not just quadratic loss, and thus it seems reasonable to conjecture that Theorem

13



1 will extend beyond quadratic loss. The challenge is that Pinsker’s theorem specifically exploits

the structure of the quadratic loss, and thus it is unclear how to extend Theorem 4 to allow for

other loss functions. Allowing for more general loss functions would be a useful extension.

Similarly to Theorem 3, a limitation of the bound (41) is the use of the sequential limits, first

taking n to infinity and then p to infinity. A deeper result would employ joint limits.

7 Simulation

We illustrate the numerical magnitude of the finite sample shrinkage improvements in a simple

numerical simulation. The model is a binary probit. For i = 1, ..., n,

yi = 1 (y
∗
i ≥ 0)

y∗i = X 0
1iβ1 +X 0

2iβ2 + ei

ei ∼ N(0, 1).

The regressors Xi1 and X2i are k × 1 and p× 1, respectively, with p > k. The first element of X1i

is an intercept, the remaining regressors are N(0, 1) with correlation ρ.

The regression coefficients are set as β0 = 0, β1 = (b, b, ..., b)0 and β2 = (c, c, ..., c)0 . Conse-

quently, the control parameters of the model are c, n, p, k, b, and ρ. We found that the results

were qualitatively insensitive to the choice of k , b, and ρ, so we fixed their values at k = 4, b = 0,

and ρ = 0, and report results for different values of c, n, and p. We also experiment with the

alternative specification β2 = (c, 0, ..., 0)0 (only one omitted regressor important) and the results

were virturally identical so are not reported.

We are interested in comparing the finite sample risk of estimators of β = (β0,β1,β2). The

estimators will be functions of the following primary components:

1. bβ = unconstrained MLE. Probit of yi on (1,X1i,X2i)

2. eβ = constrained MLE. Probit of yi on (1,X1i)
3. LR = 2

³
logL(bβ)− logL(eβ)´, the likelihood ratio test for the restriction β2 = 0

4. bV = estimate of the asymptotic covariance matrix of
√
n
³bβ − β´

We compare three estimators. The first is bβ, the unconstrained MLE. The second is our
canonical (partial) shrinkage estimator

bβ∗ = ŵbβ + (1− ŵ)eβ
ŵ =

µ
1− p

Dn

¶
+

Dn = n
³bβ − eβ´0 bV−1 ³bβ − eβ´ .

14



The third is the pretest estimator

β =

( bβ if LR ≥ qeβ if LR < q

where q is the 95% quantile of the χ2p distribution. We include β to provide a comparison with a

conventional selection technique used routinely in applications.

The simulations were computed in R, and the MLE was calculated using the built-in glm

program. One difficulty was that in some cases (when then sample size n was small and the

number of parameters k + p was large) the glm algorithm failed to converge for the unconstrained

MLE and thus the reported estimate bβ was unreliable. For these cases we simply set all estimates
equal to the restricted estimate eβ. This corresponds to empirical practice and does not bias our
results as all estimators were treated symmetrically.

We compare the estimators by unweighted MSE. For any estimator bβ,
MSE(bβ) = E³bβ − β´0 ³bβ − β´

This MSE is unweighted (e.g., is calculated using W = I) even though the generalized shrinkage

estimator is optimized for W = V−1, where V is the asymptotic covariance matrix of bβ. We do
this for simplicity, and not to avoid skewing our results in favor of the shrinkage estimator.

We normalize the MSE of all estimators by that of the unconstrained MLE.

We calculated the MSE by simulation using 30,000 replications. We display results for n =

{200, 500} and p = {4, 8}, and vary c on a 50-point grid. The results are displayed in Figure 2. The
trimmed MSE are displayed as lines. The solid line is the relative trimmed MSE of the generalized

shrinkage estimator, the dashed line is the relative trimmed MSE of the pretest estimator, and the

dotted line is 1, the relative trimmed MSE of the unconstrained MLE.

Figure 2 shows convincingly that the generalized shrinkage estimator significantly dominates

the other estimators. Its finite-sample MSE is less than that of the unconstrained estimator for

all parameter values, and in some cases its MSE is a small fraction. It is also constructive to

compare the shrinkage estimator with the pretest estimator. For nearly all parameter values the

shrinkage estimator has lower trimmed MSE. The only exceptions are for very small values of c.

Furthermore, the MSE of the pretest estimator is quite sensitive to the value of c, and for many

values the pretest estimator has MSE much higher than the unconstrained estimator. This is a well-

documented property of pretest estimators, but is worth emphasizing as pretests are still routinely

used for selection in applied research. The numerical calculations shown in Figure 2 show that a

much better estimator is the generalized shrinkage estimator.

