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Abstract1

In this paper, we model network formation and network interactions under a unified

framework. The key feature of our model is to allow individuals to respond to incen-

tives stemming from interaction benefits on certain activities when they are choosing

friends (network links). There are two advantages of this modeling approach: first,

one can evaluate whether incentives from certain interactions are important factors

for friendship formation or not. Second, possible friendship selection bias on net-

work interactions can be corrected as the network formation is explicitly modeled.

The proposed model is estimated by the Bayesian method. In the empirical study,

we apply the model to American high school students’ friendship networks in the

Add Health dataset. From two activity variables which are considered in the paper

– GPA and smoking frequency, we find a significant incentive effect from GPA, but
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not from smoking, on friendship formation. These results suggest that the benefit

of interactions in academic learning is an important factor for forming friendships,

while the pleasure of smoking together is not. However, from the perspective of

network interactions, both GPA and smoking frequency are subject to significant

positive interaction (peer) effects.

Keywords: Bayesian method, Multivariate Analysis, Spatial Analysis
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1 Introduction

Economic research on social networks and social interactions has grown rapidly over

the past two decades. For many economic issues, the role of social networks as a

channel to disseminate information or facilitate activities is revealed.2 Accompany-

ing a wide application of network concepts in economics, an immediate question for

both theorists and practitioners is to understand how networks are formed.3 This

question is not only interesting in its own right, but it is also important to analyze

how changes of network structures alter interaction effects on economic activities.

In the context of social interactions, regardless of whether the research subjects are

groups of workers, students, or delinquents, one likes to know how individuals choose

their friends in order to understand peer effects within a group. As a friendship net-

2For example, job finding and labor force participation (Calvó-Armengol and Jackson, 2004,

2007; Bayers et al., 2008); social learning and knowledge diffusion (Conley and Udry, 2001, 2010);

risk sharing and insurance (Fafchamps and Gubert, 2007a, 2007b); obesity transmission (Chris-

takis and Fowler, 2007, Flower and Christakis, 2008); peer effects on students’ academic achieve-

ment (Calvó-Armengol et al., 2009); sport and club participation (Bramoullé et al., 2009; Liu et

al., 2011); and juvenile delinquencies or criminal activities (Ballester et al., 2010; Pattcchini and

Zenou, 2008, 2012; Bayer et al., 2009.)
3From the development of theory on network formation, the most recognized concept is strategic

network formation proposed by Jackson and Wolinsky (1996). After their seminal work, theorists

have widely applied this concept on building network formation models and discussed the tradeoff

between network stability and efficiency (see survey in Jackson, 2008, 2009, and relevant chapters

in Handbook of social economics edited by Benhabib, Bisin, and Jackson, 2011). Built on richness

of theory, new empirical strategies to embed the concept of strategic network formation in real

networks would be highly desirable for economic network studies. Empirical network studies are

comparatively fewer than theoretical studies. Some existing examples include Fafchamps and

Gubert (2007a, 2007b) and Comola (2008), which study the risk-sharing and insurance networks

in rural areas of developing countries. Mayer and Puller (2008), Christakis et al. (2010), Currarini et

al. (2010), Mele (2010), Goldsmith-Pinkham and Imbens (2011), and Hsieh and Lee (2011) study

the friendship networks of American high school and college students.
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work might be formed in order to achieve favorable economic consequences, when

studying the result of network (or peer) effects on economic activities, there is a need

to correct for possible endogeneity biases due to friendship selection. The choice of

friendships might amplify observed peer interaction effects due to related unobserved

factors behind both decisions of friendship and economic activities (Weinberg, 2008).

With regard to this problem, Hsieh and Lee (2011) and Goldsmith-Pinkham and

Imbens (2011) study possibly important unobserved driving factors and use them

to link network formation and network interactions on economic activities.

In this paper, we propose a modeling approach for both static networks and

interactions among individuals. A static network refers to a cross-sectional case

in which only one observation of a network is available.4 Our model introduces

a device which allows individuals to respond to incentives stemming from interac-

tion benefits on certain activities when making friendship decisions. This device

is meaningful because in most of the empirical survey data for friendship, respon-

dents are not asked to nominate friends for specific purposes such as “who are you

studying with?” or “who are you exercising with?” Instead, respondents are asked

to nominate friends in general, such as “who are your best friends?” or “who do

you like to spend time with?” Therefore, it remains interesting to see from data

which activities would provide significant incentives for forming friendships. The

advantage of modeling both the network formation and network interactions under

a unified framework is twofold: first, one can evaluate the importance of individuals’

incentives as they stem from choosing their friends; second, the resulting model can

correct possible friendship selection biases in activities with interactions. We apply

this modeling approach to study American high school students’ friendship networks

4We focus on a static setting because most of the available network data are cross-sectional ones

without dynamics. Few students’ friendship network data which have panel waves can be found

in the literature of stochastic actor-based dynamic network modeling proposed by Snijders et

al. (2010).
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in the Add Health data. From two activity variables that are considered in the pa-

per, a student’s GPA and how frequently a student smokes in a usual week, we find a

significant incentive effect from GPA but not from smoking, which suggests that the

benefit of interactions in academic learning is a factor for building friendships, while

the pleasure of smoking together is not. The estimated endogenous (peer) effect

from our model is smaller than that from the network interaction model alone, with

the network assumed to be exogenously given. The latter shows that our modeling

approach is effective in correcting the selection bias in the network interaction model

due to endogenous friendship selection.

To model static networks, one approach is to assume pairwise independence

between network links. For example, Fafchamps and Gubert (2007a, 2007b) and

Comola (2008) apply the pairwise independence assumption, which allows them

to focus on individual and dyad-specific variables to explain network links. The

estimation of these models can be done by a standard maximum likelihood approach

since the likelihood of the whole network is simply the product of likelihoods from all

pairwise links. However, as noted by Bramoullé and Fortin (2009), the assumption of

pairwise independence is strong because it requires that the latent utility behind each

pairwise link be separable.5 Another approach to model static networks, without

imposing the pairwise independence assumption, is to treat the observed network

as a polychotomous choice with 2m(m−1) alternatives made jointly by individuals,

where m is the size of the network. The Exponential Random Graph Model (ERGM)

proposed by Frank and Struss (1986), or more generally, the p∗ model by Wasserman

and Pattison (1996), are the models of this type. In either an ERGM or a p∗ model,

several selected network statistics, such as the number of reciprocal links, the number

of k-stars, k ≥ 2, are specified in an exponential probability distribution to capture

how likely these network structures are to appear in a network. In this paper we

5This means that the individual utility derived from a network is equal to the sum of utilities

from each of his/her link and each link utility is not affected by any other links in the network.
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will follow the second approach aforementioned and motivate the model specification

with economic reasoning.

The remainder of this paper is organized as follows. Section 2 presents a uni-

fied modeling approach for both network formation and network interactions. A

Bayesian estimation method for the proposed model is discussed in Section 3. Sec-

tion 4 includes an application of the model to high school students’ friendship net-

works and activities in the Add Health data. Section 5 concludes the paper. We

leave a simulation experiment for showing model identification in the appendix.

2 The models of network formation and network

interactions

Our research subjects are individuals in a closed group setting, such as students in

a school-grade or workers in a company. Let Wg be a mg ×mg matrix (adjacency

matrix; sociomatrix) representing the friendship network of mg individuals (size) in

group g, where g = 1, · · · , G, with G denoting the total number of groups. The

(i, j)th entry of Wg, denoted as wij,g, is a dichotomous indicator which equals one if

individual i sends a link to individual j and zero, if not. The links are all directed

without imposing reciprocality.6 Diagonal elements, wii,g, i = 1, · · · ,mg, are zeros,

à priori. Let xi,g be a k-dimensional row vector containing individual i’s exogenous

characteristics and themg×k dimensional matrixXg be a collection of such vectors in

group g. For economic activities, we consider two types of variables – continuous and

Tobit-type.7 Let yi,cg (yi,tg) denote individual i’s continuous (Tobit-type) activity

6It is possible that individual i names j as his/her friend but j does not name i as a friend.
7We do not consider the case of binary variables in this paper because it might involve the issue

of multiple equilibria if network interactions are based on observed binary variables (Krauth, 2006;

Soetevent and Kooreman, 2007). The modeling of binary variables is of interest and challenging.

We will leave it for future research.
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variable in group g; Ycg = (y1,cg, y2,cg, · · · , ymg ,cg)′ and Ytg = (y1,tg, y2,tg, · · · , ymg ,tg)′

be the mg-dimensional column vectors for all members’ continuous and Tobit-type

activity variables in group g.

2.1 Network interactions on continuous and Tobit-type ac-

tivities

To model the process of network interactions on economic activities, we use the

Spatial Autoregressive (SAR) model (Bramoullé et al., 2009; Lee et al., 2010; Lin,

2010). The SAR model for a continuous activity variable is specified as

Ycg = λcWgYcg +Xgβ1c +WgXgβ2c + lgαcg + εcg, εcg ∼ Nmg(0, σ
2
εcImg), (1)

g = 1, · · · , G, where lg is the mg-dimensional vector of ones; αcg represents the

unobserved group fixed-effect for group g; Nmg represents a multivariate normal

distribution of dimension mg and Img is the identity matrix of dimension mg. The

coefficient λc in Eq. (1) is the endogenous (peer) effect, which is the key parameter

of interest to us. As each entry of Wg takes the value of either 0 or 1 and is not row-

normalized, λ should be interpreted as an influence from aggregated friendship links.