Some readers may be surprised by the extremely strong performance of the shrinkage estimator

relative to the MLE. However, this is precisely the lesson of Theorems 2 and 3. Shrinkage strictly

improves asymptotic risk, and the improvements can be especially strong in high-dimensional cases.
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Figure 2: Mean Squared Error of Shrinkage, Pre-Test and Maximum Likelihood Estimators
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8 Appendix

Proof of Theorem 1: (11) is Theorem 3.3 of Newey and McFadden (1994). (12) follows by

standard arguments, see for example, the derivation in Section 9.1 of Newey and McFadden (1994).

(13), (14), and (15) follow by the continuous mapping theorem. ¥

The following is a version of Stein’s Lemma (Stein, 1981), and will be used in the proof of

Theorem 2.

Lemma 1 If Z ∼ N(0,V) is m× 1, K is m×m, and η (x) : Rm → Rm is absolutely continuous,

then

E
¡
η (Z + h)0KZ

¢
= E tr

µ
∂

∂x
η (Z + h)0KV

¶
.

Proof: Let φV(x) denote the N(0,V) density function. By multivariate integration by parts

E
¡
η (Z + h)0KZ

¢
=

Z
η (x+ h)0KVV−1xφV(x) (dx)

=

Z
tr

µ
∂

∂x
η (x+ h)0KV

¶
φV(x) (dx)

= E tr
µ

∂

∂x
η (Z + h)0KV

¶
.

¥

Proof of Theorem 2: Observe that
√
n
³bθn − θn´ −−−→

θn
Z ∼ N(0,V) under (11). Then (24)

shows that

ρ(bθ,θ) = E (Z0WZ)

tr (WV)
=
tr (WE (ZZ0))
tr (WV)

=
tr (WV)

tr (WV)
= 1. (42)

Next,
√
n
³bθ∗n − θn´ −−−→

θn
ξ, where ξ is the random variable shown in (15). The variable ξ

has a classic James-Stein distribution with positive-part trimming. Define the analogous random

variable without positive part trimming

ξ∗ = Z−
µ

τ

(Z + h)0B (Z + h)

¶
VR

¡
R0VR

¢−1
R0 (Z + h) . (43)

Then using (24) and the fact that the pointwise quadratic risk of ξ is strictly smaller than that of

ξ∗ (as shown, for example, by Theorem 5.5.4 of Lehman and Casella (1998)),

ρ(bθ∗,θ) = E (ξ0Wξ)

tr (WV)
<
E (ξ∗0Wξ∗)

tr (WV)
. (44)
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Using (43), we calculate that (44) equals

E(Z0WZ)

tr (WV)

+
τ2

tr (WV)
E

Ã
(Z + h)0R (R0VR)−1R0VWVR (R0VR)−1R0 (Z + h)¡

(Z + h)0B (Z + h)
¢2

!

− 2 τ

tr (WV)
E

Ã
(Z + h)0R (R0VR)−1R0VWZ

(Z + h)0B (Z + h)

!

= 1 +
τ2

tr (WV)
E
µ

1

(Z + h)0B (Z + h)

¶
− 2 τ

tr (WV)
E
³
η(Z + h)0R

¡
R0VR

¢−1
R0VWZ

´
(45)

where

η(x) =

µ
1

x0Bx

¶
x.

Since
∂

∂x
η(x)0 =

µ
1

x0Bx

¶
I− 2

(x0Bx)2
Bxx0,

then by Lemma 1 (Stein’s Lemma)

E
³
η(Z + h)0R

¡
R0VR

¢−1
R0VWZ

´
= E tr

µ
∂

∂x
η (Z + h)0R

¡
R0VR

¢−1
R0VWV

¶
= E tr

Ã
R (R0VR)−1R0VWV

(Z + h)0B (Z + h)

!

− 2E tr
Ã
B (Z + h) (Z + h)0R (R0VR)−1R0VWV¡

(Z + h)0B (Z + h)
¢2

!
.

Using the inequality tr (CD) ≤ λmax (C) tr (D) , this is larger than

E tr

Ã
R (R0VR)−1R0VWV

(Z + h)0B (Z + h)

!

− 2E tr
Ã

B (Z + h) (Z + h)0¡
(Z + h)0B (Z + h)

¢2
!
λmax

³
R
¡
R0VR

¢−1
R0VWV

´
= E

µ
tr (A)− 2λmax (A)
(Z + h)0B (Z + h)

¶
.
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Thus (45) is smaller than

1 +
τ2

tr (WV)
E
µ

1

(Z + h)0B (Z + h)

¶
− 2 τ

tr (WV)
E
µ
tr (A)− 2λmax (A)
(Z + h)0B (Z + h)

¶
= 1− τ

tr (WV)
E
µ
2 (tr (A)− 2λmax (A))− τ

(Z + h)0B (Z + h)

¶
≤ 1− τ

tr (WV)

2 (tr (A)− 2λmax (A))− τ

E
¡
(Z + h)0B (Z + h)

¢ (46)

where the second inequality is Jensen’s and uses the assumption that τ < 2 (tr (A)− 2λmax (A)) .
We calculate that

E
¡
(Z + h)0B (Z + h)

¢
= h0Bh+ E tr

¡
BZZ0

¢
= h0Bh+ tr (A)

≤ (c+ 1) tr (A)

where the inequality is for h ∈ H(c). Substituting into (46) we have established (29). As this bound
is strictly less than 1, combined with (42) we have established (27). ¥

Proof of Theorem 4. Without loss of generality we can set V = Im and R =

Ã
0m−p

Ip

!
. To

see this, start by making the transformations h 7→ V−1/2h, R 7→ V1/2R, andW 7→ V1/2WV1/2

so that V = Im. Then write R = Q

Ã
0m−p

Ip

!
G where Q0Q = Ip and G is full rank. Make the

transformations h 7→ Q0h, R 7→ Q0RG−1 andW 7→ QWQ0. Hence V = Im and R =

Ã
0m−p

Ip

!
as claimed.

Partition h = (h1,h2) , T = (T1, T2), Z = (Z1,Z2) andW =

"
W11 W12

W21 W22

#
comformably with

R. Note that after these transformations A =W22 and H(c) =
©
h : h02W22h2 ≤ tr (W22) c

ª
.

Set η = 1 − 2λ−1/3p and note that 0 < η < 1 since λp > 8. Fix ω > 0. Let Π1(h1) and

Π2(h2) be the independent priors h1 ∼ N(0, Im−pω) and h2 ∼ N(0, Ipcη). Let eT1 = E (h1 | Z) andeT2 = E (h2 | Z) be the Bayes estimators of h1 and h2 under these priors. By standard calculations,eT1 = ω

1 + ω
Z1 and eT2 = cη

1 + cη
Z2. Also, let Π∗2(h2) be the prior Π2(h2) truncated to the region

H2(c) =
©
h2 : h

0
2W22h2 ≤ tr (W22) c

ª
, and let eT ∗2 = E (h2 | Z) be the Bayes estimator of h2

under this truncated prior. Since a Bayes estimator must lie in the prior support, it follows thateT ∗2 ∈ H2(c) or eT ∗02 W22
eT ∗2 ≤ tr (W22) c. (47)

Also, since Z1 and Z2 are independent, and Π1 and Π∗2 are independent, it follows that eT ∗2 is a
function of Z2 only, and eT1 − h1 and eT ∗2 − h2 are independent.
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Set eT =
³eT1, eT ∗2 ´. For any estimator T = T (Z), since a supremum is larger than an average

and the support of Π1 ×Π∗2 is H(c),

sup
h∈H(c)

Ec(T − h) ≥
Z Z

Ec(T − h)dΠ1(h1)dΠ∗2(h2) (48)

≥
Z Z

Ec( eT − h)dΠ1(h1)dΠ∗2(h2)
=

1

tr (W)

Z Z
E
∙³eT1 − h1´0W11

³eT1 − h1´¸ dΠ1(h1)dΠ∗2(h2)
+

2

tr (W)

Z Z
E
∙³eT1 − h1´0W12

³eT ∗2 − h2´¸ dΠ1(h1)dΠ∗2(h2)
+

1

tr (W)

Z Z
E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ1(h1)dΠ∗2(h2) (49)

=
1

tr (W)

Z
E
∙³eT1 − h1´0W11

³eT1 − h1´¸ dΠ1(h1) (50)

+
2

tr (W)

µZ
E
³eT1 − h1´ dΠ1(h1)¶0W12

µZ ³eT ∗2 − h2´ dΠ∗2(h2)¶ (51)

+
1

tr (W)

R
E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ2(h2)R
H2(c)

dΠ2(h2)
(52)

− 1

tr (W)

R
H2(c)c

E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ2(h2)R
H2(c)

dΠ2(h2)
(53)

where the second inequality is because the Bayes estimator eT minimizes the right-hand-side of (48).
The final equality uses the fact that eT1 −h1 and eT ∗2 −h2 are independent, and breaks the integral
(49) over the truncated prior (which has support on H2(c)) into the difference of the integrals over

the non-truncated prior over the Rm and H2(c)
c, respectively. We now treat the four components

(50)-(53) separately.