The vector of coefficients, βc = (β′1c, β
′
2c)
′, will capture influences from individuals’

own and friends’ exogenous characteristics, i.e., own and contextual effects, on Ycg.

Specifying group fixed effects in Eq. (1) will help to handle the identification problem

caused by correlated effects. Moffitt (2001) argues that correlated unobservables in

a group may contribute to correlations of Ycg and cause an identification problem by

confounding the endogenous effect. Here, group fixed effects not only refer to effects

from unobserved environmental factors shared by all members in the same group,

but also self-selection into groups if group choices depend on group characteristics.

The use of the SAR model to study network interactions can be motivated

by individual utility maximization. Ballester et al. (2006) and Calvó-Armengol
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et al. (2009) consider that, given the network Wg, an individual chooses yi,cg to

maximize a quadratic utility function

ui,cg(Ycg,Wg)

=

(
xi,gβ1c +

mg∑
j=1

wij,gxj,gβ2c + αcg + εi,cg

)
yi,cg −

1

2
y2
i,cg + λcyi,cg

mg∑
j=1

wij,gyj,cg, (2)

for i = 1, · · · ,mg, in a simultaneous non-cooperative game. The first and second

terms show that the utility is concave in individuals’ own choice of activity, which

guides them to choose their optimum activities. The third term reflects a comple-

mentary effect (competitive effect) from peers’ choices of activities if λ ≥ 0 (λ ≤ 0).

By the theorem of Ballester et al. (2006), as long as |λc| is less than the largest

eigenvalue of Wg, the unique interior Nash equilibrium outcome vector will take the

form as in Eq. (1) and, correspondingly, an individual optimum utility from network

interactions, given the network Wg, will be ui,cg(yi,cg(Wg)) = 1
2
y2
i,cg(Wg).

In certain cases, activity variables might be continuous, but nonnegative, i.e., a

Tobit-type variable which is left-censored at the value zero. Such a variable may

occur when individual i maximizes the utility in Eq. (2) with yi,cg subject to a non-

negative constraint. To distinguish a Tobit-type activity variable from a continuous

one, we replace yi,cg with yi,tg and impose a constraint, yi,tg ≥ 0, on the individ-

ual utility of Eq (2). Under this constraint, the Nash equilibrium vector can be

summarized by the following equation:

Ytg(Wg) = max
(

0, Ÿtg

)
with Ÿtg = λtWgYtg + Xgβt + lgαtg + εtg, (3)

where Ÿtg represents a vector of latent variables, Xg = (Xg,WgXg), and βt =

(β′1t, β
′
2t)
′. The solution Ytg(Wg) must satisfy Ytg ≥ λtWgYtg + Xgβt + lgαtg + εtg,

such that Ytg(Wg) ≥ 0, and yi,tg = λt
∑mg

j=1wij,gyj,tg + xi,gβ1t +
∑mg

j=1wij,gxj,gβ2t +

αtg + εi,tg whenever yi,tg(Wg) > 0 for i = 1, · · · ,mg. Under the conditions as in

Amemiya (1974) for a general simultaneous Tobit equation system,8 the solution

8A sufficient condition for a unique solution of this quadratic programming problem is that the
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Ytg(Wg) is unique and can be obtained from a constrained quadratic programming

problem

Ytg(Wg) = min
Ytg

 Y ′tg[(Img − λtWg)Ytg −Xgβt − lgαtg − εtg] :

Ytg ≥ 0, (Img − λtWg)Ytg −Xgβt − lgαtg − εtg ≥ 0

 . (4)

As an alternative, we show that with proper restricted parameter space on λt,

namely, ||λWg||∞ < 1, where ||.||∞ is the maximum row sum norm, the solution

can be conveniently obtained via a contraction mapping algorithm provided in Ap-

pendix A.

One concern of using the SAR model in studying network interactions is the pos-

sible endogeneity of the weight matrix, Wg. If Wg is endogenous and it correlates

with the disturbance term εg of the model, estimating the SAR model will result in

biases on the estimated endogenous effect, as well as other effects. A standard In-

strumental Variable (IV) approach suggests finding instruments for the endogenous

weight matrix. However, without utilizing the information provided by the struc-

ture of Wg or its formation process, an effective instrument may be difficult to find.

As a result, we do not pursue an IV approach, but instead propose a modeling ap-

proach which unifies the SAR model with a network formation model. The network

formation model is represented by the ERGM with the specified network statistics

motivated from economic reasoning. The key to combining these two models, which

will be illustrated in the next section, is to allow individuals to consider potential

benefits, which they can earn from the interaction process, when choosing friends.

quadratic objective function is strictly concave, which will be guaranteed if Img
− λt

2 (Wg +W ′g) is

positive definite. A necessary and sufficient condition is every principle minor of (Img
− λtWg) is

positive. Another sufficient condition is that (Img
− λtWg) has positive dominant diagonals, i.e.,

there exists positive di, i = 1, · · · ,mg such that di > |λt|
∑mg

j 6=i |Wij,g|dj for all i = 1, · · · ,mg.
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2.2 Network formation with incentives from interaction ben-

efits

To model the formation of static networks, we consider the exponential distribution

framework used in the ERGM due to its capacity in explaining link dependencies

within a network as well as its computational tractability in empirical applications.

A network space, Ωg, for group g consists of any possible network pattern, W , for

that group. An exponential distribution for Wg has a probability specification in

the following formula:

P (Wg) =
exp(Q(Wg))∑

W∈Ωg
exp(Q(W ))

. (5)

A specification of the function, Q(Wg), can accommodate various network statistics,

and thus Eq. (5) allows for an arbitrarily general probability specification. But in

order to apply this type of a model in empirical studies, researchers should specify

the dependencies sparingly so that the resulting probability is simple and practi-

cal (Jackson, 2010). In standard ERGMs (Frank and Strauss, 1986; Wasserman and

Pattison, 1996; Snijders, 2002), network statistics such as the number of k-stars,

k ≥ 2, and triangles are used in Q(Wg) to measure how likely those network struc-

tures are to appear in observed networks. However, the coefficients of those network

statistics do not represent causal relationships. To handle this drawback, we propose

including network statistics in Q(Wg) with economic reasoning.9

We consider that each individual i, i = 1, · · · ,mg, obtains the following utility

from network links in Wg:

vi,g(Wg) =

mg∑
j=1

wij,gψij,g︸ ︷︷ ︸
Exogenous Effects

+ $i,g(wi.,g,W−i.,g)η︸ ︷︷ ︸
Network Structure Effects

+
d̄∑
d=1

δd
2
y2
i,dg(Wg)︸ ︷︷ ︸

Incentive Effects

. (6)

9A similar idea is used in Snijders et al. (2010) and Mele (2010) for their dynamic network

formation models.
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In Eq. (6), the exogenous effects capture influences from individual-specific and

dyad-specific exogenous characteristics on the link utility. The function, ψij,g, has

the expression,

ψij,g = ci,gγ1 + cj,gγ2 + cij,gγ3. (7)

The variables, ci,g and cj,g, in Eq. (7) are s̄-dimensional row vectors of individual-

specific characteristics and the variable, cij,g, is a q̄-dimensional row vector of dyad-

specific characteristics, such as the same age, sex, or race shared by each pair of

individuals (i, j) in group g to capture the utility from homophily of observed char-

acteristics in friendship formation. The idea of using Cg = [(ci,g, cj,g, cij,g)
′; i =

1, · · · ,mg, j = 1, · · · ,mg, i 6= j]′ and coefficients, γ = (γ′1, γ
′
2, γ
′
3)′, in explaining link

decisions is general (see e.g., Fafchamps and Gubert (2007a, 2007b) on the study

of risk-sharing network formation). The network structure effects in Eq. (6) cap-

ture influences from some patterns of link dependence on the link utility, where

$i,g(wi.,g,W−i.,g) represents a h̄-dimensional row vector of summary statistics con-

structed from Wg which are relevant to individual i’s utility and η is a corresponding

vector of coefficients. The empirical specification of the network structure effects

used in this paper will be discussed later in Section 4.1.

The incentive effects are innovative in this paper, which represent the benefits

from network interactions, i.e., utilities obtained from the interaction process. For

example, students may want to make friends with someone who is doing well in

school in order to learn from him or her to improve their own performance. These

incentive effects are the key to linking the network formation and network interaction

models. We implicitly assume that individuals make their decisions on friendship

links and economic activities sequentially in two stages. In the first stage, indi-

viduals choose their friends to maximize their utilities from link formation. In the

second stage, individuals choose economic activities to maximize their utilities from

network interactions. This two-stage process is characterized as a two-stage static
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game. Individuals adopt strategies on choosing friends and economic activities and

obtain utilities as payoffs of the game. There is perfect information between the two

stages. The equilibrium of this two-stage game satisfies the principle of sequential

rationality, i.e., a player’s strategy should specify optimal actions at every point in

the game tree (Mas-Colell et al., 1995). Hence, one can solve the equilibrium of

this game by backward induction: first, determine equilibrium activities in the sec-

ond stage and calculate corresponding optimum utilities from network interactions

for each possible network pattern. Second, by incorporating the optimum utilities

from network interactions into the utilities of links in the first stage, solve for the

equilibrium network.

There may be several (d̄) economic activities which provide incentives for forming

friendships. For simplicity, these incentive effects are assumed to be separable,

i.e., none of them affect each other. As noted by Ballester et al. (2006), utilities

from network interactions always increase with the number of links in the network

if interactions provide complementary effects on activities. Since the utility from

network links contains incentive effects, individuals might choose to add as many

links as possible if there were no cost on link formation. This is also related to the

problem of network degeneracy as discussed in Snijders et al. (2006). To mitigate

such a strong incentive to form links, we rely on nontrivial negative effects from

some exogenous or network structural effects to represent possible costs of forming

friendship links.10

10The activity variables, {yi,dg}d̄d=1, enter into the utility of linking through incentive effects. It

is possible to allow yi,dg, yj,dg (or |yj,dg−yi,dg|) to directly appear in ψij,g for capturing individual-

specific (or dyad-specific) effects. Such an extension will emphasize that activity variables (or the

absolute difference of activity variables) directly affect the utility from network links. For example,

one may consider activities which are usually done by individuals alone, e.g., watching TV and

playing video games. The more time students spend on those activities, the less time they can

spend on associating with friends. Hence, yi,dg and yj,dg, which denote the time individual i and

j spend on the activity, should be specified in the function, ψij,g, to capture the influences on the
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To motivate the specification of Q(Wg) in Eq. (5) from the individual utility

function vi,g in Eq. (6), we assume that a network is formed through a cooperative

game. Cooperative behavior in friendship formation is argued by economists and

biologists with the theory from iterated prisoner’s dilemma and cooperative strate-

gies (i.e., tit-for-tat) (See Peck, 1993; Hruschka and Henrich, 2006; Majolo et al.,

2006; Ule 2008; Fu et al., 2008; and Fosco and Mengel, 2011). Also, Jackson (2010)

indicates that studying the allocation rules behind the cooperative network forma-

tion game is rational in many economic applications, such as students’ friendship

network in schools, where the favors can be exchanged between students. We can

define the Transferable Utility (TU) of this cooperative network formation game as

the sum of individual utility function, which is

TU(Wg) =

mg∑
i=1

vi,g(Wg)

=

mg∑
i=1

mg∑
j=1

wij,gψij,g +

mg∑
i=1

$i,g(wi.,g,W−i.,g)η +
d̄∑
d=1

δd
2
Ydg(Wg)

′Ydg(Wg). (8)

To relate TU(Wg) to the specification of Q(Wg) in the exponential distribution

framework, we introduce a disturbance ξW for each network pattern W in Ωg addi-

tively to TU(W ). Thus, Wg is the formed network if and only if TU(Wg) + ξWg =

maxW∈Ωg{TU(W ) + ξW}. The disturbances can be regarded as some stochastic

elements in the network formation process. By assuming that ξW ’s are from i.i.d.

type I extreme value distribution, we have the exponential probability in Eq. (5)

link utility. However, those activities can be still subject to friendship interactions, as friends may

share information of new games or TV programs and therefore individuals may spend even more

time on those activities. In another example, we can consider the frequency of delinquent behaviors

as the activity variable. Students care about |yj,dg − yi,dg| in forming friendships as differences in

levels of their delinquent behaviors could create negative effects on their probability of linking. In

terms of estimation, having yi,dg, yj,dg or |yj,dg − yi,dg| directly affect the probability of linking

will not cause substantial changes in the Bayesain approach and corresponding MCMC algorithms

proposed in this paper.
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with the function Q(Wg) being replaced by TU(Wg) and thus it relates our model

specification to the ERGM framework.

Modeling the endogenous network formation and activity variables jointly under

a unified framework has two advantages. First, it allows us to study how individ-

uals respond to incentives from network interactions when choosing their friends,

which are revealed by the coefficients δd’s. Second, it handles the problem of friend-

ship selection bias on the interaction effects. The disturbance terms εdg’s appear in

both the network formation and network interaction processes. Hence, they cap-

ture unobserved factors which contribute to both friendship and economic activity

decisions. In the following section, we will discuss how to estimate this model.

3 Model estimation

3.1 The likelihood function of the model

To illustrate how the likelihood function of our model is calculated, we first con-

sider models with a single incentive effect from either a continuous or a Tobit-type

activity variable. Then, we introduce a correlation between disturbances of activity

variables in these two types and incorporate them into the model. The joint likeli-

hood function based on this bivariate case will be used for the posterior analysis in

Section 3.2.

Continuous activity variable

We assume an individual idiosyncratic shock εi,cg in Eq. (2) is i.i.d. distributed

from N (0, σ2
εc). With the incentive effect from the continuous variable Ycg, the joint

14



probability of the activity variable Ycg and the network Wg is

P (Wg, Ycg|θc, αcg) = P (Ycg|Wg, θc, αcg) · P (Wg|θc, αcg)

= |Scg(Wg)| · f(εcg|Wg, θc, αcg) · P (Wg|θc, αcg)

= |Scg(Wg)| · f(εcg|θc, αcg) · P (Wg|εcg, θc, αcg)

= |Scg(Wg)| · f(εcg|θc, αcg) ·
exp(TU(Wg, εcg, θc, αcg))∑
W exp (TU(W, εcg, θc, αcg))

, (9)

where

f(εcg|θc, αcg) = (2π)−
mg
2

(
σ2
εc

)−mg
2 exp

(
− 1

2σ2
εc

ε′cgεcg

)
,

with εcg = Scg(Wg)Ycg − Xgβc − lgαcg and θc = (γ′, η′, δc, λc, β
′
c, σ

2
εc) being the pa-

rameter vector.

Tobit-type activity variable

For the Tobit-type activity variable Ytg, we can divide the mg individuals in group

g into two blocks, such that the first mg1 individuals have activity variables equal

to zero and the remaining individuals who are arranged from mg1 + 1 to mg have

positive activity variables. Eq. (3) of the activity variable Ytg and the network Wg

can be conformably decomposed into Ÿtg1

Ytg2

 = λt

 W11,g W12,g

W21,g W22,g

 Ytg1

Ytg2

+

 X1g

X2g

 β1t

+

 W11,g W12,g

W21,g W22,g

 X1g

X2g

 β2t +

 lg1

lg2

αtg +

 εtg1

εtg2

 ,

(10)

where Ytg2 > 0 and Ytg1 = 0 with the corresponding latent variables, Ÿtg1 ≤ 0.

Individual idiosyncratic shocks, εi,tg’s, are assumed from i.i.d. N (0, σ2
εt). Based on
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Eq. (10), the probability function of Ytg and Wg can be written as

P (Ytg,Wg|θt, αtg)

= P (Ytg1 = 0, Ytg2,Wg|θt, αtg)

=

∫
I(Ytg1 = 0, Ÿtg1) · P (Ÿtg1, Ytg2,Wg|θt, αtg) · dŸtg1

=

∫ −(λtW12,gYtg2+X1gβ1t+(W11,gX1g+W12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW22,g

∣∣ · f(εtg1, εtg2|θt, αtg)·

P (Wg|εtg1, εtg2, θt, αtg) · dεtg1

=

∫ −(λtW12,gYtg2+X1gβ1t+(W11,gX1g+W12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW22,g

∣∣ · f (εtg1, εtg2|θt, αtg) ·

exp (TU(Wg, εtg1, εtg2; θt, αtg))∑
W exp (TU(W, εtg1, εtg2; θt, αtg))

· dεtg1, (11)

where I(Ytg1 = 0, Ÿtg1) is a dichotomous indicator which is equal to 1 when Ÿtg1

is negative, and equal to 0, otherwise; εtg2 =
(
Img−mg1 − λtW22,g

)
Ytg2 − X2gβ1t −

(W21,gX1g +W22,gX2g)β2t − l2gαtg and θt = (γ′, η′, δt, λt, β
′
t, σ

2
εt).