First, since eT1 = ω

1 + ω
Z1 and Π1(h1) = N (0, Im−pω) , we calculate that

1

tr (W)

Z
E
∙³eT1 − h1´0W11

³eT1 − h1´¸ dΠ1(h1)
=

1

tr (W)

Z
E
∙µ

ω

1 + ω
Z1 − h1

¶0
W11

µ
ω

1 + ω
Z1 − h1

¶¸
dΠ1(h1)

=
1

tr (W)

Z ∙
1

(1 + ω)2
h01W11h1 +

ω2

(1 + ω)2
tr (W11)

¸
dΠ1(h1)

=
tr (W11)

tr (W)

ω

1 + ω
. (54)

Second, since Z
E
³eT1 − h1´ dΠ1(h1) = − 1

1 + ω

Z
h1dΠ1(h1) = 0
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it follows that (51) equals zero.

Third, take (52). Because eT2 is the Bayes estimator under the prior Π2,
1

tr (W)

R
E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ2(h2)R
H2(c)

dΠ2(h2)

≥ 1

tr (W)

R
E
∙³eT2 − h2´0W22

³eT2 − h2´¸ dΠ2(h2)R
H2(c)

dΠ2(h2)

≥ 1

tr (W)

Z
E
∙³eT2 − h2´0W22

³eT2 − h2´¸ dΠ2(h2)
=
tr (W22)

tr (W)

cη

1 + cη
(55)

=
tr (W22)

tr (W)

Ã
c

1 + c
− 2λ

−1/3
p

1 + c

!
(56)

where (55) is a calculation similar to (54) using eT2 = cη

1 + cη
Z2 and h2 ∼ N(0, Ipcη) . (56) makes a

simple expansion using η = 1− 2λ−1/3p .

Fourth, take (53). Our goal is to show that this term is negligible for large p, and our argument

is based on the proof of Theorem 7.28 from Wasserman (2006). Set

q =
h02W22h2
c tr (W22)

.

Since h2 ∼ N(0, Ipcη) we see that Eq = η. Use (a+ b)0 (a+ b) ≤ 2a0a+2b0b and (47) to find that

E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ ≤ 2E³eT ∗02 W22
eT ∗2 ´+ 2h02W22h2

≤ 2 tr (W22) c+ 2h
0
2W22h2

= 2 tr (W22) c (1 + q)

≤ 2 tr (W22) c (2 + q − η) . (57)

Note that h2 ∈ H2(c)
c is equivalent to q > 1. Using (57) and the Cauchy-Schwarz inequality,Z
H2(c)c

E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ2(h2)
≤ 2 tr (W22) c

"
2

Z
H2(c)c

dΠ2(h2) +

Z
H2(c)c

(q − η) dΠ2(h2)

#
≤ 2 tr (W22) c

h
2P (q > 1) + var (q)1/2 P (q > 1)1/2

i
. (58)
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Letting wj denote the eigenvalues ofW22 then we can write

q − Eq = ηPp
j=1wj

pX
j=1

wj

¡
y2j − 1

¢
where yj are iid N(0, 1). Thus

var (q) =
η2³Pp

j=1wj

´2 pX
j=1

w2j var
¡
y2j
¢
≤ 2λ−1p (59)

since λp =

Pp
j=1wj

maxj wj
= tr (W22) /λmax (W22) . By Markov’s inequality, (59), and 1− η = 2λ

−1/3
p ,

P (q > 1) = P (q − η > 1− η) ≤ var (q)

(1− η)2
≤ λ

−1/3
p

2
. (60)

Furthermore, (60) and λ
−1/3
p ≤ 2−1 imply thatZ

H2(c)
dΠ2(h2) = 1− P (q > 1)

≥ 1− λ
−1/3
p

2

≥ 3
4
. (61)

It follows from (58), (59), (60), (61) and λ
−1/3
p ≤ 2−1 that

1

tr (W)

R
H2(c)c

E
∙³eT ∗2 − h2´0W22

³eT ∗2 − h2´¸ dΠ2(h2)R
H2(c)

dΠ2(h2)

≤ tr (W22)

tr (W)

2c
³
λ
−1/3
p + λ

−2/3
p

´
3/4

≤ tr (W22)

tr (W)
4cλ−1/3p (62)

Together, (54) and (62) applied to (50)-(52) show that

sup
h∈H(c)