Incentive effects can be from a total of d̄ activity variables which consist of

mixed continuous and Tobit-type ones. For simplicity, we consider a model with

one continuous and one Tobit-type activity variable, where the disturbances, εi,tg

and εi,cg, follow a bivariate normal distribution,

(εi,tg, εi,cg) ∼ i.i.d. N2

 0

0

 ,

 σ2
εt σεtc

σεct σ2
εc

 , i = 1, · · · ,mg. (12)

From Eq. (12), one has

εtg = σεtcσ
−2
εc εcg + ug, ug ∼ Nmg(0, σ

2
uImg), (13)

where σ2
u = (σ2

εt − σεtcσ
−2
εc σεct). Let θct = (γ′, η′, δc, δt, λc, λt, β

′
c, β
′
t, σ

2
εc , σ

2
εt , σεtc), the
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joint probability function of Ytg, Ycg, and Wg is

P (Ytg, Ycg,Wg|θct, αcg, αtg)

=

∫ −(λtW12,gYt2g+X1gβ1t+(W11,gX1g+W12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW22,g

∣∣ · f (ug|εcg, θct, αtg, αcg) ·

|Scg(Wg)| · f(εcg|θc, αcg) ·
exp(TU(Wg, εcg, εtg, θct, αtg, αcg))∑
W exp (TU(W, εcg, εtg, θct, αtg, αcg))

· dεtg1. (14)

If εtg and εcg are uncorrelated, i.e., σεtc = σεct = 0, then

P (Ycg, Ytg,Wg|θct, αcg, αtg)

=

∫ −(λtW12,gYt2g+X1gβ1t+(W11,gX1g+W12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW22,g

∣∣ · f (εtg|θt, αtg) ·

|Scg(Wg)| · f(εcg|θc, αcg) ·
exp(TU(Wg, εcg, εtg, θct, αtg, αcg))∑
W exp (TU(W, εcg, εtg, θct, αtg, αcg))

· dεtg1. (15)

The main issue we will encounter during the estimation is to calculate the like-

lihood function of the exponential distribution for the network. When the network

size is large, its calculation is almost impossible since it requires evaluating all net-

work patterns in Ωg for the denominator of the exponential distribution function.11

Hence, the standard maximum likelihood estimation approach (without simulation)

would be unfeasible. This problem applies to all ERGMs for networks and can be

traced back to the spatial analysis in Besag (1974). To deal with this problem, we

turn to the Bayesian estimation with an effective MCMC technique (discussed in

Section 3.3) developed to handle an intractable normalizing term in the posterior

density function.12

11For example, even in a network with just 5 individuals, it needs to evaluate 24×5 = 220 possible

network realizations for the denominator.
12For the classical approach, several estimation methods have been proposed. The first is the

maximum pseudo-likelihood approach (MPL). This approach was first mentioned in Besag (1974)

and later applied to the network study in Strauss and Ikeda (1990). A pseudo-likelihood simply

uses the product of conditional probabilities for estimation. The estimates from the MPL would

not be the MLE. One may use the estimates from the MPL as initial values for other estimation
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Regarding identification of parameters in our models, one may focus on the co-

efficients of incentive effects, δd’s, in the network formation model, which link to

the activity variables and the endogenous effects, λd’s, in the network interaction

models.13 To show that these two sets of parameters are identified in Bayesian the-

ory, i.e., data brings information to update the posterior distributions of parameters

which distinguish them from the prior distributions (see Kadane, 1974; Hsiao, 1983;

Poirier and Tobias, 2003), we conduct a simulation experiment which shows that

the posterior distributions of these parameters collapse to the true values when the

sample size increases. The details of this experiment are left in Appendix B.

3.2 Posterior distributions of parameters and the MCMC

The posterior distributions of parameters considered here are based on the model

with both continuous and Tobit-type activity variables. To deal with Tobit-type

activity variables in the Bayesian approach, it is natural to include the sampling

of latent variables, (Ÿt11, · · · , ŸtG1), during the MCMC procedure along with other

unobservables as an augmentation (Albert and Chib, 1993). By Bayes’ theorem, the

approaches. Another approach is the Monte Carlo maximum likelihood (MCML) estimation ap-

proach which simulates auxiliary networks for approximating the denominator of the exponential

distribution function with its simulated counterpart (Geyer and Thompson, 1992). One shortcom-

ing of the MCML approach is that the choice of initial values during the optimization algorithm

plays a critical role. They have to be close enough to the true parameter values, otherwise, the con-

vergence of the algorithm might not be attained (Bartz et al., 2008; Caimo and Friel, 2010). The

Robbins-Monro approach used in Snijders (2002) to simulate auxiliary networks for constructing

simulated moments usually accepts a wide range of initial values which will lead to a convergent

algorithm.
13The rest of the parameters in the network formation model will be identified as long as corre-

sponding regressors are not linearly dependent. So are the coefficients of regressors in the network

interaction models.
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joint posterior distribution of the parameters and unobservables in the model is14

P
(
θct, {αcg}, {αtg}, {Ÿtg1}|{Ycg}, {Ytg}, {Wg}

)
∝ π(θct, {αcg}, {αtg})·

G∏
g=1

{(
mg1∏
i=1

I(yi,tg = 0) · I(ÿi,tg ≤ 0)

)
· P
(
Ytg, Ycg,Wg, Ÿtg1|θct, αcg, αtg

)}
, (16)

where π(·) represents the density function of the prior distribution. The exogenous

variables, {Xg} and {Cg}, are suppressed from the above expression for simplicity.

We assume independence between prior distributions of common parameters and

group effects, namely, π(θct, {αcg}, {αtg}) = π1(θct)π2({αcg})π3({αtg}). It is not

easy to directly simulate draws from the joint posterior density in Eq. (16). But

one can use the Gibbs sampling algorithm and work on the conditional posterior

densities of parameters. By properly blocking parameters in θct into subgroups, we

define prior distributions for parameters and group effects in the model as follows:

(1) Coefficients of network formation model,

φ = (γ′, η′, δc, δt) ∼ T N 2s̄+q̄+h̄+2(φ0,Φ0).

(2) Endogenous interaction parameters in network interaction models,

λc, λt ∼ U [−1/τG, 1/τG].

(3) Coefficients of own and contextual effects in network interaction models,

βc, βt ∼ N2k(β0, B0).

(4) Variances and covariance of disturbance in network interaction models,

σ = (σ2
εc , σ

2
εt , σεct) ∼ T N 3 (σ0,Σ0),

(5) Group fixed effects in network interaction models,

αcg, αtg ∼ N (α0, A0), g = 1, · · · , G.

14We use the notation {Ag} to represent the collection of Ag across G groups, i.e., {Ag} :=

(A1, · · · , AG).
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In the prior distributions of (1) and (4) above, T N q represents a truncated multi-

variate normal distribution of dimension q. These prior distributions, except for λc

and λt, are conjugate priors commonly used in the Bayesian literature. We assign

γ, η, δc and δt into the group, φ, since they are all (linear) coefficients in the func-

tion, TU(Wg). We require the incentive effects, δc and δt, to be nonnegative. This

constraint helps us to rule out the case of negative incentive effects, which is not rea-

sonable for the utility specification. Thus, the prior distribution of φ is a truncated

normal, which is defined on the convex area, O = {φ ∈ R2s̄+q̄+h̄+2|δc ≥ 0, δt ≥ 0},

with φ0 and Φ0 being the prior mean vector and the variance matrix before trunca-

tion, respectively. For λc and λt, their prior distributions are independent and we

employ a uniform prior for each as suggested in Smith and LeSage (2002). We restrict

the valid values of λc and λt between −1/τG and 1/τG, where τG = max{τ ∗1 , · · · , τ ∗G}

and τ ∗g = min{max1≤i≤mg
∑mg

j=1 |wij,g|,max1≤j≤mg
∑mg

i=1 |wij,g|}.15 We put σ2
εc , σ

2
εt ,

and σεct into a group, σ, and specify a truncated distribution for σ to the area,

T = {σ ∈ R3|σ2
εc > 0, σ2

εt > 0, σ2
εcσ

2
εt − σ2

εct ≥ 0}, so that σ2
εc , σ

2
εt , and σεct can

form a proper covariance matrix. The group effects, αcg and αtg, are treated as

fixed effects and therefore the hyperparameters, α0 and A0, are fixed in their prior

distributions.16 Within the Gibbs sampling steps, random draws can be simulated

from the conditional posterior distribution for each of the parameter groups. Here

we list the set of conditional posterior distributions required by the Gibbs sampler:

(i) P
(
Ÿtg1

∣∣∣ θct, αcg, αtg, Ycg, Ytg,Wg

)
, g = 1, · · · , G.

15This interval is suggested by Kelejian and Prucha (2010) in which Img − λWg is nonsingular

for all values of λ in this interval.
16If αcg and αtg are treated as random group effects, we should assign them with hierarchical

priors, which means that the parameters, α0 and A0, in their prior distributions also have their

own priors and should be updated with data.
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By applying Bayes’ theorem, we have

P
(
Ÿtg1

∣∣∣ θct, αcg, αtg, Ycg, Ytg,Wg

)
∝

(
mg1∏
i=1

I(yi,g = 0)I(ÿi,g ≤ 0)

)
P (Ÿtg1, Ycg, Ytg,Wg|θct, αcg, αtg), (17)

for g = 1, · · · , G.

(ii) P (φ|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\φ, {αcg}, {αtg}), where θct\φ stands for θct

excluding φ.

By applying Bayes’ theorem, we have

P (φ|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\φ, {αcg}, {αtg})

∝ T N 2s̄+q̄+h̄+2(φ;φ0,Φ0) ·
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (18)

where T N 2s̄+q̄+h̄+2(φ;φ0,Φ0) is the prior truncated density function of φ.

(iii) P (λc|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\λc, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (λc|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\λc, {αcg}, {αtg})

∝
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (19)

where λc ∈ A = [−1/τG, 1/τG].