Ec(T − h) ≥ ω

1 + ω

tr (W11)

tr (W)
+

µ
c

1 + c
−
µ

2

1 + c
+ 4c

¶
λ−1/3p

¶
tr (W22)

tr (W)
.
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Since ω is arbitrary we conclude that

sup
h∈H(c)

Ec(T − h) ≥ tr (W11)

tr (W)
+

µ
c

1 + c
−
µ

2

1 + c
+ 4c

¶
λ−1/3p

¶
tr (W22)

tr (W)

= 1−
µ

1

1 + c
+

µ
2

1 + c
+ 4c

¶
λ−1/3p

¶
tr (W22)

tr (W)

which is (37) since
tr (W22)

tr (W)
=

tr (A)

tr (WV)
under the transformations made at the beginning of the

proof.

The innovation in the proof technique (relative, for example, to the arguments of van der Vaart

(1998) and Wasserman (2006)) is the use of the Bayes estimator eT ∗2 based on the truncated prior
Π∗2. ¥

Proof of Theorem 5. The proof technique is based on the arguments in Theorem 8.11 of van

der Vaart (1998), with two important differences. First, van der Vaart (1998) appeals to a com-

pactification argument from Theorem 3.11.5 of Van der Vaart and Wellner (1996), while we use a

different argument which allows for possibly singularW. Second, we bound the risk of the limiting

experiment using Theorem 4 rather than van der Vaart’s Proposition 8.6.

Let Q(c) denote the rational vectors in H(c) placed in arbitrary order, and let Qk denote the

first k vectors in this sequence. Define Zn =
√
n (Tn − θn) . There exists a subsequence {nk} of {n}

such that

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

E c (Zn) ≥ lim
k→∞

lim inf
n→∞

sup
h∈Qk

E c (Zn)

= lim
k→∞

sup
h∈Qk

E c (Znk)

≥ lim
k→∞

sup
h∈QK

E c (Znk) (63)

the final inequality for any K <∞.

Since we allowW to have rank r ≤ m, writeW = G1G
0
1 where G1 is m× r with rank r. Set

G = [G1,G2] where G2 is m× (m− r) with rank m− r and G0
1G2 = 0. Define

Z∗n =G
−10
Ã
G0
1Zn

0m−r

!

which replaces the linear combinations G0
2Zn with zeros. Notice that since the loss function is a

quadratic inW = G1G
0
1, then c (Zn) = c (Z∗n).

We next show that without loss of generality we can assume that Z∗n is uniformly tight on a

subsequence {n0k} of {nk}. Suppose not. Then there exists some ε > 0 such that for any ζ <∞,

lim inf
k→∞

P
¡
Z∗0nkGG

0Z∗nk > ζ
¢
≥ ε. (64)
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Set ζ = tr (WV) /ε. Since c (Z∗n) = Z∗0nGG
0Z∗n/ tr (WV), (64) implies

lim inf
k→∞

E c
¡
Z∗nk

¢
= lim inf

k→∞

EZ∗0nkGG
0Z∗nk

tr (WV)
≥ ζε

tr (WV)
= 1

which is larger than (40). Thus for the remainder we assume that Z∗n is uniformly tight on a

subsequence {n0k} of {nk}.
Tightness implies by Prohorov’s theorem that there is a further subsequence {n00k} along which

Z∗n00k
converges in distribution. For simplicity write {n00k} = {nk}. Theorem 8.3 of van der Vaart

(1988) shows that differentiability in quadratic mean and Iθ > 0 imply that the asymptotic dis-

tribution of Z∗nk is T (Z) − h, where T (Z) is a (possibly randomized) estimator of h based on

Z ∼ Nm (h,V) . By the portmanteau lemma

lim inf
k→∞

E c
¡
Z∗nk

¢
≥ E c(T (Z)− h).

Combined with (63), the fact that the set QK is finite, and c (Zn) = c (Z∗n) , we find that

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

E c (Zn) ≥ sup
h∈QK

E c(T (Z)− h).

Since K is arbitrary, and since c(u) is continuous in h, we deduce that

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

E c (Zn) ≥ sup
h∈Q(c)

E c(T (Z)− h)

= sup
h∈H(c)

E c(T (Z)− h)

≥ 1−
∙
1

1 + c
+

µ
2

1 + c
+ 4c

¶
λ−1/3p

¸
tr (A)

tr (WV)

the final inequality by Theorem 4. We have shown (40).

For each c, taking the limit as p→∞, we obtain

lim inf
p→∞

sup
I⊂H(c)

lim inf
n→∞

sup
h∈I

E c (Zn) ≥ 1−
a

1 + c

which is (41). ¥
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