(iv) P (λt|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\λt, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (λt|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\λt, {αcg}, {αtg})

∝
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (20)

where λt ∈ A = [−1/τG, 1/τG].
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(v) P (βc|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\βc, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (βc|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\βc, {αcg}, {αtg})

∝ N2k(βc; β0, B0) ·
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (21)

where N2k(βc; β0, B0) is the prior normal density function of βc.

(vi) P (βt|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\βt, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (βt|{Ÿtg1},{Ycg}, {Ytg}, {Wg}, θct\βt, {αcg}, {αtg})

∝ N2k(βt; β0, B0) ·
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (22)

where N2k(βt; β0, B0) is the prior normal density function of βt.

(vii) P (σ|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\σ, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (σ|{Ÿtg1}, {Ycg}, {Ytg}, {Wg}, θct\σ, {αcg}, {αtg})

∝ T N 3(σ;σ0,Σ0) ·
G∏
g=1

P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), (23)

where T N 3(σ;σ0,Σ0) is the prior truncated normal density function of σ.

(viii) P (αcg|Ÿtg1, Ycg, Ytg,Wg, θct, αtg), g = 1, · · · , G.

By applying Bayes’ theorem, we have

P (αcg|Ÿtg1,Ycg, Ytg,Wg, θct, αtg)

∝ N (αcg;α0, A0) · P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), g = 1, · · · , G,

(24)

where N (αcg;α0, A0) is the prior normal density function of αcg.
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(ix) P (αtg|Ÿtg1, Ycg, Ytg,Wg, θct, αcg), g = 1, · · · , G.

By applying Bayes’ theorem, we have

P (αtg|Ÿtg1,Ycg, Ytg,Wg, θct, αcg)

∝ N (αtg;α0, A0) · P (Ÿtg1, Ycg, Ytg,Wg|θct, αtg, αcg), g = 1, · · · , G,

(25)

where N (αtg;α0, A0) is the prior normal density function of αtg.

All of the conditional posterior distributions from (i) to (ix) are not available in a

closed form. However, we may use the Metropolis-Hastings (M-H) algorithm to draw

from these distributions. Tierney (1994) and Chib and Greenberg (1996) have shown

that the combination of Markov chains (Metropolis-within-Gibbs) is still a Markov

chain with the invariant distribution being the correct objective distribution. The

procedure of the MCMC sampling starts with arbitrary initial values for {α(0)
cg },

{α(0)
tg }, and θ

(0)
ct , and then the sampling proceeds sequentially from the above set

of conditional posterior distributions.17 In the following section, we will discuss a

relative new version of the M-H algorithm which could be used when the likelihood

function of the model contains an intractable normalizing term.

3.3 The double M-H algorithm

From Section 3.1, the likelihood function of y = ({Ycg}, {Ytg}, {Wg}), given the

parameter θ, takes the form P (y|θ) = f(y; θ)/D(θ), where D(θ) is an intractable

normalizing term.18 The standard M-H algorithm to simulate random draws of θ

runs as follows: given the old draw, θold, one proposes a new draw, θnew, from a

proposal distribution, q(·|θold), and then updates the old draw to the new draw with

17A further detail about implementing the MCMC sampling based on steps (i) to (ix) is available

online.
18Here P (y|θ) =

∏G
g=1 P (Ycg, Ytg,Wg|θct, αcg, αtg) with P (Ycg, Ytg,Wg|θct, αcg, αtg) from Eq (15)

and θ would refer to the vector (θct, {αcg}, {αtg}).
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an acceptance probability, α(θnew|θold). Denoting π(θ) as the prior probability of θ,

the acceptance probability is computed as

α(θnew|θold) = min

{
1,
P (θnew|y)q(θold|θnew)

P (θold|y)q(θnew|θold)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· D(θold)

D(θnew)

}
. (26)

One can see that in Eq. (26), the normalizing terms, D(θold) and D(θnew), are left in

both the numerator and denominator and will not cancel out, so the evaluation of

the acceptance-rejection criterion with α in Eq. (26) would be intractable. Murray

et al. (2006) consider to include auxiliary variables, ỹ = ({Ỹcg}, {Ỹtg}, {W̃g}), into

the acceptance probability, i.e., the acceptance probability conditional on ỹ can be

written as

α(θnew|θold, ỹ) = min

{
1,
π(θnew)P (y|θnew)q(θold|θnew)

π(θold)P (y|θold)q(θnew|θold)
· P (ỹ|θold)
P (ỹ|θnew)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· f(ỹ; θold)

f(ỹ; θnew)

}
, (27)

where ỹ are simulated from the likelihood function, P (ỹ|θnew) = f(ỹ; θnew)/D(θnew)

with the exact sampling (Propp and Wilson, 1996). In the conditional acceptance

probability of Eq (27), all normalizing terms cancel out and the other terms left are

computable. This algorithm bypasses evaluating the normalizing terms. However,

implementing the exact sampling is time consuming. In order to save time on the

computation, Liang (2010) proposes a ‘double M-H algorithm’ which utilizes the

reversibility condition and shows that when ỹ are simulated by the M-H algorithm

starting from y with m iterations, the conditional acceptance probability in Eq. (27)

can be obtained regardless of the value of m. This gives the double M-H algorithm

an advantage, as a small value of m can be used, removing the need of the exact

sampling. Due to this computational efficiency, we adopt the double M-H algorithm

in this study.

One thing worth mentioning is that in this paper we have provided a technical
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modification on the double M-H algorithm to make it simplify the simulation and

better fit into our application. Using the double M-H algorithm to update θ from

P (θ|y) requires simulating auxiliary variables, ỹ. However, the auxiliary activity

variables, {Ỹcg} and {Ỹdg}, in ỹ are redundant as they can be fully replaced by a

function of auxiliary networks, w̃ = {W̃g}. Therefore, we modify the conditional

acceptance probability in Eq. (27) to

α(θnew|θold, w̃) = min

{
1,
π(θnew)P (y|θnew)q(θold|θnew)

π(θold)P (y|θold)q(θnew|θold)
· P (w̃|θold)
P (w̃|θnew)

}
= min

{
1,
π(θnew)f(y; θnew)q(θold|θnew)

π(θold)f(y; θold)q(θnew|θold)
· f(w̃; θold)

f(w̃; θnew)

}
. (28)

To evaluate α(θnew|θold, w̃) in Eq. (28), we only simulate the auxiliary networks,

w̃, from the probability density function, P (w̃|θnew) = f(w̃; θnew)/D(θnew), which

shares the same normalizing term, D(θnew), with P (ỹ|θnew).19

To show that one can successfully draw from a target density P (θ|y) (assuming

θ is continuous for simplicity) by using the double M-H algorithm with the accep-

tance probability of Eq. (28), we need to show that the Markov chain based on the

transition density, p(θnew|θold) = α(θnew|θold)q(θnew|θold), is reversible, i.e.,

P (θold|y)α(θnew|θold)q(θnew|θold) = P (θnew|y)α(θold|θnew)q(θold|θnew), (29)

and therefore, P (θ|y) is an invariant distribution. To check Eq. (29), we need the

19Here, P (w̃|θnew) denotes the joint probability density function of (W1, · · · ,WG). In practice,

each auxiliary network, W̃g, is simulated by the M-H algorithm from Wg based on P (Wg|θnew) in

Eq. (5). The following step is implemented iteratively: one randomly picks up an entry of Wg,

wij,g, i 6= j, and proposes w̃ij,g = 1− wij,g, with the acceptance probability

α(w̃ij,g|wij,g) = min

{
exp (TU(w̃ij,g,W−ij,g, θnew))

exp (TU(wij,g,W−ij,g, θnew))
, 1

}
,

updating wij,g to w̃ij,g. Note that the denominators of P (w̃ij,g,W−ij,g|θnew) and

P (wij,g,W−ij,g|θnew) are canceled out because the two probabilities are evaluated at the same

θnew.
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unconditional acceptance probability, that is

α(θnew|θold) =

∫
α(θnew|θold, w̃)P (w̃|θnew)dw̃

=

∫
min

{
π(θnew)P (y|θnew)q(θold|θnew)

π(θold)P (y|θold)q(θnew|θold)
· P (w̃|θold)
P (w̃|θnew)

, 1

}
P (w̃|θnew)dw̃

=

∫
min

{
P (θnew|y)q(θold|θnew)

P (θold|y)q(θnew|θold)
P (w̃|θold), P (w̃|θnew)

}
dw̃. (30)

With Eq. (30), the left hand side of Eq. (29) equals to

P (θold|y)α(θnew|θold)q(θnew|θold)

=

∫
min {P (θnew|y)q(θold|θnew)P (w̃|θold), P (θold|y)q(θnew|θold)P (w̃|θnew)} dw̃.

The right hand side of Eq. (29) equals to

P (θnew|y)α(θold|θnew)q(θold|θnew)

=

∫
min {P (θold|y)q(θnew|θold)P (w̃|θnew), P (θnew|y)q(θold|θnew)P (w̃|θold)} dw̃.

Since these two are equal, the reversibility condition in Eq. (29) is satisfied.

4 Empirical Study

We apply our model to study American high school students’ friendship networks

in the Add Health data, which is a national survey based on grades 7 through 12 in

132 schools.20 Four waves of surveys were conducted between 1994 and 2008. In the

20This is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan

Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human

Development, with cooperative funding from 17 other agencies. Special acknowledgment is due

Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested

in obtaining data files from Add Health should contact Add Health, Carolina Population Center,

123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). No direct support was

received from grant P01-HD31921 for this analysis.
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wave I in-school survey, a total of 90,182 students were interviewed. Each respondent

answered questions about their demographic backgrounds, academic performances,

and health-related behaviors. Most uniquely, students were asked to nominate up

to five male and five female friends. This provides information about their friend-

ship networks. In the following waves of in-home surveys, more information about

students’ families and neighborhoods in which they live are available for a subset of

the total sample. To accommodate most of the students’ nominated friends into our

framework, the sample used in this study is constructed from the wave I in-school

survey. We consider two activity variables which may be relevant for friendship

formation. One is a student’s academic performance (measured by GPA), which

is represented by a continuous variable.21 The other is how frequently a student

smokes in a week, which is represented by a Tobit-type variable.

In the context of social interactions, students’ academic performance and smok-

ing behavior are extensively studied as they have important long-term consequences

on students’ future lives and health.22 To obtain interaction effects on these two

objects, researchers face difficulty identifying correlated effects from group-level un-

observables and endogenous selection into groups (Moffitt, 2001), and separating the

endogenous interaction effect from contextual effects in a linear model (the reflection

problem by Manski, 1993). With various approaches to solving these difficulties, re-

searchers generally provide evidence for the existence of peer effects. Hsieh and

Lee (2011) further consider the problem of endogenous friendship selection on peer

effects by modeling unobservables in both the network interaction and network for-

21GPA is regarded as a proxy for studying activities.
22One can find studies of peer effects on students’ academic performance in Hoxby (2000),

Sacerdote (2001), Hanushek et al. (2003), and Zimmerman (2003) with the use of the linear-in-

means model; and Calvó-Armengol et al. (2009), Lin (2010), Boucher et al. (2010), and Liu et

al. (2011) with the use of the network interactions model. For studies of peer effects on students’

smoking behaviors, one can see evidence of peer effects on Gaviria and Raphael (2001), Powell et

al. (2005), Lundborg (2006), Clark and Loheac (2007), and Fletcher (2010).
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mation processes. They show that the endogenous effect obtained from the SAR

model without controlling the endogeneity of the (spatial weight) network matrix can

be upward biased. In the present study, we confirm Hsieh and Lee’s (2001) finding

that the endogenous effect would be smaller after controlling endogenous formation

of friendship networks. Moreover, we will show that the benefit of interactions from

academic learning is an important factor for students to form friendships.

4.1 The empirical specification of network structure effects

in the link-associated utility

For the empirical application, we consider the following specification of the network

structure effects in the link-associated utility of Eq. (6),23

$i,g(wi.,g,W−i.,g)η

= η1

mg∑
j=1

wij,gwji,g︸ ︷︷ ︸
Reciprocality Effect

+ η2

mg∑
j=1

wij,g

mg∑
k 6=j

wik,g

+ η3

mg∑
j=1

wij,g

mg∑
k 6=j

wik,g

2

︸ ︷︷ ︸
Sender′s Expansiveness Effect

+ η4

mg∑
j=1

wij,g

mg∑
k 6=i

wkj,g


︸ ︷︷ ︸
Receiver′s Popularity Effect

+ η51

mg∑
j=1

wij,g

(mg∑
k

wik,gwkj,g

)
+ η52

mg∑
j=1

wij,g

(mg∑
k

wki,gwkj,g

)
+ η53

mg∑
j=1

wij,g

(mg∑
k

wik,gwjk,g

)
︸ ︷︷ ︸

Transitive Triads Effect

+ η6

mg∑
j=1

wij,g

(mg∑
k

wjk,gwki,g

)
︸ ︷︷ ︸

Three Cycles Effect

. (31)

In Eq. (31), the reciprocality effect reflects the utility from reciprocal friendships.

Even though each link decision (naming friend) is made by one individual without

mutual consent from another, the possibility of reciprocality may be a factor in

an individual’s link decision. The sender’s expansiveness effect in Eq. (31) reflects

23The effects we consider here are mostly mentioned in Snijders et al. (2010) except for the

squared term of the sender’s outdegree to capture a nonlinear expansiveness effect. In practice,

any other relevant network structure effects can be incorporated into our utility specification.
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the utility from being an outgoing person who actively nominates friends. The

statistics involved are the sender’s outdegree and the outdegree square. We expect

the coefficient, η3, would be negative to reflect the reality that individuals might

not make too many friends due to limited resources, e.g., limited time, energy, and

money. The receiver’s indegree is used to measure the receiver’s popularity effect in

Eq. (31), which reflects the utility from making friends with someone who is popular.

The transitive triads effect and the three cycles effect reflect the utility from engaging

in a transitive relationship, i.e., friends of my friends are my friends. However, they

are distinguished by directions of links. From Kovář́ık and van der Leij (2012),

transitive triads effects may be linked to an individual’s sense of risk aversion. The

three-cycles effect can be interpreted as an opposite hierarchy effect (Snjiders et al.,

2010). If the coefficient η6 is negative, it implies a local hierarchy among linked

individuals.

Given $i,g(wi.,g,W−i.,g)η in Eq. (31), the term
∑mg

i=1$i,g(wi.,g,W−i.,g)η in the

transferable utility of Eq.(8) can be written as

mg∑
i=1

$i,g(wi.,g,W−i.,g)η

= η1tr(W 2
g ) + η2(l′gW

′
gWglg − l′gWglg)

+ η3(l′gW
′
gDiag(Wglg)Wglg − 2l′gW

′
gWglg + l′gWglg)

+ η4(l′gWgW
′
glg − l′gWglg) + (η51 + η52 + η53)tr(W 2

gW
′
g) + η6tr(W 3

g ), (32)

where Diag(A) is a n× n diagonal matrix with its diagonal elements formed by the

entries of a n× 1 vector of A. One can see that parameters η51, η52 and η53 are not

separately identified from Eq. (32). Hence, without loss of generality, we will use η5

for η51 + η52 + η53 hereafter.
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4.2 Data summary

To ease the computation burden, we only work with small networks in this study.

The following steps are used to construct the sample. First, we group students by

their school and grade level and consider friendships only inside the same group.24

Second, we focus on senior high school students from 9th to 12th grades. Third, we

restrict our network sample to those groups with sizes between 10 and 50 (10 and

60 for the smoking case). After removing missing observations on activity variables

in each group, a total of 1,177 (1,476 for the smoking case) respondents from 47

networks (44 networks for the smoking case) are left for analysis.25 These networks

have the average size equal to 25.043 (33.546 for the smoking case), average density

equal to 0.142 (0.108 for the smoking case), average outdegree equal to 2.564 (2.866

for the smoking case), and average clustering coefficient equal to 0.327 (0.332 for

the smoking case).26 In the network formation model, we capture individual-specific

effects by a dummy variable of whether a student is older than the group average or

not. Three other dummy variables – whether a pair of students has the same age,

same sex, or same race – are used to capture dyad-specific effects.

For the network interaction model, the continuous variable, GPA, is calculated

by the average of a respondent’s reported grades from several subjects, including

language, social science, mathematics, and science, of which each has a value between

24In the Add Health data, about 80% of friendship nominations happen within the same grade

level. Hence, about 20% of links are missed due to the design of network boundary.
25The number of missing observations is equal to 113 (9.6%) for the GPA sample and 34 (2%)

for the smoking sample.
26The outdegree for individual i is calculated by

∑
j wij,g. The average degree is∑

i

∑
j 6=i wij,g/mg. The network density is obtained by further dividing the average degree with

(mg − 1). The clustering coefficient is calculated as the total fraction of transitive triples in the

network, i.e.,

C(Wg) =

∑
i;j 6=i;k 6=i,j wij,gwjk,gwik,g∑

i;j 6=i;k 6=i,j wij,gwjk,g
.
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1 and 4. The Tobit-type variable, smoking, is obtained from students’ response

to the survey question, “During the past twelve months, how often did you smoke

cigarettes?”, which has a value between 0 and 7. We follow Lin (2010), Lee et

al. (2010, 2013), and Hsieh and Lee (2011) to choose the independent variables which

are used in the network interaction model. A complete list of variables is provided

in Table 1. In Figures 1 and 2, we plot two typical networks from our sample –

one is from the GPA sample and the other is from the smoking sample. From these

two figures, one can observe that students who have higher GPAs tend to receive

more friendship nominations than those who have lower GPAs. This observation

does not seem to be evident for smoking behaviors, but one can find that smokers

are friends with each other. Our estimation results shown in the following section

provide evidence for the incentive stemming from interaction benefits on academic

learning, but not from the pleasure of smoking together, on friendship decisions.

Moreover, our results show that interaction effects on influencing GPA or smoking

frequency are significant.

To obtain estimates from the Bayesian estimation in this empirical study, the

values of hyperparameters in the prior distributions are set as follows: φ0 = 0;

Φ0 = 10I2s̄+q̄+8; β0 = 0; B0 = 10I2k; σ0 = 0; Σ0 = 10I3; α0 = 0; A0 = 400.

These specified values of hyperparameters are designed to allow relative flat prior

densities over the ranges of the parameter spaces. The reported estimation results

are based on the MCMC sampling draws which pass the convergence test provided

by Geweke (1992).

4.3 Estimation results

4.3.1 The case of GPA

We first estimate the model with a single continuous variable, GPA, and report

the results in Table 2. The values shown for each parameter are the mean and
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Table 1: Summary Statistics

GPA Smoking

variable min max mean s.d. mean s.d.

GPA 1 4 2.910 0.734 - -

Smoking 0(57.86%) 7 - - 1.257 2.511

Age 10 19 16.004 1.285 15.997 1.269

Male 0 1 0.493 0.500 0.482 0.499

Female 0 1 0.507 0.500 0.517 0.499

White 0 1 0.611 0.487 0.629 0.483

Black 0 1 0.246 0.430 0.230 0.421

Asian 0 1 0.016 0.125 0.016 0.123

Hispanic 0 1 0.068 0.251 0.067 0.250

Other race 0 1 0.059 0.236 0.058 0.233

Both parents 0 1 0.725 0.447 0.733 0.442

Less HS 0 1 0.114 0.318 0.109 0.312

HS 0 1 0.340 0.473 0.341 0.474

More HS 0 1 0.398 0.490 0.402 0.490

Edu missing 0 1 0.068 0.252 0.067 0.250

Professional 0 1 0.248 0.432 0.249 0.432

Staying home 0 1 0.220 0.414 0.228 0.419

Other Jobs 0 1 0.366 0.481 0.356 0.479

Job missing 0 1 0.076 0.265 0.077 0.266

Welfare 0 1 0.011 0.103 0.010 0.100

Num. of students at home 0 6 0.580 0.818 0.568 0.793

Network size 25.043 13.146 33.546 16.551

Network density 0.142 0.100 0.108 0.076

Outdegree 2.564 2.294 2.866 2.406

Indegree 2.564 2.418 2.866 2.596

Clustering Coef. 0.327 0.120 0.332 0.086

Sample size 1,177 1,476

Num. of networks 47 44

Both parents means living with both parents. Less HS means mother’s education is

less than high school.

Edu missing means mother’s education level is missing.

Professional means mother’s job is either scientist, teacher, executive, director and the

like.

Other jobs means mother’s occupation is not among “professional” or “staying home”.

Welfare means mother participates in social welfare programs.

Number of students at home means how many other students of grade 7 to 12 living

in the same household with you.

The variables in italics are omitted categories in the estimation.
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Figure 1: A friendship network from the GPA sample
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Figure 2: A friendship network from the Smoking sample
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the standard deviation (in parentheses) from posterior draws. In the first column,

we consider the full model with network formation and network interaction. In

the second column, we consider the network interaction model alone with networks

assumed exogenous. For examining the possible consequence of dropping 9.6% of

the sample due to the missing observation on the dependent variable, GPA, the

result in the third column is obtained from the full model with the Bayesian data

augmentation approach to recover missing observations.27

From the part of network formation in the first column, we observe that being

older than the group average or not does not have a significant effect on sending

or receiving friendship nominations. However, the three dyad-specific effects are

all positive and significant, where the effect of the same race is strongest, followed

by the effects of the same sex and the same age. Among network structure ef-

fects, the positive and strong reciprocality effect is consistent with findings in the

literature (Snijders et al., 2010; Mele, 2010), which reflects that mutual friendship

nominations are pervasive among students. In our sample, 49.8% of friendship links

are reciprocal. The sender’s expansiveness effect is concave, as the coefficient of the

first order term is positive and the coefficient of the second order term is negative.

This result confirms our conjecture that limited resources, e.g., limited time, energy,

or money, might constrain students from making too many friends. The receiver’s

popularity effect is negative, which suggests that students between 9th and 12th

grades in our sample are less willing to make friends with someone who is popular.

27At the time we drop observations with missing dependent variables, we also drop the potential

links connected to these observations. Since we study network formation and network interaction,

if many links were dropped, the resulting estimates of parameters might be biased. These missing

observations can be treated as unobserved random variables and updated with other unknown

parameters by the MCMC sampling. The advantage of doing this is that we could retrieve infor-

mation provided by these missing observations and obtain consistent and efficient estimates. The

problem of a missing independent variable can be much more involved and therefore we do not

discuss this case in this paper.
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The positive and strong transitive triads effect shows that students value transitive

relationships. When the positive triads effect is accompanied by the negative three

cycles effect, as discussed in Snijders et al. (2010), a certain degree of local hierarchy

among students is revealed. The incentive effect from GPA is found to be large and

significant. Therefore, for high school students in our sample, the potential benefit

of learning from others in school work is a factor which determines their friendship

decisions.

From the part of network interaction in the full model, the estimated endogenous

effect is equal to 0.021 and significant. This value implies that, on average, one

standard deviation increase in total friends’ GPAs will increase a student’s GPA by

0.154 units. The social multiplier effects across students and groups implied by this

estimate have the maximum and average equal to 1.248 and 1.060, respectively.28

From the estimated own and contextual effects, we observe that students who are

older, male, or whose mothers have received less education than high school tend

to have lower GPAs.29 Also, students’ GPAs could be negatively affected by having

friends who are either older, male, Black, or Asian.

When estimating the network interaction model alone by treating the weight ma-

trix as exogenously given, the result in the second column shows that the estimated

endogenous effect and its standard deviation are nearly double of those obtained

from the full model. Meanwhile, the estimated own and contextual effects are also

different from those of the full model and have larger standard deviations. These

differences between results in the first and second columns show the problem of

friendship selection biases in the network interaction model.

In the third column, after augmenting missing observations on GPA during the

estimation procedure, we do not observe significant changes on the estimates of pa-

28The vector of social multiplier effects can be calculated by (Img − λWg)
−1lmg .

29We do not interpret estimates which are insignificant, i.e., the posterior standard deviation is

close to or larger than the posterior mean.
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rameters in the network formation model and the endogenous effect in the network

interaction model, when comparing with the first column. Although there are few

changes on the estimates of own and contextual effects, these are insignificant es-

timates. The results suggest that dropping 9.6% of missing observations on GPA

does not cause any significant bias on the estimated interaction effects. However, the

advantage of using the data augmentation approach to recover missing observations

can be seen from smaller standard deviations of parameters in both the network

formation and network interaction models.

4.3.2 The case of smoking

Next, we consider the model with a single incentive effect from smoking. Both

the full model and the network interaction model alone with networks assumed

exogenous are estimated. Their results are reported in the first and second columns

in Table 3. As there are only 2% of missing observations on the variable of smoking,

we do not consider to use the data augmentation approach to recover them. From

the part of network formation in the first column, we still find that being older

than the group average does not have a significant effect on sending or receiving

friendship nominations. The estimates of dyad-specific effects show that being same

sex or same race are important for friendship decisions, while being same age is

not. Network structure effects are generally similar to those in the case of GPA. An

important finding is that the incentive effect from smoking is small and insignificant.

Hence, we can say that students in our sample do not consider the pleasure of

smoking together as a factor for their friendship decisions. From the part of network

interaction in the full model, the estimated endogenous interaction effect shown in

the first column of Table 3 is equal to 0.080 and significant, which implies that, on

average, one standard deviation increase in total friends’ smoking frequencies will

increase a student’s smoking frequency by 0.425 units. The social multipliers across
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students and groups implied by this estimate have the maximum and average equal

to 2.708 and 1.345, respectively. The estimated own and contextual effects show that

students who are Black, or who live with both parents tend to smoke less than their

counterparts. Also, a student may smoke less if he or she has friends who are Asian.

In the second column, the estimated endogenous effect from the network interaction

model alone is equal to 0.088, which is not significantly different from that obtained

from the full model. Although few estimated own and contextual effects are different

from those in the full model, they are insignificant effects. These results suggest that

outcomes of network interactions for smoking are not subject to friendship selection

bias.
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4.3.3 The case of combining both GPA and smoking

Lastly, we estimate the full model with incentive effects from both GPA and smok-

ing.30 From the results reported in Table 4, the estimates of incentive effects on GPA

and smoking are very close to those in Tables 2 and 3. Therefore, the joint modeling

of both incentive effects does not affect the estimate of each single effect, which con-

firms the separability of incentive effects. By comparing the results between the full

model and the network interaction model alone with networks assumed exogenous,

we observe a significant friendship selection bias on the estimated endogenous effect

for GPA, which changes from 0.049 when estimating the network interaction model

alone to 0.025 when estimating the full model. For smoking, due to a small and

insignificant incentive effect, we do not find evidence of friendship selection bias in

the estimate of its interaction effects. Furthermore, the covariance of disturbances

in the network interaction models between GPA and smoking is found to be -0.653

and significant.

30The sample used to estimate this model is based on the original GPA sample where we remove

missing observations on smoking.
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5 Conclusion

An important reason why researchers study a network structure is to analyze its im-

pact on outcomes. As mentioned in Jackson (2011, section 5), if networks only serve

as conduits for diffusion, e.g., diseases or ideas, given the network structure, their

impact on outcomes is sort of mechanical and one need not worry about any feedback

effects from outcomes. However, for studying the impact of a friendship network

on outcomes, both the network structure and the strategic interactions between the

network and outcomes should be considered. This extra consideration should be

reflected in a dynamic or static equilibrium model. In this paper, we propose a

static equilibrium model which takes into account these features. The modeling

approach in this paper assumes that students respond to incentives stemming from

interaction benefits with friends in making their friendship decisions. The empiri-

cal results show that American high school students regard the interaction benefit

from academic learning as a significant incentive for forming friendships, while the

incentive effect of smoking together is not found in the friendship decision. Another

valuable contribution of our approach to the social interaction literature is to correct

possible friendship selection biases in interaction effects.

Some issues that are not emphasized in this paper remain important for future

extensions. The first is the problem of possible multiple equilibria in the simultane-

ous non-cooperative network formation game. We circumvent this problem in the

present paper by assuming a benevolent social planner who manages the overall net-

work links to maximize the aggregated utility, or individuals who coordinate their

friendship formation processes. Those assumptions in friendship formation may

be appropriate for a school setting, but are questionable for other circumstances.

When discarding these assumptions, one could either provide an equilibrium selec-

tion rule or characterize the estimation problem with moment inequalities. The

second issue to consider is missing links which are prevalent in empirical network
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data. Missing links could happen due to the specification of the network boundary,

survey non-responses or the fixed choice design, e.g., nominate best ten friends by

the survey design. Those three causes are all relevant to our use of the Add Health

data. Kossinets (2006) uses simulation methods to examine the impact of missing

links due to these causes and finds that biases of missing links in estimated network

statistics due to the network boundary specification and the fixed choice design are

dramatic.31 A simple solution to overcome missing links due to network boundary

is to examine results under various network boundary specifications as robustness

checks. This has not been carried out in the present paper, as we face difficulty on

handling computation with large networks. For dealing with missing links from the

second and third causes, the likelihood-based approach (Robins et al., 2004, Gile and

Handcock, 2006)32 and imputation (Huisman, 2009) provide possible solutions. For

potential biases brought by missing network links in outcomes with network inter-

actions, Chandrasekhar and Lewis (2012) and Liu (2012) provide useful discussions.

The third issue to consider is the dynamic evolution of networks and outcomes. The

work of Snijders et al. (2010) is surely leaning in that direction. Last, we are inter-

ested in applying our modeling strategies to study the formation of other types of

networks, e.g., criminal network, physician referral network, or academic co-author

network, and the economic activities in these networks.

31However, for the purpose of data collection, researchers tend to believe that if an individual is

allowed to fill in as many friends as possible, that might be a difficult task for the individual, and

the filled-in responses might not reflect what one would hope for from a survey. There are various

opinions on this issue by survey scholars.
32The likelihood-based approach expresses the distribution of the observed data by

Pr(Wobs = wobs|X) =
∑
s

Pr(Wobs,Wmiss = (wobs, s)|X),

where s ∈ Ω(Wmiss) and Ω(Wmiss) contains all possible realizations of Wmiss in the network. In

practice, there are far too many realizations of s to be considered. Therefore, one could approximate

the observed data likelihood via simulation.
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APPENDIX A: A contraction mapping for the simultaneous Tobit-type

activity

To find out the solution of Eq. (4), we may consider a contraction mapping algorithm.

Denote a∨ 0 = max{a, 0} for a scalar a. Consider a mapping h : R
mg
+ → R

mg
+ where

R
mg
+ = {Y : Y ∈ Rmg , Y ≥ 0} defined by

h(Y ) = (λWgY + Zg) ∨ 0 =


(λw1.,gY + Z1,g) ∨ 0

...(
λwmg .,gY + Zmg ,g

)
∨ 0

 ,

where Zg = Xgβ + lgαg + εg, wi.,g is the ith row of Wg, and Zi,g is the ith row of Zg.

For any Y1 and Y2 in R
mg
+ ,

‖ h(Y1)− h(Y2) ‖∞ =‖ ((λWgY1 + Zg) ∨ 0)− ((λWgY2 + Zg) ∨ 0) ‖∞

= max
i=1,··· ,mg

|((λwi.,gY1 + Zi,g) ∨ 0)− ((λwi.,gY2 + Zi,g) ∨ 0)|

≤ max
i=1,··· ,mg

|λwi.,g(Y1 − Y2)| =‖ λWg(Y1 − Y2) ‖∞

≤‖ λWg ‖∞ · ‖ Y1 − Y2 ‖∞ .

Thus, if ‖ λWg ‖∞< 1, h(Y ) is a contraction mapping.33 As h(Y ) is a contraction

mapping, there exists a unique fixed point Yg such that h(Yg) = Yg. This Yg is

the unique solution for this simultaneous Tobit equation because Yg = h(Yg) =

(λWgYg + Zg) ∨ 0, which gives Yg ≥ 0, Yg ≥ λWgYg + Zg and yi,g = λwi.,gYg + Zi,g

whenever yi,g > 0 for any i in the group g. This contraction mapping feature suggests

a simple iterative algorithm to solve for Yg given values of λ, Wg and Zg.

33The assumption ||λWg||∞ < 1 is quite often used for the analysis of a SAR model in the spatial

literature. A SAR process becomes stable in the cross section dimension under such an assumption

because it implies the series expansion of the spatial transformation (I − λW )−1 =
∑∞
l=0 λ

lW l,

where W is a spatial weights matrix.
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APPENDIX B: A Simulation experiment

In this simulation experiment, we consider that the network formation model

contains the incentive effect from either a continuous activity variable or a Tobit-type

variable. The artificial activity variables are generated from the network interaction

models for continuous variables in Eq. (1), and Tobit-type variables in Eq. (3). The

artificial networks are generated from the exponential distribution of Eq. (5) with

the transferable utility in Eq. (8). The network size is fixed at 30 and we generate

a total of 100 networks. In the network interaction model (for both continuous and

Tobit-type variables), the exogenous variable Xi is generated from N(0, 36). The

group effect α is generated from N(0, 0.5). The disturbance term εi is generated

from N(0, 0.5). For simplicity, the contextual variable WX is not included. We set

the endogenous effect λ to 0.05, and the exogenous effect β to 0.50.

In the network formation model, exogenous effects for each link ij are captured

by a constant term and a dyad-specific exogenous variable Cij which is generated as

follows: first drawing two vectors of uniform random variables from U(0, 1), which

are denoted as U1 and U2. If the ith element of U1 and the jth element of U2 are

both larger than 0.7 or less than 0.3, then we set Cij equal to one. Otherwise,

we set it to zero. The parameters for exogenous and network structure effects

are set as: γ31 = −3.2; γ32 = 0.4; η1 = 0.4; η2 = 0.2; η3 = −0.03; η4 = 0.03;

η5 = 0.3; η6 = −0.2. For both cases of continuous and Tobit-type activity variables,

the incentive effect is set to 0.3, i.e., δc = δt = 0.3. Each artificial network W

is simulated by the M-H algorithm from an empty network based on P (W |θ) in

Eq. (5) (See details in footnote 19). Activity variables are simulated along with

the network. The M-H algorithm runs through the whole network for a total of

10,000 iterations and realizations of the network and the activity variables from the

last iteration are used for the data. These generated networks have the average

density equal to 0.078 (0.095 for the Tobit-type case), the average outdegree equal
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to 1.875 (2.270 for the Tobit-type case), and the average clustering coefficient equal

to 0.117 (0.150 for the Tobit-type case).

The purpose of this simulation experiment is to demonstrate the identification of

two key parameters, δ and λ, in Bayesian estimation theory through comparing the

posterior distributions of parameters under different levels of data informativeness,

i.e., when 20, 60, or 100 sample networks are used for estimating the model. The

estimation is done by the Bayesian approach with the double M-H algorithm dis-

cussed in Section 3.3. The hyperparameters used in prior distributions are specified

as follows: φ0 = 0; Φ0 = 10I9; β0 = 0; B0 = 10; σ0 = 0.0; Σ0 = 1.0; α0 = 0;

A0 = 100. These parameters are designed to allow relative flat prior densities over

the range of the parameter spaces.

The total of 100,000 draws from the conditional posterior distributions of pa-

rameters are simulated. we present plots of the priors and the posteriors of δ and λ

based on three different network numbers in Figure (3). From both Panel (a) (the

continuous case) and Panel (b) (the Tobit-type case) of Figure (3), one can observe

that, our choice of hyperparameters lead to uninformative priors. However, the pos-

terior distributions of δ and λ are getting more concentrated at the true values when

more networks, i.e., more data, are used for estimation. This evidence supports the

identification of these two important parameters in our model.

6 Supplementary Materials

MCMC algorithm: MCMC algorithm provides the details of each MCMC sam-

pling step for estimating our model.
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Figure 3: The plot of the prior and the posterior distributions
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